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SEQUENTIAL DECREASING WHITNEY
PROPERTIES II

FERNANDO OROZCO ZITLI

Abstract. Let X be a metric continuum and C(X) the hy-
perspace of subcontinua of X. A topolological property P is
said to be a sequential decreasing Whitney property provided
that if µ is a Whitney map for C(X), {tn}∞n=1 is a sequence
in the interval (t, 1) such that tn → t and each fiber µ−1(tn)
has property P, then µ−1(t) has property P. In this pa-
per we show that the following properties are sequential de-
creasing Whitney properties: atriodicity, containing no arc,
irreducibility, indecomposability, hereditary indecomposabil-
ity, and unicoherence.

1. Introduction

A continuum is a compact, connected metric space. Throughout
this paper X will denote a continuum with a metric d. A continuum
X is said to be:

(a) a triod if there is a subcontinuum N of X such that the
complement of N in X is the union of three nonempty mu-
tually separated sets,

(b) atriodic provided X does not contain triods,
(c) a weak triod if there are subcontinua X1, X2, and X3 of X

such that X =
3⋃

i=1
Xi, Xi 6⊂

⋃
j 6=i

Xj and
3⋂

i=1
Xi 6= ∅,
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(d) irreducible provided that there exist two points p and q ∈ X
such that no proper subcontinuum of X contains p and q,

(e) unicoherent if A ∩ B is connected whenever A and B are
subcontinua of X such that A ∪B = X,

(f) indecomposable provided that X is not the union of two
proper subcontinua,

(g) hereditarily indecomposable provided that each of its non-
degenerate subcontinua is indecomposable.

Let C(X) be the hyperspace of all nonempty subcontinua of X,
with the Hausdorff metric H. A Whitney map for C(X) is a contin-
uous function µ : C(X) → [0, 1] such that (i) µ({x}) = 0 for each
x ∈ X, (ii) if A,B ∈ C(X) and A ⊂ B 6= A, then µ(A) < µ(B),
and (iii) µ(X) = 1. A Whitney level for C(X) is a set of the form
µ−1(t) where µ is a Whitney map for C(X) and 0 ≤ t < 1. Whitney
levels are always continua [1, p. 1032].

A topological property P is said to be:

- a sequential decreasing Whitney property, provided that if
µ is a Whitney map for C(X), {tn}∞n=1 is a sequence in
the interval (t, 1) such that tn → t and each Whitney level
µ−1(tn) has property P, then µ−1(t) has property P,

- a sequential strong Whitney-reversible property, provided
that whenever X is a continuum such that there is a Whit-
ney map µ for C(X) and a sequence {tn}∞n=1 in (0, 1) such
that tn → 0 and µ−1(tn) has property P for each n, then
X has property P.

Many authors have studied sequential strong Whitney-reversible
properties; in Chapter VIII of [3], a detailed list of the known se-
quential strong Whitney-reversible properties is presented.

In [7], the author introduced the concept of sequential decreas-
ing Whitney properties and proved that the following properties
are of this type: the property of Kelley, local connectedness, and
continuum chainability.

In particular, the following properties are known to be sequential
strong Whitney-reversible properties:

(1) atriodicity (see [5, Theorem 14.49, p. 458]),
(2) containing no arc (see [5, Theorem 14.52, p. 460]),
(3) irreducibility (see [3, Theorem 49.3, p. 274]),
(4) indecomposability (see [5, Theorem 14.46 (1), p. 454]),
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(5) hereditary indecomposability (see [5, Theorem 14.54 (1),
p. 461]),

(6) unicoherence (see [5, Theorem 14.46 (2), p. 454]).
In this paper we prove that the properties described in (1)-(6),

are sequential decreasing Whitney properties.

2. Preliminares

Suppose X is a continuum and µ is a Whitney map for C(X). For
t ≤ µ(A), let C(A, t) = (µ | C(A))−1(t), and for t ≥ µ(A) let Ct

A =
{B ∈ µ−1(t) : A ⊂ B}. Let t0 ∈ [0, 1) and A be a nondegenerate
subcontinuum of µ−1(t0). For each t ∈ [t0, µ(σ(A))), let X(A, t) =
{B ∈ µ−1(t) : there exists B ∈ C(A) such that σ(B) = B}. Since
C(A, t) is a Whitney level for C(A), C(A, t) is a subcontinuum of
µ−1(t). It known that Ct

A is a continuum when A ∈ C(X) (see
[9, Theorem 4.2]) and X(A, t) is a continuum (see [7, Lemma 7,
p. 300]). J. L. Kelley has shown (see [4, Lemma 1.1, p. 23]) that the
function σ : C(C(X)) → C(X) defined by σ(A) =

⋃{A : A ∈ A} is
continuous and surjective. So, for each t ∈ [0, 1], the function σt,µ :
C(µ−1(t)) → µ−1([t, 1] defined by σt,µ(A) = σ(A) is continuous.
For x ∈ X and ε > 0, let Bd(ε, x) = {y ∈ X : d(x, y) < ε}. If X is a
continuum and B ⊂ X, let N(ε, B) =

⋃{Bd(ε, x) : x ∈ B}. We say
that a subset A of C(X) is an anti-chain if A, B ∈ A and A ⊂ B,
implies that A = B. An order arc in C(X) is an arc α in C(X)
such that if A, B ∈ α, then A ⊂ B or B ⊂ A. By Theorem 1.8 of
[6], for each A, B ∈ C(X) such that A ⊂ B and A 6= B, there is an
order arc joining A and B.

The following lemma is due to Kelley (see [5, Lemma 1.28, p.
76]).

Lemma 2.1. Let X be a continuum and µ a Whitney map for
C(X). Then, for each ε > 0, there exists δ > 0 such that if K, L ∈
C(X) satisfy K ⊂ N(δ, L) and |µ(L)−µ(K)| < δ, then H(K,L) <
ε.

3. Atriodicity

Theorem 3.1. Let X be a continuum, µ be a Whitney map for
C(X), t0 ∈ [0, 1) and t ∈ (t0, 1]. If A is a subcontinuum of µ−1(t0),
then

⋃
A∈A

Ct
A is a subcontinuum of µ−1(t).
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Proof: Let L =
⋃

A∈A
Ct

A. It is easy to prove that L is closed in

µ−1(t). In order to see that L is connected, suppose the contrary.
Then there exist two nonempty disjoint closed subsets F1 and F2

of L such that L = F1 ∪ F2. For each i = 1, 2, let Wi = {A ∈ A :
Ct

A ⊂ Fi}. Observe that W1 and W2 are nonempty disjoint subsets
of A and A = W1∪W2. Now we show that they are closed. We only
prove that W1 is closed since the argument for W2 is similar. In
order to do this, let {An}∞n=1 be a sequence in W1 converging to an
element A of A. We need to prove that A ∈ W1. Since {Ct

An
}∞n=1 is

a sequence of elements of C(µ−1(t)) (see [9, Theorem 4.2]), taking
subsequences if necessary, we may assume that {Ct

An
}∞n=1 converges

to an element C of C(µ−1(t)). Since Ct
An
⊂ F1, for each n ≥ 1, we

get C ⊂ F1. Let E ∈ C. Then there exists a sequence {En}∞n=1 such
that limEn = E and En ∈ Ct

An
for each n ≥ 1. Notice that A ⊂ E.

So E ∈ Ct
A. Thus, C ⊂ Ct

A. Since Ct
A is connected, we conclude

that Ct
A ⊂ F1. Hence, A ∈ W1.

Therefore, A is not connected, a contradiction. This completes
the proof that L is a subcontinuum of µ−1(t). ¤

Theorem 3.2. Let X be a continuum, let µ be a Whitney map for
C(X), and let t0 ∈ [0, 1). If µ−1(t0) contains a triod, then there
exists s ∈ (t0, 1) such that µ−1(t) contains a weak triod for each
t ∈ (t0, s].

Proof: Let M be a triod contained in µ−1(t0). Then there is
a subcontinuum N of M such that M\N is the union of three
nonempty mutually separated sets S1, S2, and S3. For each i ≤ 3,
let Ai = N ∪ Si. Each Ai is a subcontinuum of µ−1(t0). For
each i ≤ 3, choose an element Ei ∈ Si. Choose ε > 0 such that
BH(ε, Ei) ∩

⋃
j 6=i

Aj = ∅ for each i ≤ 3. Let δ be as in Lemma 2.1

for the number ε
2 . Choose s ∈ (t0, 1] such that s − t0 < δ and

t ∈ (t0, s]. For each i ≤ 3, let Ti =
⋃

A∈Ai

Ct
A. We will prove that

T =
3⋃

i=1
Ti is a weak triod. Since

⋃
A∈N

Ct
A ⊂

3⋂
i=1

Ti, we see that

3⋂
i=1

Ti is nonempty. For each i ≤ 3, Ti is a subcontinuum of µ−1(t)

(by Theorem 3.1). Hence, T is a subcontinuum of µ−1(t). Now, we
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prove that Ti 6⊂
⋃
j 6=i

Tj . It is enough to show that Ct
Ei
∩ ⋃

j 6=i

Tj = ∅.
Let E ∈ Ct

Ei
. Since |µ(E) − µ(Ei)| < δ, by the choice of δ, we

infer that H(E,Ei) < ε
2 . If E ∈ ⋃

j 6=i

Tj , then there exists A ∈ ⋃
j 6=i

Aj

such that E ∈ Ct
A. Since |µ(E) − µ(A)| < δ, by the choice of

δ, we conclude that H(A, E) < ε
2 . So A ∈ BH(ε, Ei) ∩

⋃
j 6=i

Aj , a

contradiction. Thus, E /∈ ⋃
j 6=i

Tj . Hence, since Ct
Ei
⊂ Ti, we obtain

that Ti 6⊂
⋃
j 6=i

Tj for each i ≤ 3. Therefore, T is a weak triod. ¤

Corollary 3.3. The property of being atriodic is a sequential de-
creasing Whitney property.

Proof: This corollary follows easily from Theorem 3.2 and the
fact each weak triod contains a triod (see [10, Theorem 3, p. 443]).

¤

4. Containing no arc

Theorem 4.1. The property of not containing arcs is a sequential
decreasing Whitney property.

Proof: Take a Whitney map µ for C(X), a number t ∈ [0, 1) and
sequence {tn}∞n=1 in (t, 1] such that tn → t and µ−1(tn) contains
no arc for each n ≥ 1. Suppose that µ−1(t) contains an arc α.
Notice that µ(σ(α)) > t. We are going to prove that C(σ(α), t)
is arcwise connected. Since µ(σ(α)) > t, we have that C(σ(α), t)
is nondegenerate. Now, let A, B ∈ C(σ(α), t) and A 6= B. Then
there exist A1, B2 ∈ α such that A ∩ A1 6= ∅ 6= B ∩ B2. We
need to show that there exists an arc in C(σ(α), t) which joins
A and B. If A = A1 and B = B2, then there exists a subarc
α1 of α which joins A and B. Thus, α1 is an arc in C(σ(α), t)
which joins A and B. Hence, we only need to prove that there
exists an arc in C(σ(α), t) which joins A and A1; similarly, the
same happens with B and B1. By Theorem 14.8.1 [5, p. 405],
there exists an arc α1 in C(A ∪ A1, t) joining A and A1. Since
A ∪ A1 ⊂ σ(α), α1 is an arc in C(σ(α), t). Hence, the element A
can be joined with A1 in C(σ(α), t). Therefore, C(σ(α), t) is arcwise
connected. Let n be a positive integer such that tn ∈ (t, µ(σ(α))).
Since C(σ(α), t) is a Whitney level for C(σ(α)), by Proposition 2
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[8, p. 151], we obtain that C(σ(α), tn) is arcwise connected. Thus,
we see that C(σ(α), tn) is nondegenerate and µ−1(tn) contains an
arc, a contradiction. This completes the proof of this theorem. ¤

5. Irreducibility

Theorem 5.1. Irreducibility is a sequential decreasing Whitney
property.

Proof: Take a Whitney map µ for C(X), a number t ∈ [0, 1)
and a sequence {tn}∞n=1 in (t, 1] such that tn → t and µ−1(tn) is
irreducible for each n ≥ 1. We prove that µ−1(t) is irreducible.
Suppose the contrary. Since X is irreducible (see Theorem 49.3,
[3, p. 274]), there are p, q ∈ X such that X is irreducible between
p and q. Let A, B ∈ µ−1(t) be such that p ∈ A and q ∈ B. By the
irreducibility of X, we have that A 6= B. Let A ∈ C(µ−1(t)) be
such that A is irreducible between A and B (see Exercise 4.35 (b)
[6]). Since µ−1(t) is not irrreducible, we infer that A 6= µ−1 (t). Let
D ∈ µ−1(t)\A and take ε > 0 in such a way BH(ε,D)∩A = ∅. Let
δ be as in Lemma 2.1 for this ε. By Corollary 5.5 of [6], there exists
E ∈ C(X) such that D ⊂ E ⊂ N(δ,D) and D 6= E. Choose a
positive integer m such that tm ∈ (t, min{µ (E) , µ (σ (A)) , t + δ}).
We need to prove that the set X(A, tm) is a proper subcontinuum
of µ−1(tm) and σ(X(A, tm)) is a proper subcontinuum of X which
contains p and q. Clearly, X(A, tn) is a subcontinuum of µ−1(t)
(see [7, Lemma 7, p. 300]). Using order arcs, it can be shown that
there exists F ∈ C(E) such that F ∈ µ−1(tm). If F ∈ X(A, tm),
then there exists L ∈ C(A) such that σ(L) = F . Given L ∈ L,
L ⊂ σ(L) = F ⊂ E ⊂ N(δ,D). By the choice of δ, we have
that H(L, D) < ε. Thus, L ⊂ BH(ε,D). So, since L ⊂ A, we
conclude that L ⊂ BH(ε, D) ∩ A. This contradicts the choice of ε.
We have shown that F /∈ X(A, tm). Hence, X(A, tm) is a proper
subcontinuum of µ−1(tm). Since µ−1(tm) is irreducible, by Theorem
14.73.2 of [5], we have σ(X(A, tm)) is a proper subcontinuum of X.

On the other hand, since A, B ∈ A, using order arcs in C(A), it
can be shown that there exist H1, H2 ∈ C(A) such that A ∈ H1,
B ∈ H2, and µ(σ(Hi)) = tm for each i ≤ 2. Let F1 = σ(H1)
and F2 = σ(H2). Notice that F1, F2 ∈ X(A, tm). Then A ⊂
F1 ⊂ σ(X(A, tm)) and B ⊂ F2 ⊂ σ(X(A, tm)). Thus, p and q ∈
σ(X(A, tm)).
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Therefore, X is not irreducible between p and q. This contradic-
tion completes the proof that µ−1(t) is irreducible. ¤

6. Indecomposability

Theorem 6.1. Indecomposability is a sequential decreasing Whit-
ney property.

Proof: Take a Whitney map µ for C(X), a number t ∈ [0, 1)
and a sequence {tn}∞n=1 in (t, 1] such that tn → t. We are going to
prove that if µ−1(t) is decomposable, then there exists a positive
integer m such that µ−1(tm) is decomposable. Let A1 and A2 be
proper subcontinua of µ−1(t) such that µ−1(t) = A1 ∪ A2. Let
A1 ∈ A1\A2 and A2 ∈ A2\A1. Then there exists ε > 0 such that
BH(ε, A1)∩A2 = ∅ = BH(ε, A2)∩A1. Let δ be as in Lemma 2.1 for
the number ε

2 and take m a positive integer such that tm − t < δ.
For each i ∈ {1, 2}, let Gi =

⋃
A∈Ai

Ctm
A . By Theorem 3.1, G1 and

G2 are subcontinua of µ−1(tm). Given E ∈ µ−1(tm), using an order
arc from a one point set to E, it is possible to find A ∈ µ−1(t)
such that A ⊂ E. Since A ∈ Ai for some i ∈ {1, 2}, then E ∈ Gi

for some i ∈ {1, 2}. We have shown that µ−1(tm) = G1 ∪ G2. Fix
an element E1 ∈ µ−1(tm) such that A1 ⊂ E1. If E1 ∈ G2, then
there exists A ∈ A2 such that A ⊂ E1. By the choice of δ, we
have that H(A,E1), H(A1, E1) < ε

2 . Thus, A ∈ B(ε, A1) ∩ A2.
This contradicts the choice of ε and proves that E1 /∈ G2. Thus,
G2 is a proper subcontinuum of µ−1(tm). Similarly, G1 is a proper
suncontinuum of µ−1(tm). Hence, µ−1(tm) is decomposable. ¤

The proof of the next result is similar to that of Theorem 6.1.

Theorem 6.2. Hereditary indecomposability is a sequential de-
creasing Whitney property.

7. Unicoherence

Theorem 7.1. Unicoherence is a sequential decreasing Whitney
property.

Proof: Take a Whitney map µ for C(X), a number t ∈ [0, 1),
and a sequence {tn}∞n=1 in (t, 1] such that tn → t and µ−1(t) is not
unicoherent. We will show that there exists a positive integer m
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such that µ−1(tm) is not unicoherent. Let A1 and A2 be subcon-
tinua of µ−1(t) such that µ−1(t) = A1 ∪ A2 and A1 ∩ A2 is not
connected. Let F1 and F2 be disjoint nonempty compact sets of
µ−1(t) such that A1 ∩ A2 = F1 ∪ F2. Let ε > 0 be such that 4ε <
H(F1, F2) for every F1 ∈ F1 and F2 ∈ F2. For each i ∈ {1, 2}, let
Ui = {F ∈ µ−1(t) : there exists Fi ∈ Fi such that H(F, Fi) < ε}.
Let Bi = Ai\(U1∪U2). Since Ai is connected and U1∩U2 = ∅, Bi is
nonempty. Let ε1 > 0 be such that ε1 < ε and H(B1, B2) > 4ε1 for
every B1 ∈ B1 and B2 ∈ B2. Let δ > 0 be as in Lemma 2.1 for this
number ε1. Let m be a positive integer such that tm−t < δ. For each
i ∈ {1, 2}, let Ci =

⋃
A∈Ai

Ctm
A . By Theorem 3.1, C1 and C2 are sub-

continua of µ−1(tm). Clearly, µ−1(tm) = C1∪C2. Given F ∈ C1∩C2,
there exist A1 ∈ A1 and A2 ∈ A2 such that A1 ⊂ F and A2 ⊂ F.
By the choice of δ, H(A1, A2) ≤ H(A1, F ) + H(A2, F ) < 2ε1. By
the choice of ε1, one of the sets A1 or A2 belongs to U1 ∪ U2.
This proves that, for each E ∈ C1 ∩ C2, there exists A ∈ U1 ∪ U2

such that A ⊂ E. For each i ∈ {1, 2}, let Li = Clµ−1(t)(Ui) and
Gi = {F ∈ µ−1(tm) : there exists A ∈ Li such that A ⊂ F}. Thus,
C1 ∩ C2 ⊂ G1 ∪ G2. Next, we see that G1 ∩ G2 = ∅. Suppose that
there exists F ∈ G1 ∩ G2. Then there exist E1 ∈ L1 and E2 ∈ L2

such that E1, E2 ⊂ F . By the choice of δ, H(E1, E2) < 2ε1. By
the definition of Ui, there exists Gi ∈ Fi such that H(Ei, Gi) < ε.
Thus, H(G1, G2) < 4ε. This contradicts the choice of ε and proves
that G1 ∩ G2 = ∅. Given Fi ∈ Fi, there exists Di ∈ µ−1(tm) such
that Fi ⊂ Di. Thus, Di ∈ C1 ∩C2 ∩Gi. We have shown that G1 and
G2 are disjoint subsets of µ−1(tm) such that C1 ∩ C2 ⊂ G1 ∪ G2 and
C1 ∩ C2 ∩ G1 6= ∅ 6= C1 ∩ C2 ∩ G2. It is easy to prove that G1 and
G2 are closed. This proves that C1 ∩ C2 is disconnected. Therefore,
µ−1(tm) is not unicoherent. ¤

The proof of the next result is similar to that of Theorem 7.1.

Theorem 7.2. Hereditary unicoherence is a sequential decreasing
Whitney property.

8. Other properties

Lemma 8.1. Let X be a continuum, µ a Whitney map for C(X),
and t0 ∈ [0, 1). If σt0,µ|σ−1

t0,µ(µ−1([t0, 1))) is one-to-one, then for
each t ∈ (t0, 1), σ−1

t0,µ(µ−1(t)) is a Whitney level for C(µ−1(t0)).
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Proof: Let t ∈ [t0, 1) and let M = σ−1
t0,µ(µ−1(t)). We will prove

that M has the following properties:
(1) M⊂ C(µ−1(t0))\({µ−1(t0)} ∪ {{E} : E ∈ µ−1(t0)},
(2) M is an anti-chain and
(3) M intersects every order arc α in C(µ−1(t0)) such that α

joins a one-point set and µ−1(t0).
We need to prove that µ−1(t0) /∈ M and M ∩ {{E} : E ∈

µ−1(t0)} = ∅. If µ−1(t0) ∈ M, then σt0,µ(µ−1(t0)) = X ∈ µ−1(t),
a contradiction. Now, suppose that M∩{{E} : E ∈ µ−1(t0)} 6= ∅.
Let A ∈M∩{{E} : E ∈ µ−1(t0)}. Then µ(σ(A)) = t and A = {E}
for some E ∈ µ−1(t0), a contradiction. This completes the proof of
(1).

In order to see that M is an anti-chain, let A, B ∈ M be such
that A ⊂ B. Since σt0,µ(A) ⊂ σt0,µ(B) and σt0,µ(A), σt0,µ(B) ∈
µ−1(t), we infer that σt0,µ(A) = σt0,µ(B). Since σt0,µ is one-to-one,
we have that A = B. This ends the proof of (2).

We consider an order arc α in C(µ−1(t0)) joining a one-point set,
{E}, for some E ∈ µ−1(t0) and µ−1(t0). Using order arcs, it can
be shown that there exists A ∈ α such that µ(σ(A)) = t. Thus,
A ∈M, and part (3) is proved.

Therefore, by Theorem 1.2 of [2], we conclude that M is a Whit-
ney level for C(µ−1(t0)). ¤
Theorem 8.2. Let X be a continuum and µ be a Whitney map
for C(X). Assume that σt,µ|σ−1

t,µ(µ−1([t, 1))) is one-to-one for each
t ∈ [0, 1). Then, if P is a sequential strong Whitney-reversible
property, P is also a sequential decreasing Whitney property.

Proof: Take a Whitney map µ for C(X), a number t0 ∈ [t0, 1),
and a sequence {tn}∞n=1 in (t0, 1] such that tn → t0 and µ−1(tn)
has P for each n ≥ 1, where P is a sequential strong Whitney-
reversible property. We are going to prove that µ−1(t0) has P. Since
σt0,µ|σ−1

t0,µ(µ−1([t0, 1))) is one-to-one, by Lemma 8.1, for each t ∈
(t0, 1), we infer that σ−1

t0,µ(µ−1(t)) is a Whitney level for C(µ−1(t0)).
Now, since σt0,µ|σ−1

t0,µ(µ−1([t0, 1))) is one-to-one, it follows that
σ−1

t0,µ(µ−1(t)) is homeomorphic to µ−1(t) for every t ∈ (t0, 1). It
is easy to see that σ−1

t0,µ(µ−1(tn)) → {{E} : E ∈ µ−1(t0)}.
Therefore, since P is a sequential strong Whitney-reversible prop-

erty, µ−1(t0) has P, and the theorem is proved. ¤



276 F. OROZCO ZITLI

A continuum X is said to have the covering property, written X ∈
CP, provided that no proper subcontinuum of µ−1 (t) covers X, for
any Whitney map µ for C (X) and any t ∈ [0, 1]. Notice that if X ∈
CP and µ is a Whitney map for C (X), then σt,µ is one-to-one. By
Theorem 8.2, we can conclude that any sequential strong Whitney-
reversible property is a sequential decreasing Whitney property in
continua having property CP.
Acknowledgment. The author thanks Dr. Alejandro Illanes for
his valuable remarks and comments on this paper.
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