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THE UNIVERSAL COVER OF THE QUOTIENT OF
A LOCALLY DEFINED GROUP

VALERA BERESTOVSKII∗ AND CONRAD PLAUT

Abstract. We present a new method to compute the (gen-
eralized) universal cover of a quotient V/G of a locally defined
group V via a closed subgroup G, and give some applications.
For example we show that if G is locally generated (e.g. if G is
connected) then V/G is locally defined. We give some answers
to the question of when the universal cover of a quotient of a
topological vector spaces is again a topological vector space.

In [2] a generalized covering group theory was developed
using a generalized notion of cover, namely a quotient epimorphism
ψ : G → H between topological groups G and H having central,
prodiscrete kernel. The covering group theory is carried out for
a large category of groups called coverable groups, which are by
definition quotients of locally defined groups by a closed normal
subgroup. A locally defined group, in turn, is a topological group
V such that given a local group homomorphism h : U → G from
a symmetric neighborhood U of the identity in V to a topological
group G, there is a unique extension of h to a homomorphism on
the entire group V . Coverable groups include all topological groups
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that are connected and locally simply connected in the traditional
sense, all metrizable, connected, locally connected groups, and even
some totally disconnected groups (see [2] for more details). Locally
defined groups are the universal objects in the category of cover-
able groups and (generalized) covers. Specifically, every coverable
group G is covered by a unique (up to isomorphism) locally defined
group G̃. The covering map φ : G̃ → G has the traditional uni-
versal property, i.e., for any cover η : K → G of G by a coverable
group K, there is a unique cover τ : G̃ → K such that φ = η ◦ τ
(Theorem 7, [2]). In addition, for any locally defined group V and
homomorphism f : V → G there is a unique lift f̃ : V → G̃ of f ;
that is, f̃ is a homomorphism such that f = φ◦ f̃ . If f is open then
f̃(V ) is dense in G̃ (Theorem 97, [2]).

In this note we present a new method for constructing the univer-
sal cover of a coverable group C using any expression of C as V/G,
where V is locally defined and G is a closed normal subgroup of
V . We apply this method to quotients of topological vector spaces
(which are locally defined by Proposition 131, [2]). Note that every
topological group in this paper is assumed to be Hausdorff, with
identity denoted by e or 0, and homomorphisms between topologi-
cal groups are always continuous. The following kind of group plays
a significant role in this paper.

Definition 1. A topological group G is called totally asunder if
the identity e in G is the intersection of open normal subgroups.

Note that a preprodiscrete group (i.e. having a basis at the
identity of open normal subgroups) is totally asunder, but
there exist totally asunder non-discrete closed subgroups of l2

(see Proposition 7), which cannot be preprodiscrete because l2 has
no non-trivial small subgroups. Also, every totally asunder group
is totally separated in the sense that every point is the intersection
of open and closed sets, but we do not know whether the opposite
implication is true. On the other hand every totally asunder group
is totally disconnected, but the converse is false. For example,
any totally disconnected locally generated group (such as Q or the
complete examples in [8]) has no non-trivial open subgroups and
so cannot be totally asunder. Finally, as we show in the proof of
Proposition 12 , the proof of Corollary 2.3 in [6] in fact implies that
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every line-free, weakly closed subgroup Γ of a topological vector V
space is totally asunder; if Γ is closed, cocompact and line-free the
same conclusion follows from Proposition 12 and Proposition 5.

We begin with a general result:

Theorem 2. Let V be a locally defined group and G be a closed
normal subgroup of V . Then Ṽ/G is isomorphic to H := lim←−V/Hα,
where {Hα} is the collection of subgroups Hα that are (relatively)
open in G and normal in V , partially ordered by reverse inclusion.

Proof. By Proposition 80 of [2] we know that Ṽ/G is isomorphic to

lim←−(Ṽ/G)/Kα,

where {Kα} is the collection of all subgroups that are (relatively)
open in the central prodiscrete subgroup K := kerφ, partially or-
dered by reverse inclusion, where φ : Ṽ/G → V/G is the universal
cover. Let Kα be a fixed open subgroup of K. Then φ factors as
φ = τ ◦ η, where η : Ṽ/G → (Ṽ/G)/Kα and τ : (Ṽ/G)/Kα →
((Ṽ/G)/Kα)/(K/Kα) = V/G are quotient epimorphisms. Now
ker τ = K/Kα is discrete; that is, τ is a cover (in the traditional
sense). Since V is locally defined there exists a unique homo-
morphism ψα : V → (Ṽ/G)/Kα such that τ ◦ ψα = π, where
π : V → V/G is the quotient epimorphism. Since ker τ is discrete,
ψα is open. Now Ṽ/G, being locally defined, is locally generated
(Corollary 62, [2]). Since η is a continuous surjection, (Ṽ/G)/Kα

is also locally generated. Therefore ψα, being open, is also a sur-
jection. In addition, the fact that ker τ is discrete implies that
kerψα is an open subgroup Hα of G (which is normal in V ), and
(Ṽ/G)/Kα = V/Hα.

Now begin with a fixed (relatively) open subgroup Hα of G that
is normal in V . Then as in the previous case we have a factor-
ing π = γ ◦ β, by quotient epimorphisms β : V → V/Hα and
γ : V/Hα → V/G, and ker γ is discrete. Hence γ is a (traditional)
cover, and so there exists a unique cover θ : (Ṽ/G) → V/Hα such
that γ ◦ θ = φ. Since ker γ is discrete, Kα := ker θ is an open
subgroup of K, and V/Hα = (Ṽ/G)/Kα. In other words, the two
families {V/Hα} and {(Ṽ/G)/Kα} are one and the same, and hence
have the same inverse limit. �
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Corollary 3. Let V be a locally defined topological group, G be
a closed normal subgroup of V , and φ : Ṽ/G → V/G be the uni-
versal cover of V/G. Let π̃ : V → Ṽ/G be the lift of the quotient
epimorphism π : V → V/G. Then

1. π̃(V ) is dense in Ṽ/G
2. ker π̃ is the intersection I of all (relatively) open subgroups

of G that are normal in V
3. π̃ is one-to-one if and only if G is totally asunder and cen-

tral in V .

Proof. The first part of the corollary is an immediate consequence
of Theorem 97 in [2], since π is open. For part 2 note that by
Theorem 2, Ṽ/G is isomorphic to H := lim←−V/Hα, where {Hα}
is the collection of open subgroups in G that are normal in V .
By uniqueness of π̃, π̃ must be the homomorphism induced on the
inverse limit Ṽ/G by the quotient maps ψα : V → V/Hα, the kernel
of which is precisely I .

Now if G is totally asunder and central in V , every subgroup of
G is normal in V , and by part 2, ker π̃ is trivial. Conversely, if ker π̃
is trivial, then part 2 implies that G is totally asunder. In addition,
π̃(G) ⊂ kerφ, which is central in Ṽ/G and therefore π̃(G) is central
in π̃(V ) ⊂ Ṽ/G. Since π̃ is injective, G is central in V . �

Corollary 4. If G is a closed, locally generated subgroup of a locally
defined group V then Ṽ/G = V/G, i.e., V/G is locally defined.

Proof. Since G is locally generated, evidently G has only one open
subgroup, G. Hence by Theorem 2, Ṽ/G = V/G and by Theorem
4, [2], this means V/G is locally defined. �

If V is a topological vector space then there are several simpli-
fications in these results. Of course all consideration of normality
and centrality can be removed. It is also true that every topologi-
cal vector space is locally arcwise connected ([5]), and in the locally
connected case the proof of Theorem 2 can be simplified somewhat.



THE UNIVERSAL COVER OF THE QUOTIENT OF A LOCALLY ... 339

It is worthwhile to ask, given a closed, line-free subgroup G of a
topological vector space V , when does Ṽ/G have the structure of a
topological vector space?

Proposition 5. Let V be a topological vector space and G be a
closed subgroup of V .

1. If G is line-free and Ṽ/G is a topological vector space then
the lift π̃ of π : V → V/G to Ṽ/G is an injective linear
map. In particular π̃(V ) is a dense vector subspace of Ṽ/G
and G is totally asunder.

2. If G is totally asunder then Ṽ/G is a topological vector space
if and only if for every open set U 3 0 in V and (relatively)
open subgroup H in G, there exists some (relatively) open
subgroup H1 of G such that for all −1 ≤ t ≤ 1, tH1 ⊂
U +H.

Proof. To prove part 1 note that π̃ : V → Ṽ/G is a (continuous)
homomorphism into the topological vector space Ṽ/G. For any
v ∈ V , the function ηv : R→Ṽ/G given by ηv(t) = π̃(tv) is a one-
parameter subgroup, and hence is linear. Therefore for any t and
v we have

π̃(tv) = ηv(t) = tηv(1) = tπ̃(v)

and so π̃ is linear, since π̃ is already a homomorphism of the additive
groups. Therefore ker π̃ must be a linear subspace of V that is
contained in G (because π = φ ◦ π̃). Since G is line-free, ker π̃ = 0.
The rest of the statement follows from Corollary 3.

To prove the second part, let σ be the topology on V induced by
the lift π̃ : V → Ṽ/G of the quotient homomorphism π : V → V/G.
Examination of the preimage topology from Theorem 2 shows that
a basis at 0 for σ consists of sets of the form U + H , where H is
a (relatively) open subgroup in G and U 3 0 is an open subset in
V . Since π̃ is an injective group homomorphism with dense image,
Ṽ/G is a topological vector space if and only if (V, σ) is a topological
vector space. However, this is true if and only if for each such U+H
there exists some (relatively) open subgroup H1 of G such that for
all −1 ≤ t ≤ 1, tH1 ⊂ U +H . �
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Being totally asunder is not by itself sufficient in Proposition 5
for Ṽ/G to be a topological vector space, as we will now show.

Proposition 6. Let {b1, ...} be a basis for a topological vector
space V and G be the closure of the subgroup generated by {b1, ...}
in V . Then G consists of all elements of V with integer coordinates
relative to {b1, ..., } and G is weakly closed and totally asunder.

Proof. The coordinate maps fi with respect to a basis {bi} in a
topological vector space are by definition continuous linear func-
tionals. Certainly the subgroup GI of all elements of V with inte-
ger coordinates relative to {bi} is a dense subgroup of G. On the
other hand it is easy to see that GI is closed relative to the weak-
est topology in which every fi is continuous. Hence GI is weakly
closed and therefore closed in V , so GI = G. Now 0 ∈ G = GI is
the intersection of the subgroups ker fi ⊂ G. But all these groups
are open in G. Hence G is totally asunder. �

Proposition 7. Let {kn} be a sequence of positive real numbers
such that kn ↘ 0 and

∑∞
n=1 k

2
n = ∞. Let G be the closure of the

subgroup of l2 generated by the elements bn := knen, where {en} is
the standard basis of l2. Then G is a weakly closed, totally asunder
subgroup of l2 and ˜l2/G is not a topological vector space.

Proof. By Proposition 6, G is weakly closed and totally asunder.
We need only show that l̃2/G is not a topological vector space.
For every k, let Gk denote the closure of the group generated by
{bn}n≥k . Let H be an open subgroup of G. Then for some open
ball U at 0, G∩U ⊂ H ∩U . For some k, U contains every bn with
n ≥ k. The corresponding group Gk is contained in H . Since every
open subgroup H of G contains an open subgroup Gk, according
to Proposition 5 the group l̃2/G is a topological vector space only
if for any open ball U at 0 of radius r and Gk, for some l we have
tGl ⊂ Gk + U for all −1 ≤ t ≤ 1. But for any l ≥ k we can find
m > l such that g :=

∑m
n=l bn ∈ Gl has length ‖g‖ ≥ 2r. But then

the orthogonality of {bn} implies that

r ≤ d(1
2
g,Gl) = d(

1
2
g,Gk)

and therefore 1
2g /∈ Gk + U . �
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Remark 8. A similar statement, construction and proof are also
valid for all lp, p ≥ 1.
Remark 9. Let G be a closed subgroup of a topological vector
space V . We now know that if G is totally asunder, Ṽ/G need not
be a topological vector space. However, if we strengthen “totally
asunder” to “prodiscrete” then π : V → V/G is a cover, and since V
is locally defined it follows that Ṽ/G is isomorphic to the topological
vector space V . This provides another way to see that the groups
constructed by Proposition 7 are not prodiscrete.

We finish with a positive answer to the question of when the
universal cover of a quotient of a topological vector space is again
a topological vector space. First we recall an essential result from
[6].
Corollary 10. ([6]) If Γ is a subgroup of a topological vector space
X then the character group X̂/Γ separates the points of X/Γ if and
only if Γ is weakly closed in X.
Notation 11. If G is an abelian topological group, by G we denote
the completion of G. Note that if V is a topological vector space
then V is also a topological vector space.
Proposition 12. Let G be a closed, cocompact line-free subgroup
of a topological vector space V . Then G is weakly closed and pre-
prodiscrete relative to the weak topology σ := σ(G∗) on G defined
by

G∗ := {φ ∈ V ∗ : φ(G) ⊂ Z} ([6]).
Moreover, V/G is isomorphic to (V, σ)/(G,σ) and (V, σ)/(G, σ),
and G := (G, σ) is prodiscrete. Hence V → V /G = V/G is the
universal cover, and V is a topological vector space isomorphic to
Rλ with the product topology, for some indexing set λ.

Proof. Since G is cocompact, by Pontryagin duality the charac-
ters of V/G separate the points of V/G, and the proof that G is
weakly closed is finished by Corollary 10 above. The family G∗

and the topology σ were defined in [6], and it was shown in Corol-
lary 2.2, [6] that G is 0-dimensional with respect to σ and hence
totally disconnected in the original topology of V . But a little
more than this is true. The sets ker η, η ∈ G∗, are open (normal)
subgroups of (G, σ), and these subgroups form a subbasis at 0 for
the topology σ, and therefore (G, σ) is preprodiscrete, and G is
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prodiscrete. Evidently the identity map φ : V/G → (V, σ)/(G,σ)
is a continuous bijection (the topology of σ is weaker) and because
V/G is compact, (V, σ)/(G,σ) is also compact and φ is an isomor-
phism. The inclusion (V, σ)→ (V, σ) has dense image and induces
a continuous homomorphism ψ : (V, σ)/(G,σ) → (V, σ)/(G, σ),
with compact, dense image. Hence ψ is an epimorphism. Since
(V, σ)∩ (G, σ) = (G, σ), ψ is one-to-one. Once again, the fact that
(V, σ)/(G, σ) is compact implies that ψ is an isomorphism. Now
(V, σ) is a topological vector space, and hence so is (V, σ). That
is, V is locally defined, and since G is prodiscrete, the quotient
epimorphism V → V /G = V/G is a cover. The universal cover of
V/G is the unique (up to isomorphism) cover of V/G by a locally
defined group ([2]), and therefore V → V/G must be the universal
cover. In [3] the universal cover of a compact, arcwise connected
group was shown to be Rλ. �
Remark 13. In general case in Proposition 12, (V, σ) is not iso-
morphic to V .
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