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ON SEQUENTIAL PROPERTIES OF NOETHERIAN
TOPOLOGICAL SPACES

IVAN GOTCHEV∗ AND HRISTO MINCHEV†

Abstract. Sequential properties of Noetherian topological
spaces are considered. A topological space X is called Noe-
therian if for every increasing by inclusion sequence (Un)∞n=1

of open subsets of X there exists n such that Un = Un+1 = . . ..
It is shown that every Noetherian topological space is sequen-
tially compact and that the sequential topology inherits the
Noetherian property. Hence, every sequentially open cover
of a Noetherian topological space has a finite subcover. The
following result is proved: Let X be a Noetherian topological
space in which every irreducible closed subset F has a generic
point. The space X is sequential if and only if h(X) ≤ ω1,
where h(X) is a suitable ordinal invariant. From this result
follows that a Zariski space X is sequential if and only if
h(X) ≤ ω1 and that if R is a commutative Noetherian ring
then the prime spectrum Spec R is a sequential Noetherian
topological space.

1. Introduction

The concept of Noetherian topological spaces arises naturally
in the study of Noetherian rings and is of great interest in some
areas of mathematics such as Algebraic Geometry. A topological
space (X, τ) is called Noetherian if τ satisfies the ascending chain
condition (a.c.c. for short): every strictly ascending chain U1 ⊂
U2 ⊂ · · · of elements of τ is finite (see [1], [2], [7], [9]).
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Topological spaces that satisfy properties similar to a.c.c. have
been widely studied. In [8], spaces with Noetherian bases have
been introduced (a topological space has a Noetherian base if it
has a base that satisfies a.c.c.) and many interesting results about
such spaces have been obtained (see [8], [6], [14]). Clearly, every
Noetherian space has a Noetherian base but the converse is not true
in general. For example, every Hausdorff Noetherian topological
space is finite, whereas it is still unknow if there exists in ZFC a
Hausdorff space without a Noetherian base.

We have to mention here that some topologists (see [10], [12])
define a space to be Noetherian if it has a base B such that for
every G ∈ B the cardinality of the set {B ∈ B : G ⊂ B} is finite.
Obviously, every such base is Noetherian and therefore the class of
spaces defined in that way is different from the Noetherian spaces
considered here.

In this paper we study sequential properties of Noetherian topo-
logical spaces. It is shown that every Noetherian topological space
is sequentially compact and s-compact. The concept of s-compact-
ness was introduced and studied by the first author in [5]: A topo-
logical space X is s-compact if every sequentially open cover of X
has a finite subcover. In the same paper [5] the following charac-
terization of the sequential compactness is given: A T0-topological
space X is sequentially compact if and only if every countable se-
quentially open cover of X has a finite subcover. For the sake of
completeness and easy reference, this theorem and its proof are
given in Section 3 (Theorem 3.6).

In order to avoid possible confusion, we have to point out that
R. Prasad and R. S. Yadav [13] (and some other authors) have used
the term s-compact for spaces that satisfy the following property:
every cover of semi-open subsets of X has a finite subcover (a subset
A of a topological space X is called semi-open if there is an open
set U ⊂ X such that U ⊂ A ⊂ U). The same class of spaces has
also been considered independently by C. Dorsett in [3] under the
name of semicompact spaces. Dorsett’s paper appeared about one
year earlier than [13] (see MR0724336 (85d:54022)) and nowadays
most of the topologists use the name semicompact spaces for such
spaces. It is worth while to mention that despite of the fact that the
class of s-compact spaces (in our sense of the word) and the class of
semicompact spaces contain only compact spaces, both classes are
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different. The space in Example 3.10 is a semicompact space which
is not s-compact and the space defined in Example 3.2 in [13] is an
s-compact space which is not semicompact.

The main result in this paper, contained in Theorem 4.7, is the
following: Let X be a Noetherian topological space in which every
irreducible closed subset F has a generic point. The space X is
sequential if and only if h(X) ≤ ω1 (for the definition of h(X) see
Definition 2.12). From this result follows that a Zariski space X is
sequential if and only if h(X) ≤ ω1 and that if R is a commutative
Noetherian ring then the prime spectrum Spec R is a sequential
Noetherian topological space.

The preliminary definitions and results about Noetherian spaces
and irreducible spaces are given in Section 2 and those of sequen-
tial type – in Section 3. All results about sequential properties
of Noetherian topological spaces are contained in the last section.
For terminology and notation not given here see [4], [15], or [2].
Throughout the paper, topological space means T0-space, Z de-
notes the set of all integers, and N – the set of all positive integers.

2. Noetherian and Irreducable Spaces

The notion of Noetherian rings is fundamental in Algebraic
Geometry and Noetherian rings have been extensively studied (see
[1], [2], [7], [9]).

Definition 2.1. [1] A commutative ring R is called Noetherian if
every increasing by inclusion sequence of ideals of R is stationary.

With every commutative ring R is associated a topological space
Spec R, the prime spectrum of R.

Definition 2.2. [1] Let R be a commutative ring. Spec R is the
set of all prime ideals of R provided with the Zariski topology in
which F ⊂ Spec R is closed if and only if there exists an ideal I of
R such that F = {p ∈ Spec R | p ⊇ I}.

The space Spec R is a T0-topological space [9, Proposition 1.5].
Also, if R is a Noetherian ring then the topology on Spec R satisfies
the ascending chain condition. Therefore, the following definition
is natural.
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Definition 2.3. [2] A topological space (X, τ) is called Noetherian
if τ satisfies a.c.c., or equivalently, for every decreasing by inclusion
sequence (Fn)∞n=1 of closed subsets of X there exists n such that
Fn = Fn+1 = . . ..

Now, we can restate the above-mentioned property of Spec R as
follows.

Theorem 2.4. [2, II.4.3, Corollary 7] If R is a Noetherian ring
then Spec R is a Noetherian topological space.

Definition 2.5. A topological space X is called compact if every
open cover of X has a finite subcover.

The following theorem contains some of the basic properties of
the Noetherian topological spaces.

Theorem 2.6. [2, II.4.2], [7, Exercise 1.7]

(a) Every Noetherian topological space is compact.
(b) Every subspace of a Noetherian topological space is Noethe-

rian.
(c) A topological space X is Noetherian if and only if every open

subset of X is compact.
(d) If X is a topological space and X = F1 ∪ F2 ∪ ... ∪ Fn,

where each Fi is a Noetherian subspace of X, then X is
Noetherian.

(e) A Noetherian topological space is Hausdorff if and only if it
is a finite set with the discrete topology.

(f) A continuous image of a Noetherian space is Noetherian.

Definition 2.7. [2] A topological space X is called irreducible if the
intersection of any finite collection of non-empty open subsets of X
is not empty, or equivalently, if X cannot be written as a finite union
of closed proper subsets. A subset Y of X is called irreducible if Y
is irreducible as a topological space with the relative topology. A
maximal irreducible subset of X is called an irreducible component
of X . The empty set is not considered to be irreducible.

Some fundamental properties of the irreducible topological spaces
are stated in the following theorem.
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Theorem 2.8. [2, II.4.1], [9, 1.6] Let X be a topological space and
Y be a subset of X.

(a) X is irreducible if and only if every non-empty open subset
of X is dense in X.

(b) X is irreducible if and only if every open subset of X is
connected.

(c) If X is an irreducible space then every non-empty open sub-
set of X is irreducible.

(d) The closure {x} of a point x is irreducible.
(e) Every irreducible subset of X is contained in an irreducible

component of X and X is the union of its irreducible com-
ponents.

(f) Y is irreducible if and only if its closure Y is irreducible.
(g) Every irreducible component of Y is closed in Y .
(h) If Y has only a finite number of distinct irreducible com-

ponents Fi, i = 1, 2, . . . , n then the irreducible components
of the closure Y in X are the closures Fi of the Fi, i =
1, 2, . . . , n and Fi 6= Fj for i 6= j.

(i) A Hausdorff space X is irreducible if and only if it consists
of a single point.

(j) A continuous image of an irreducible space is irreducible.

The following theorem sheds light on the relationship between
Noetherian topological spaces and irreducible spaces.

Theorem 2.9. [7, Proposition 1.5] If X is a Noetherian topological
space then there exists a natural number n and unique irreducible
components F1, F2,..., Fn of X such that X = F1 ∪ F2 ∪ ... ∪ Fn

and Fi 6⊆ Fj for all i 6= j.

Clearly, any Noetherian space with more than one irreducible
component is not an irreducible space. All finite discrete spaces
with more than one point are such spaces. Also, a topological space
could be irreducible without being Noetherian. Every uncountable
set with the co-countable topology is an example of such a space.

Definition 2.10. Let X be a topological space. If X = {x} for
some x ∈ X , then x is said to be a generic point of X .

Theorem 2.11. [7, Exercise 2.9] Let R be a commutative ring.
Then every irreducible closed subset F ⊂ Spec R has a unique
generic point.
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Next, we introduce the notion of hight of a Noetherian topolo-
gical space.

Definition 2.12. Let X be a non-empty Noetherian topological
space and P(X) be the set of all irreducible closed subsets of X ,
ordered by inclusion. Let α be the supremum of all ordinals β such
that there exists a strictly increasing function P : [0, β) → P(X).
We shall say that the hight of X is α (denoted h(X) = α) if α is an
infinite ordinal and h(X) = α − 1 otherwise. We define the hight
of the empty set to be −1.

It is clear that if h(X) < ω0 then h(X) = dimX , where dim X
is the dimension of the Noetherian topological space X defined to
be the supremum of all integers n such that there exists a chain
Z0 ⊂ Z1 ⊂ . . . ⊂ Zn of distinct irreducible closed subsets of X (see
[7, I.1]). The notion of dimension of a Noetherian topological space
has the following natural generalization.

Definition 2.13. Let X be a Noetherian topological space and
P(X) be the set of all irreducible closed subsets of X and the
empty set. dimX is defined inductively as follows.

(1) dim X = −1 if and only if X = ∅.
(2) If α is an ordinal number then dim X ≤ α if for every

F ∈ P(X) and for every G ⊂ F such that G 6= F and
G ∈ P(X) we have dimG < α.

(3) dim X = min{α| dimX ≤ α}.

In the same way one could define dimX for any topological space.
However, for non-Noetherian spaces dimX is not always useful. For
example, dimX = 0 for any Hausdorff space X . Also, it can be veri-
fied that for Noetherian topological spaces dim X = indX , where
ind X is the small inductive dimension of X (see [11]). Therefore,
if X is a Noetherian topological space and h(X) < ω0 then h(X) =
dimX = ind X . Of course, h(X) and dim X are not always equal.
For the space X , from Example 4.5, we have h(X) = ω1 + 1 and
dimX = ω1. Hence, there exists a Noetherian topological space
X for which h(X) > dimX . On the other hand, for the space Y ,
defined in the following example, we have h(Y ) = ω0 but dimY =
ω0 +1. Thus, there exists a Noetherian topological space for which
h(Y ) < dimY .
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Example 2.14. For every n ∈ N let Xn = {i|0 ≤ i ≤ n, i ∈ Z}
provided with the topology where the non-empty closed sets are all
intervals [0, m], 0 ≤ m ≤ n. Let X be the disjoint union of all Xn,
n ∈ N with the topology in which closed sets are ∅, X , and all unions⋃k

i=1 Yi, where Yi is a closed subset of Xi for every i = 1, . . . , k, k ∈
N. With this topology X is an irreducible Noetherian topological
space for which h(X) = dimX = ω0. Now, let Y = X ∪ {∞}
provided with the topology in which closed sets are all closed sets in
X and the set Y . With this topology Y is an irreducible Noetherian
topological space for which dimY = ω0 + 1 but h(Y ) = ω0.

At the end of this section we provide one more fact about
Noetherian rings. Its corollary shall be used in the last section.

Theorem 2.15. [1, Corollary 11.12] In a Noetherian ring every
decreasing sequence of prime ideals is stationary.

Corollary 2.16. If R is a Noetherian ring then h(Spec R) ≤ ω0.

Proof. It follows from Theorem 2.15, Definition 2.2, and Definition
2.12. �

3. Properties of Sequential Type

We begin this section with the definition of sequentially closed
and sequentially open sets.

Definition 3.1. [15] A subset A of a topological space X is called
sequentially closed if it has the following property: if a sequence in
A converges in X to a point x, then x ∈ A. A subset E of a topo-
logical space X is called sequentially open if X\E is sequentially
closed.

For every A ⊂ X , we denote by A
s the sequential closure of A in

X , which is the minimal sequentially closed set in X that contains
A, and by [A]s – the set A together with all limits of convergent
sequences of points from the set A.

Definition 3.2. [5] A cover of a topological space X is called
sequentially open if its elements are sequentially open sets.

Definition 3.3. [15] Let (X, τ) be a topological space. The
sequential topology τs is the topology on X such that a subset E of
X is open in (X, τs) if and only if E is sequentially open in (X, τ).
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Definition 3.4. [15] A topological space X is called countably com-
pact if every countable open cover of X has a finite subcover.

Definition 3.5. [15] A topological space X is called sequentially
compact if every sequence of points of X has a convergent subse-
quence.

The following theorem characterizes sequential compactness in
terms of sequentially open covers.

Theorem 3.6. [5] For a T0-topological space X the following con-
ditions are equivalent:

(a) X is a sequentially compact space.
(b) Every countable sequentially open cover of X has a finite

subcover.
(c) (X, τs) is a countably compact space.

Proof. First we shall prove that (a) implies (b). Let us assume that
there exists a sequentially compact space X which has a countable
sequentially open cover {Ui}∞i=1 without finite subcovers. Then we
can find a sequence of distinct points (xn)∞n=1 such that for every
n ∈ N, xn /∈

⋃n
i=1 Ui. Let (xnk

)∞k=1 be a convergent subsequence of
(xn)∞n=1 and x be one of its limit points. Since {Ui}∞i=1 is a cover of
X , there exists m ∈ N such that x ∈ Um. The set Um contains no
more than finitely many elements of the sequence (xn)∞n=1. Thus, al-
most all but finitely many elements of the sequence (xnk

)∞k=1 belong
to X\Um, which is a sequentially closed set. Therefore x ∈ X\Um

– a contradiction.
We shall now prove that (b) implies (a). Let us assume that

there exists a T0-space X which is not sequentially compact but
every sequentially open cover of X has a finite subcover. Then there
exists a sequence (xn)∞n=1 in X without convergent subsequences.
If x is an arbitrary point in X then there are no more than finitely
many n ∈ N such that x ∈ {xn}. For, if there were infinitely many
such xn then they would form a subsequence of (xn)∞n=1 that would
approach to x. Thus, we can choose a subsequence (xnk

)∞k=1 of dis-
tinct points of (xn)∞n=1 such that {xn1 , xn2, . . . , xnk

} ∩
{
xnk+1

}
= ∅

for every k ∈ N.
Now, for every m ∈ N, let Am = {xnk

}∞k=m+1, Bm = [Am]s, and
Cm = [Bm]s. We shall show that Bm = Cm. We need only to
prove that Cm ⊂ Bm. Let x ∈ Cm. Then we can find a sequence
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(yi)
∞
i=1 of points from Bm that approaches x. However, (xnk

)∞k=1
does not have convergent subsequences. Thus for every yi we can
find zi ∈ Am such that yi ∈ {zi}. It is easily seen that the sequence
(zi)

∞
i=1 converges to x. If we assume that this sequence has infinitely

many distinct points then we would be able to choose a subsequence
of it, which would also be a convergent subsequence of (xnk

)∞k=1 –
a contradiction. Hence, the sequence (zi)

∞
i=1 has only finitely many

distinct points. Thus, there exists p ∈ N such that x ∈ {zp} and
since zp ∈ Am we have x ∈ Bm. Therefore Bm = Cm, which means
that Bm = {xnk

}∞k=m+1

s
.

Next, let us note that if Um = X\Bm then xnm ∈ Um for every
m ∈ N. For, if we assume that xnm /∈ Um for some m ∈ N, or
equivalently, xnm ∈ Bm, then there would exist k ≥ m + 1, k ∈ N
such that xnm ∈ {xnk

}, which would contradict with the choice of
the sequence (xnk

)∞k=1.
We shall now verify that {Um}∞m=1 is a cover of X . Indeed, if we

assume that there exists x ∈ X such that x /∈ Um for every m ∈ N
then x ∈ Bm for every m ∈ N. Thus, for every m ∈ N, we can
choose km ≥ m + 1, km ∈ N such that x ∈

{
xnkm

}
. The resulting

sequence (xnkm
)∞
m=1

is a sequence that approaches x and contains
a convergent subsequence, which is a subsequence of (xn)∞n=1 – a
contradiction. Therefore {Um}∞m=1 is a sequentially open cover of
X without finite subcovers, which is a contradiction.

The fact that (b) and (c) are equivalent follows directly from the
definitions. �

Definition 3.7. [15] A topological space (X, τ) is called sequential
if τ = τs.

Definition 3.8. [5] A topological space (X, τ) is called s-compact
if (X, τs) is compact, or equivalently, every sequentially open cover
of X has a finite subcover.

Theorem 3.9. [5]

(a) For the class of sequential spaces s-compactness coincides
with compactness.

(b) Every s-compact space is a compact space.
(c) Every s-compact space is a sequentially compact space.
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Example 3.10. [5] Let ω1 be the first uncountable ordinal. The
topological space [0, ω1] with the usual ordered topology is an
example of a compact and sequentially compact space, which is
not s-compact.

4. Main Results

We begin this section with the following fundamental lemma.

Lemma 4.1. Let X be a Noetherian topological space. Every
sequence (xn)∞n=1 in X has a convergent subsequence (xnk

)∞k=1 such
that:

(a) The set of all limit points limk→∞xnk
is equal to the set

{xnk
}∞k=1.

(b) The set {xnk
}∞k=1 is irreducible.

Proof. Let X be a Noetherian topological space and (xn)∞n=1 be a
sequence in X . For every infinite subset I = {m1, m2,...| 0 < m1 <
m2 < ...} of the set N = {1, 2, ..., n, ...} let (xm)m∈I = (xmk

)∞k=1

and YI = {xm}m∈I . Then {YI}I⊂N is a non-empty family of closed
subsets of the Noetherian topological space X and therefore it has
a minimal element YJ , J = {n1, n2, ..., nk, ...}.

(a) Let y ∈ YJ , U be an open neighborhood of y, and let us
suppose that (xnk

)∞k=1 does not converge to y. Then the set JU =
{j ∈ J |xj /∈ U} is an infinite set and JU ⊂ J ⊂ N. Hence YJU

⊂ YJ

and because YJ is a minimal element of the family {YI}I⊂N, we have
YJU

= YJ . Thus y ∈ YJU
and since YJU

= {xj |j ∈ JU} it follows
that U ∩ {xj |j ∈ JU} 6= ∅ - a contradiction. Therefore, the set JU

is finite and consequently y ∈ limk→∞ xnk
. This means that YJ ⊂

limk→∞xnk
and since limk→∞xnk

⊂ YJ then YJ = limk→∞xnk
.

(b) Let m ∈ N and U1, U2, ..., Um be non-empty open sets in
YJ = {xnk

}∞k=1. Then there exist open sets V1, V2, ..., Vm in X
such that Ui = YJ ∩ Vi for i = 1, 2, .., m. It follows from (a) that
JVi = {j ∈ J |xj /∈ Vi} is finite for each i = 1, 2, ...,m. Hence, there
exists k such that xnk

∈ YJ ∩V1 ∩V2 ∩ ...∩Vm = U1 ∩U2 ∩ ...∩Um.
Therefore, the set {xnk

}∞k=1 is irreducible. �

Theorem 4.2. Every Noetherian topological space is sequentially
compact.

Proof. It follows immediately from Lemma 4.1. �
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Theorem 4.3. Let (X, τ) be a Noetherian topological space. Then
(X, τs) is a Noetherian topological space.

Proof. Let us suppose that (X, τ) is a Noetherian topological space
but (X, τs) is not Noetherian. Then there exists a strictly decreas-
ing by inclusion sequence F1 ⊃ F2 ⊃ ... ⊃ Fn ⊃ ... of distinct
sequentially closed subsets of X . For each n ∈ N we choose a
point xn ∈ Fn\Fn+1 and we form the sequence (xn)∞n=1. Accord-
ing to Lemma 4.1, this sequence has a convergent subsequence
(xnk

)∞k=1 such that the set of all its limit points limk→∞xnk
is

equal to the set {xnk
}∞k=1. Then xn1 ∈ limk→∞xnk

and therefore
xn1 ∈ limk→∞xnk+1

. However, the set {xn2 , xn3 , ..., xnk+1
, ...} is a

subset of the sequentially closed set Fn2 . Thus, limk→∞xnk+1
⊂ Fn2

and hence xn1 ∈ Fn2 . This is a contradiction because xn1 ∈
Fn1\Fn1+1 ⊂ Fn1\Fn2 . �
Corollary 4.4. Every Noetherian topological space is s-compact.

Proof. It follows immediately from Theorem 4.3 and Defini-
tion 3.8. �

Since every compact sequential space is s-compact (Theorem
3.9), it is natural to ask whether every Noetherian topological space
is sequential. The following two examples show that it is not true
in general.

Example 4.5. Let ω1 be the first uncountable ordinal and X be
the interval [0, ω1] with the following topology: a non-empty set F
is closed if and only if F = [0, α] for some α ∈ [0, ω1]. Then X is
Noetherian but it is not a sequential topological space.

In Example 4.5, the space X is uncountable with height h(X) =
ω1 + 1. In the following example, the space Y is a countable
Noetherian topological space with hight h(Y ) = 2 which is not
sequential, either.

Example 4.6. Let Y = {0, 1, 2, ..., n, ...} and F be an infinite max-
imal almost disjoint family of infinite subsets of N = {1, 2, ..., n, ...}.
We denote by C the set with the following elements: Ø, Y , all finite
sets D ⊂ N, and all sets of the form D ∪

⋃n
i=1 Fi, where n ∈ N

and Fi ∈ F for i = 1, 2, ..., n. Y is provided with the topology in
which C is the family of all closed sets. Then h(Y ) = 2 and Y is
Noetherian but it is not a sequential topological space.
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It follows from the above examples that a given Noetherian topo-
logical space X could be non-sequential regardless of its height. The
following theorem shows that for a very large class of Noetherian
topological spaces the sequentiality of X depends only on the value
of h(X).

Theorem 4.7. Let X be a Noetherian topological space in which
every irreducible closed subset F has a generic point. The space X
is sequential if and only if h(X) ≤ ω1.

Proof. First, we shall prove that if h(X) ≤ ω1 then X is a sequential
space. It is sufficient to prove that if Z ⊂ X is a sequentially closed
set then Z = Z. According to Theorem 2.6, Z is a Noetherian
space and therefore has a finite number of irreducible components
(Theorem 2.9). Let Z = F1 ∪F2 ∪ ...∪ Fn, where Fi, i = 1, 2, . . . , n
are the irreducible components of Z. Then Z = F1 ∪ F2 ∪ . . .∪ Fn

and according to Theorem 2.8, F1, F2, . . . , Fn are the irreducible
components of Z. Thus, to prove that Z = Z, it is sufficient to
prove that Fi = Fi for every i = 1, 2, ..., n. However, for every
i = 1, 2, . . . , n, Fi is a sequentially closed set in X and Fi is an
irreducible subset of X . Therefore, to complete the proof, it is
sufficient to prove that if Z is a sequentially closed set such that Z
is an irreducible subset of X , then Z = Z .

Now, we suppose that Z is such a set and Z 6= Z. Let P(Z) be
the partially ordered by inclusion set of all closed in X irreducible
subsets of Z. We shall prove that every point z ∈ Z belongs to a
maximal by inclusion element of P(Z).

We consider an arbitrary chain C of elements of P(Z). C is well
ordered because X is a Noetherian topological space. Then there
exists ordinal α and strictly increasing bijection P : [0, α) → C.
Clearly, α ≤ ω1 because h(X) ≤ ω1. We can extend P setting
P (α) = Z. Thus, if we assume that α = ω1, we get h(Z) ≥ ω1 + 1,
which is a contradiction. Consequently α < ω1. Hence, C is a
countable set. Therefore, there exists a sequence C1, C2, ..., Cn, ...
of elements of C such that Cn ⊆ Cn+1 and for every C ∈ C there
exists a number n such that C ⊆ Cn. For every n ∈ N we choose
zn to be the generic point for Cn. It follows from Lemma 4.1 that
the sequence (zn)∞n=1 has a convergent subsequence (znk

)∞k=1 such
that limk→∞znk

= {znk
}∞k=1 and the set {znk

}∞k=1 is irreducible. If
C ∈ C then there exists an integer n such that C ⊆ Cn. Let us
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choose a number m ∈ N such that nm ≥ n. Then C ⊆ Cn ⊆ Cnm =
{znm} ⊆ {znk

}∞k=1 ⊂ Z. This means that every chain C in P(Z)
has an upper bound. Now, applying Zorn’s lemma, we conclude
that every element of P(Z) can be included in a maximal one.
Obviously, if z ∈ Z then {z} ⊂ Z, hence {z} ∈ P(Z). Therefore,
every point z ∈ Z belongs to a maximal element of P(Z).

Let us assume that P(Z) has infinitely many maximal elements.
Therefore, we can choose a sequence B1, B2, ..., Bn, ... of distinct
maximal elements of P(Z). For every n ∈ N, we choose zn to
be the generic point of Bn. According to Lemma 4.1, the se-
quence (zn)∞n=1 has a convergent subsequence (znk

)∞k=1 such that
limk→∞znk

= {znk
}∞k=1 and the set {znk

}∞k=1 is irreducible, hence
{znk

}∞k=1 ∈ P(Z). Therefore, there exists a maximal, irreducible,
closed in X , set B such that B ∈ P(Z) and {znk

}∞k=1 ⊂ B. Also, for
every m ∈ N we have Bnm = {znm} ⊆ {znk

}∞k=1 ⊂ B. Now, it fol-
lows from the maximality of the sets Bnk

that B = Bn1 = Bn2 = ...,
which contradicts with the choice of the sets Bn. Therefore, the
maximal elements of P(Z) are finitely many. Consequently, Z is
a closed set in X , being a union of all maximal elements of P(Z).
That contradicts with Z 6= Z . This completes the proof that if
h(X) ≤ ω1 then X is a sequential space.

Now, we shall prove that if h(X) > ω1 then X is not a sequential
space. Let P(X) be the partially ordered by inclusion set of all
closed irreducible subsets of X . From h(X) > ω1 it follows that
there exists a strictly increasing map P : [0, ω1 + 1) → P(X).
We denote by Z the set

⋃
α<ω1

P (α). We shall prove that Z is a
sequentially closed subset of X which is not closed. Let (zn)∞n=1

be a convergent sequence in X with {zn}∞n=1 ⊂ Z. There exists
an ordinal number α < ω1 such that zn ∈ P (α) for every n ∈ N.
Clearly, if z ∈ limn→∞zn then z ∈ P (α) ⊂ Z. Therefore, Z is
sequentially closed. Let us suppose that Z is closed in X and Z =
F1∪F2∪...∪Fm , where m ∈ N and the closed in X sets F1, F2, ..., Fm

are the irreducible components of Z. For every Fi, i = 1, 2, ...,m, we
choose its generic point zi ∈ Fi. Let zi ∈ P (αi), i = 1, 2, ...,m and
α = max(α1, ..., αm). Then zi ∈ P (α) and therefore Fi ⊂ P (α) for
every i = 1, 2, ...,m. Hence, P (α) = Z and P (α) = P (α + 1) = ... -
a contradiction. Therefore, Z is a sequentially closed subset of X
which is not closed. Thus, X is not a sequential space. �
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Definition 4.8. [7] A topological space X is a Zariski space if it is
Noetherian and every irreducible closed subset of X has a unique
generic point.

Corollary 4.9. A Zariski space X is sequential if and only if
h(X) ≤ ω1.

Proof. It follows immediately from Theorem 4.7. �

Corollary 4.10. Let R be a commutative Noetherian ring. Then
the prime spectrum Spec R is a sequential Noetherian topological
space.

Proof. It follows from Theorem 2.4, Theorem 2.11, Corollary 2.16,
and Theorem 4.7. �
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