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INCOMPRESSIBILITY OF TORUS TRANSVERSE
TO VECTOR FIELDS

C. A. MORALES

Abstract. We give sufficient conditions for a torus T embed-
ded in a closed orientable 3-manifold M to be incompressible;
namely, the homomorphism π1(T ) → π1(M) induced by the
inclusion is injective. The motivation is the well known fact
that T is incompressible (and M is irreducible) if T is trans-
verse to an Anosov vector field [3], [4]. Here we still assume
that T is transverse to a vector field X, but we don’t assume
that X is Anosov. Instead, we assume that X exhibits a
unique orbit O which does not intersect T . If, in addition, O
is hyperbolic and not null homotopic in M , then T is incom-
pressible and M is irreducible.

1. Introduction

In this paper, we give sufficient conditions for a torus T embed-
ded on a closed 3-manifold M to be incompressible; namely, the
homomorphism π1(T ) → π1(M) induced by the inclusion is injec-
tive.

We have two motivations for this investigation. The first one
is the importance of an incompressible torus in 3-manifold topol-
ogy expressed in the Jaco-Shalen-Johannson Theory [9], [10]. The
second one is the known fact that T is incompressible (and M is ir-
reducible) if T is transverse to an Anosov vector field X (see [3], [4]).
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Remember, a 3-manifold is irreducible if any embedded sphere on it
bounds a 3-ball; and a vector field is Anosov if it exhibits contract-
ing and expanding invariant directions which (together with the
flow’s direction) forms a continuous tangent bundle decomposition.
In this paper we still assume that T is transverse to a vector field
X, but we don’t assume that X is Anosov. Under some additional
conditions we prove that T is incompressible and M is irreducible.
Recall that a closed orbit of a C1 vector field is hyperbolic if its
associated Poincaré map has no modulus one eigenvalues [15].

Theorem 1.1. Let T be an embedded torus on a closed orientable
3-manifold M . Suppose that

(1) T is transverse to a C1 vector field X in M ;
(2) there is a unique orbit O of X which does not intersect T ;
(3) O is hyperbolic;
(4) O is not null homotopic in M .

Then, T is incompressible and M is irreducible.

An example of an embedded torus satisfying (1)-(4) above can be
found in [2]. The proof of Theorem 1.1 is as follows. Let M,T,X be
as in the statement. In section 2, we prove that T is incompressible
if M is irreducible. More than this, it is proved that if the union
of the orbits of X which do not intersect T is connected and M is
irreducible, then T is incompressible. In section 3, we prove that
M is irreducible and therefore Theorem 1.1 follows. Note that the
theory of codimension one foliations plays no role here since the
vector fields under consideration are not Anosov. Instead, we use
some well known properties of 3-manifolds [6], [7] and a lemma in
[11]. It is possible that similar arguments and [14] can be used
to prove that a manifold as in Theorem 1.1 is a BL-manifold (as
defined in [1]) provided the closed orbit O has positive eigenvalues.

The author would like to thank the referee by the reference [6] for
Lemma 3.2 and the shorter proof of Lemma 3.4, and for suggesting
Example 3.

2. Transverse torus on irreducible 3-manifolds

In this section, we give a simple sufficient condition for a torus
transverse to a C1 vector field on a closed irreducible 3-manifold to
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be incompressible. Let us introduce some definitions and notations.
Hereafter, Xt denotes the flow of a C1 vector field X on a closed
3-manifold M . Denote by Ω(X) the nonwandering set of X. Recall
that x ∈ Ω(X) iff for every T > 0 and every neighborhood U of x
there is t > T such that Xt(U) ∩ U 6= ∅. If x ∈ M , we denote by
OX(x) = {Xt(x) : t ∈ R} the X-orbit of x. In addition, we denote
by ωX(x) the set of y ∈ M such that y = limn→∞Xtn(x) for some
sequence tn → ∞. We denote αX(x) = ω−X(x), where −X is the
time-reversed flow of X (ωX(x) and αX(x) are called the ω-limit
set and the α-limit set of x, respectively).

If A is a subset of a 3-manifold N we denote by int(A) and
Cl(A) the interior and the closure of A in N , respectively. Let S
be a surface embedded in N . We say that S is 2-sided if there
is an embedding h : S × [−1, 1] → N such that h(x, 0) = x (see
[7, p. 14 ]). A surface S separates N if N \ S is not connected.
We say that S is properly embedded in N if S is embedded in M
and ∂N ∩ S = ∂S. A solid torus will be a compact 3-manifold
homeomorphic to (two-disk)×S1. Clearly, a torus bounding a solid
torus separates N . A surface S is transverse to a vector field X in
N if X(x) /∈ TxS, for every x ∈ S. Note that a surface transverse
to a C1 vector field is necessarily 2-sided. The result of this section
is the following.

Theorem 2.1. Let T be a torus transverse to a C1 vector field
X on a closed irreducible 3-manifold M . If the union of the or-
bits of X which does not intersect T is connected in M , then T is
incompressible.

The proof will be consequence of the following two lemmas.

Lemma 2.2. If M is a closed irreducible 3-manifold and T is a
2-sided embedded torus in M , then T either is incompressible or
separates M .

Proof: Assume that T is not incompressible. As M is irreducible
and T is 2-sided it follows that T either bounds a solid torus or is
contained in a 3-ball B in M (see [6]). In the first case, T separates
M and we are done. In the second case, it is easy to prove that
T also separates M . The proof goes as follows. Capping B with a
3-ball B′ we obtain a manifold H which is diffeomorphic to S3 and
contains T . It follows from the Solid Torus Theorem ([12, p. 107])
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that T separates H ≈ S3. Denote by H1,H2 the two connected
components of H \ T . Since T ⊂ Int(B) we have that B′ ∩ T = ∅.
Hence, we can assume that B′ ⊂ int(H1) and then ∂(H1 \ B′) =
T ∪ ∂B because ∂B′ = ∂B. In addition, ∂(M \ B) = ∂B. So, we
can glue H1\B′ and M \B along ∂B in order to obtain a connected
3-manifold A with boundary ∂A = T . Similarly H2 is connected
and satisfies ∂H2 = T . Gluing A and H2 along T in a suitable way
yields M . From this it follows that M \ T has two components,
A and H2. So, T separates M in this case as well. The lemma is
proved. ¤

If S is a surface transverse to a C1 vector field X, we denote by
σS the union of the orbits of X which does not intersect S, i.e.,

σS = {x ∈ M : OX(x) ∩ S = ∅}.
Lemma 2.3. Let T be a torus transverse to a C1 vector field X
on a closed 3-manifold M . If σT is connected, then T does not
separate M .

Proof: We can assume that σT 6= ∅ without loss of generality.
Assume by contradiction that T separates M and denote by A,B
the connected components of M \T . We can assume that X points
inward to A in T = ∂A and outward to B in S = ∂B. As M − T
is not connected, it follows that a positive orbit with initial point
in T cannot return to T . Similarly for the negative orbits. From
this we conclude that Ω(X) ⊂ σT , and so, ωX(p) ∪ αX(p) ⊂ σT for
every p ∈ M (this is true in particular when p ∈ T ). Fix p ∈ T .
On one hand, ωX(p) ⊂ int(A) since X points inward to A at T . So
σT∩int(A) 6= ∅. On the other hand, αX(p) ⊂ int(B) since X points
outward to B at T = ∂B. So σT ∩ int(B) 6= ∅. It would follow that
σT is not connected, a contradiction. The result follows. ¤

Proof of Theorem 2.1: Direct from lemmas 2.2 and 2.3. ¤
Example 1. The conclusion of Theorem 2.1 fails if σT were not
connected. Indeed, consider M = S3 (which is irreducible) as the
union of two solid tori ST1, ST2 glued along their boundary tori
T . In each solid torus, we set a periodic orbit in a way that the
flow goes from one solid torus to the another. The resulting vector
field X has a transverse torus T such that σT is both non-empty
and non-connected. The desired counterexample is then obtained
because M = S3 has no incompressible torus.
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Example 2. It is easy to see that every torus bundle over S1

supports a C1 vector field X with a transverse torus T satisfy-
ing the hypothesis of Theorem 2.1. See Figure 1. Here σT is the
non-hyperbolic singularity indicated in the figure. This example
motivates the question whether, for every torus bundle over S1,
there is a C1 vector field X with a transverse torus T such that
σT is a non-trivial hyperbolic basic set. The answer is positive by
the following proposition which is interesting by itself. Recall that
a compact invariant set Λ of a C1 vector field X is transitive if it
is the ω-limit set of one of its points, and non-trivial if it is not a
single orbit of X. In addition, Λ is hyperbolic if the tangent bundle
over Λ admits an invariant splitting Es ⊕ EX ⊕ Eu such that Es

is contracted by X, Eu is expanded by X, and Ex is the direction
of X. A hyperbolic set is basic if it is transitive and isolated, i.e.,
there is a compact neighborhood U of Λ such that Λ = ∩t∈IRXt(U).

Singularity

T
3

Figure 1.

Proposition 2.4. Every torus bundle over S1 exhibits a C1 vector
field X with a transverse torus T such that σT is a non-trivial
hyperbolic basic set.

Proof: Consider the classical Smale’s diffeomorphism f0 in the
2-sphere S2 [15]. The non-wandering set of f0 consists of an at-
tracting fixed point o1, a repelling fixed point o2, and a hyperbolic
horseshoe Λ0. The suspension of f0 yields a C1 vector field X0 in
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S2 × S1 whose non-wandering set consists of an attracting closed
orbit O1, a repelling closed orbit O2, and a non-trivial hyperbolic
basic set Λ (the suspension of Λ0). Remove from S2×S1 two solid
tori neighborhoods ST1 and ST2 around O1 and O2, respectively, so
that X0 points inward in ST2 and outward in ST1. (This is similar
to the construction of the Anomalous Anosov flow [5].) The result-
ing manifold M1 is diffeomorphic to T 2× I with the boundary tori
of T 2 × I identified with the boundary tori of ST1 and ST2 respec-
tively. The vector field X0 induces a vector field X1 in M1 which
is transverse to the boundary tori of M1. On one hand, every torus
bundle over S1 can be obtained by identifying the two boundary
tori of M1. On the other hand, the vector field X1 produces (on
any of such identifications) a C1 vector field X with a transverse
torus T satisfying the conclusion of the proposition with σT = Λ.
The proof follows. ¤

Corollaire 0.1 in [2] shows that none of the vector fields X in the
above proof can be chosen to be Anosov.

3. Proof of Theorem 1.1

We start with the following standard definition. Let X be a C1

vector field on a closed 3-manifold M . Recall that a periodic orbit
O of X is hyperbolic if the Poincaré return map associated to O
has no eigenvalues with modulus one. The proof of Theorem 1.1
is based on the following theorem which is the main result of this
section.

Theorem 3.1. Let M be a closed orientable 3-manifold. Suppose
that M exhibits a C1 vector field X with a transverse torus T sat-
isfying the following properties:

(1) There is a unique orbit O of X which does not intersect T .
(2) O is hyperbolic and not null-homotopic in M .

Then, M is irreducible.

We use three lemmas to prove Theorem 3.1. The first one is
standard in 3-manifold topology [6] (or [7]).

Lemma 3.2. Let M be a closed 3-manifold. Suppose that M ex-
hibits an embedded non-separating torus T such that the manifold
M0 obtained by cutting open M along T is irreducible. Then, M is
irreducible.
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Now, let O be a hyperbolic periodic orbit of a vector field X.
We say that O is saddle-type if it is neither attracting nor repelling;
(i.e., its associated Poincaré map has at least one eigenvalue with
modulus > 1 and at least one eigenvalue with modulus < 1).

Lemma 3.3 ([11]). Let M be a closed 3-manifold and let X be a
C1 vector field with a transverse torus T . Suppose that there is a
unique orbit O of X which does not intersect T . If O is hyperbolic,
then O is saddle-type.

The next lemma uses the following notations and facts. Let O
be a hyperbolic periodic orbit of a C1 vector field X. It follows
from the stable manifold theory [8] that the sets

W s
X(O) = {x ∈ M : Xt(x) → O, t →∞}

and
W u

X(O) = {x ∈ M : Xt(x) → O, t → −∞}
are C1 submanifolds of M . If X is three-dimensional and O is
saddle-type, then both W s

X(O) and W u
X(O) are two-dimensional.

Lemma 3.4. Let M0 be a compact 3-manifold whose boundary ∂M0

consists of two tori T1, T2. Suppose that there is a C1 vector field
Y transverse to ∂M0, exhibiting a unique orbit O which does not
intersect ∂M0 and satisfying:

(1) Y points inward in T1 and outward in T2.
(2) O is a hyperbolic saddle-type periodic orbit.
(3) O is not null-homotopic in M0.

Then, M0 is irreducible.

Proof: By hypothesis (1), the vector field Y induces a transition
map Ξ : Dom(Ξ) ⊂ T1 → T2, where Dom(Ξ) denotes the domain
of Ξ. Denote by Im(Ξ) the image of Ξ.

Let us describe Dom(Ξ) and Im(Ξ). O is a saddle-type periodic
orbit by hypothesis (2). Let W s

Y (O) and W u
Y (O) be the stable

and unstable manifold of O, respectively. We shall assume that
the eigenvalues of O are positive (the negative case is similar). In
this case W s

Y (O) and W u
Y (O) are properly embedded annuli which

for simplicity will be denoted by As and Au, respectively. Let
Cs

1 , C
s
2 and Cu

1 , Cu
2 be the boundary circles of As and Au. If x ∈

T1\Dom(Π), then the positive orbit of x by X does not intersect T2

and so T \Dom(Ξ) ⊂ W s
X(O). This proves T \Dom(Ξ) ⊂ Cs

1 ∪Cs
2 .
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The reversed inclusion is obvious and then T \Dom(Ξ) = Cs
1 ∪Cs

2 .
Similarly, T \ Im(Ξ) = Cu

1 ∪ Cu
2 . This finishes the description of

Dom(Ξ) and Im(Ξ).
By the above description, we can fix two disjoint small annulus

neighborhoods Rs
1, R

s
2 in T1 of Cs

1 , C
s
2 , respectively, and two disjoint

small annulus neighborhoods Ru
1 , Ru

2 in T2 of Cu
1 , Cu

2 , respectively,
satisfying T1 \ (Rs

1 ∪Rs
2) ⊂ Dom(Ξ) and

(3.1) Ξ(T1 \ (Rs
1 ∪Rs

2)) = T2 \ (Ru
1 ∪Ru

2).

Due to hypothesis (3), the curves {Cs
1 , C

s
2} and {Cu

1 , Cu
2 } cannot

be null-homotopic in T1 and T2, respectively. Then, by shrink-
ing {Rs

1, R
s
2} and {Ru

1 , Ru
2} respectively, the annuli {Rs

1, R
s
2} and

{Ru
1 , Ru

2} can be chosen to be non-null-homotopic in T1 and T2,
respectively. It follows that {Rs

1, R
s
2} and {Ru

1 , Ru
2} are parallel in

T1 and T2, respectively.
Now, the union of the saturation of Rs

1 ∪ Rs
2 (by the flow of

Y ) and the annulus Au is a solid torus ST with core O. This
solid torus has eight annuli in the boundary, corresponding to four
annuli {Rs

1, R
s
2, R

u
1 , Ru

2} in the boundary of M0 and the other four
in the interior. According to the hypothesis, the interior annuli are
incompressible in the original manifold. The remaining pieces are
annuli in M0 being saturated by the flow. Each saturation is a solid
torus. So there are 3 solid tori being glued along annuli on their
boundaries. The glueing annuli are incompressible in the resulting
manifold, so M0 is irreducible. ¤

Proof of Theorem 3.1: Let M , X, T , and O be as in the state-
ment. Since there is a unique orbit O of X which does not intersect
T we have that σT = O, and so σT is connected. It follows from
Lemma 2.3 that T does not separate M . Then, to prove Theorem
3.1, it suffices by Lemma 3.2 to prove that the manifold M0 ob-
tained by cutting open M along T is irreducible. To prove that
M0 is irreducible, we observe that M0 is a compact, connected 3-
manifold whose boundary ∂M0 consists of two tori, T1, T2. Let Y
be the vector field induced by X in M0. Clearly, O is the unique
orbit of Y which does not intersect ∂M0. We claim that Y satis-
fies the properties (1)-(3) of Lemma 3.4. Indeed, it follows from
the definition that Y is inward in T1 and outward in T2, proving
(1). In addition, O is hyperbolic (by hypothesis) saddle-type (by
Lemma 3.3) and periodic since it is not null-homotopic. Hence,
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(2) holds. Obviously, O is not null-homotopic in M0 since it is not
null-homotopic in M . Hence, (3) holds. We conclude by Lemma
3.4 that M0 is irreducible and the proof follows. ¤

Proof of Theorem 1.1: Let T , X, M , O be as in the statement.
On one hand, T , X, M , O satisfy the hypothesis of Theorem 3.1
and so M is irreducible. On the other hand, since there is a unique
orbit O which does not intersect T , we have σT = O, and so, σT is
connected. As M is irreducible, it follows from Theorem 2.1 that
T is incompressible and the proof follows. ¤
Remark. The referee suggested the following example to show
that Theorem 1.1 is false without hypothesis (4).

Example 3. Consider the notation in the proof of Lemma 3.4.
Suppose Cs

1 , C
s
2 are null homotopic circles in T1 and that the disk

that Cs
1 bounds in T1 contains Cs

2 . Then Cs
1 , C

s
2 split T1 into 3

pieces: one is a disk bounded by Cs
2 , another is an annulus from

Cs
2 to Cs

1 , and the last is a torus minus a disk. Let E1, E2, E3

be the corresponding 3 dimensional saturations by some flow (for
instance, the one in Figure 2). E1 is a ball, E2 is a solid torus,
and E3 is (torus - disk) times interval. Gluing the boundary tori
T1, T2, we obtain a manifold M with a flow X such that the torus
T ≈ T1 ≈ T2 is transverse to X. Let O be the periodic orbit of the
flow described in the figure. Clearly, O is both hyperbolic and the
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unique orbit of X which does not intersect T . In addition, O is null
homotopic in M . Although T is incompressible, we have that M is
not irreducible since a reducing sphere can be constructed starting
with an annulus in E2 and capping off with two disks, each with a
part in the solid torus and a subdisk in E1.
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