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THE PROCESS OF FINDING f ′ FOR AN ENTIRE
FUNCTION f HAS INFINITE TOPOLOGICAL

ENTROPY

HÉCTOR MÉNDEZ-LANGO

Abstract. Let (H (C) , ρ) be the metric space of all entire
functions f where the metric ρ induces the topology of uni-
form convergence on compact subsets of the complex plane.
Let D : H (C) → H (C) be the linear mapping that assigns to
each f its derivative, D (f) = f ′. We show in this note that
there exists a compact subset of H (C) , say K, that is invari-
ant under D, and D restricted to K has infinite topological
entropy.

1. Introduction

Let (H (C) , ρ) be the metric space of all entire functions f where
the metric ρ induces the topology of uniform convergence on com-
pact subsets of the complex plane. Let D : H (C) → H (C) be the
linear mapping that assigns to each f its derivative, D (f) = f ′.
At first sight, finding f ′ does not seem to be a complex dynamical
process. But, it is! In order to show this we recall the concept of
topological entropy. The entropy of a mapping has three options:
It is either i) zero, ii) a positive real number or iii) infinite. The
entropy helps us to distinguish between simple and complex dy-
namics. Positive or infinite entropy means the dynamical system
induced by the mapping is complicated. In section 3 we produce
a subset of H (C) , say K, that is invariant under D, D (K) = K.
Then we prove that the entropy of D |K : K → K is infinite.
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In order to calculate the entropy of D |K we study first some
dynamical properties of the shift mapping defined in the Hilbert
Cube Q, σ : Q→ Q.

2. The entropy of σ : Q→ Q

Let I denote the unit interval in the real line and Q be the Hilbert
Cube,

Q =
∞∏

i=0

I =
{
t̂ = (t0, t1, t2, . . .) : ti ∈ I

}
.

The metric in Q is given by

d̂
(
t̂, ŝ

)
=

∞∑

i=0

(
1
2

)i

|ti − si| .

Now consider the shift mapping σ : Q→ Q given by the formula

σ
(
t̂
)

= σ (t0, t1, t2, . . .) = (t1, t2, t3, . . .) .

Note that σ is a continuous mapping.
Let (X, d) be a metric space and f : X → X be a continuous

mapping. Given a point x in X, the orbit of x under f is the set
o(x, f) =

{
x, f1(x), f2(x), ...

}
, where f1 = f and for each n ≥ 2,

fn = f ◦fn−1. It is said that x is a periodic point of f if there exists
a positive integer n, n ∈ N, such that fn(x) = x. Let us denote by
P (f) the set of all periodic points of f. The mapping f is transitive
on X if for each pair of nonempty open subsets of X, say U and W,
there exist a point x ∈ U and an n ∈ N such that fn (x) ∈ W, and
f is sensitive on X if there exists ε > 0 such that for each x ∈ X
and each δ > 0, there exist y ∈ X with d (x, y) < δ and n ∈ N such
that d (fn (x) , fn (y)) > ε. According to R. Devaney (see [5] and
[1]) the mapping f is chaotic on X provided that P (f) is a dense
set in X and f is transitive and sensitive on X .

The proof of the next proposition is not difficult, so we leave it
to the reader.

Proposition 2.1. The mapping σ : Q→ Q is chaotic (in the sense
proposed by Devaney) on Q.

Now we calculate the topological entropy of σ : Q→ Q.
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Definition 2.2. Let X be a compact topological space and let
f : X → X be a continuous map. If α is an open cover of X,
let N (α) denote the number of sets in a finite subcover of α with
smallest cardinality. If α and β are two open covers ofX, let α∨β =
{A ∩B |A ∈ α,B ∈ β } and f−1 (α) =

{
f−1 (A) |A ∈ α

}
. For an

open cover α and n ∈ N let

∨n−1
i=0 f

−i (α) = α ∨ f−1 (α) ∨ f−2 (α) ∨ · · · ∨ f−(n−1) (α)

and
ent (f, α) = lim

n→∞

1
n

logN
(
∨n−1

i=0 f
−i (α)

)
.

The topological entropy of f is defined by

ent (f) = sup {ent (f, α) |α is an open cover of X } .

The following proposition contains a result that is already known.
We refer the reader to [6] for a detailed proof.

Proposition 2.3. Let f : X → X and g : Y → Y be two map-
pings defined on compact topological sets. Let h : X → Y be a
homeomorphism. If the following diagram commutes

X f−→ X

h ↓ ↓ h
Y −→g Y

,

then ent (f) = ent (g) .

For the sake of completeness we supply the proof of the next
lemma. It is, with slight changes, the same as that given for propo-
sition 8 of chapter VIII of [3].

Lemma 2.4. Let k ∈ N. If there exist k pairwise disjoint non-
empty closed subsets of X, A1, A2, . . . , Ak, such that

A1 ∪A2 ∪ · · · ∪Ak ⊂ f (A1) ∩ · · · ∩ f (Ak) ,

then ent(f) ≥ logk.

Proof. Let O1,O2, . . . , Ok be k pairwise disjoint open subsets of X
such that Ai ⊂ Oi, 1 ≤ i ≤ k. Let Ok+1 = X \(A1 ∪A2 ∪ · · · ∪Ak).
The collection α = {O1, O2, . . . , Ok+1} is an open cover of X .

Let n ∈ N. The set

Γ = {(x1, x2, . . . , xn) | xi ∈ {1, 2, . . . , k}}
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has cardinality kn. For each element in Γ, say (x1, x2, . . . , xn) = x̄,
the set

Ex̄ =
{
p ∈ X | p ∈ Ax1 , f(p) ∈ Ax2 , . . . , f

n−1(p) ∈ Axn

}

is not empty. Each point in this set is contained in a unique element
of the cover α ∨ f−1(α)∨ · · · ∨ f−(n−1)(α), namely

Ox1 ∩ f−1 (Ox2) ∩ · · · ∩ f−n+1 (Oxn) .

It follows that

N
(
α ∨ f−1(α)∨ · · · ∨ f−(n−1)(α)

)
≥ kn.

Hence ent(f, α) ≥ logk, and therefore ent(f) ≥ log k. �

Proposition 2.5. The entropy of σ : Q→ Q is infinite.

Proof. Let k ∈ N. Consider the following k + 1 subsets of Q,
A0, A1, . . . , Ak, defined in this way: For each 0 ≤ i ≤ k, let

Ai =
{
t̂ = (t0, t1, t2, . . .) ∈ Q : t0 =

i

k

}
.

It readily follows that
i) Each Ai is a closed subset of Q.
ii) Ai ∩ Aj = φ provided that i 6= j.
iii) For each i, σ (Ai) = Q.
Therefore, by lemma 2.4, ent (σ) ≥ log (k + 1) . Thus the topo-

logical entropy of σ is infinite. �

3. A subset of H (C) that is invariant under D

An entire function, f : C → C, is a function which is analytic on
the whole complex plane. If f is an entire function, then f has a
power series expression

f (z) =
∞∑

n=0

anz
n

with infinite radius of convergence. Let H (C) denote the set of all
entire functions. Notice that H (C) is a vector space. Sometimes
we refer to f ∈ H (C) as a point in H (C) . Given f and g in H (C)
and n ∈ N, we define
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ρn (f, g) = sup {|f (z)− g (z)| : |z| ≤ n}
and

ρ (f, g) =
∞∑

n=1

(
1
2

)n ρn (f, g)
1 + ρn (f, g)

.

It is known (see chapter VII in [4]) that ρ is a metric defined in
H (C) , and (H (C) , ρ) is a complete space. For the proof of the
next useful lemma we refer the reader to lemma 1.7, chapter VII,
of [4].

Lemma 3.1. If ε > 0 is given, then there exist a δ > 0 and a
positive integer n such that for f and g in H (C) , ρn (f, g) < δ
implies ρ (f, g) < ε.

LetD : H (C) → H (C) be the linear mapping defined byD (f) =
f ′. Now we produce a compact subset of H (C) , say K, and a
homeomorphism h : Q→ K. The goal is to show thatK is invariant
under D and the entropy of D |K : K → K is infinite.

For each t̂ = (t0, t1, t2, . . .) ∈ Q, let h
(
t̂
)

be the analytic function
whose series expression is

t0 + t1z + t2
z2

2!
+ t3

z3

3!
+ · · · =

∞∑

i=0

ti
i!
zi.

Since for each i ≥ 0 we have that 0 ≤ ti
i! ≤ 1

i! , the radius of

convergence of
∞∑

i=0

ti
i!
zi is infinite. Therefore h

(
t̂
)
∈ H (C) . Notice

that h
(
1̂
)

= exp (z) , where 1̂ = (1, 1, 1, . . .) .
It is easy to see that h is injective. Let K = h (Q) .

Proposition 3.2. h : Q→ K is continuous.

Proof. Let t̂ = (t0, t1, t2, . . .) ∈ Q and ε > 0. By lemma 3.1, there
exist N ∈ N and γ > 0 such that for ϕ and ψ in H (C) , ρN (ϕ, ψ) <

γ implies ρ (ϕ, ψ) < ε. Consider k ∈ N such that
∞∑

i=k+1

N i

i!
<
γ

2
. Let

ŝ = (s0, s1, s2, . . .) ∈ Q, h (ŝ) = g and h
(
t̂
)

= f.
For each z ∈ C with |z| ≤ N, we have that
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|f (z) − g (z)| ≤ |f (w) − g (w)| =

∣∣∣∣∣
∞∑

i=0

ti − si
i!

wi

∣∣∣∣∣
for some w ∈ C with |w| = N. Hence

|f (z) − g (z)| ≤
∞∑

i=0

|ti − si|
i!

N i <

k∑

i=0

|ti − si|
i!

N i +
γ

2
.

Let δ = γ
2k+1(k+1)Nk > 0. If d̂

(
t̂, ŝ

)
=

∞∑

i=0

(
1
2

)i

|ti − si| < δ, then

for each 0 ≤ i ≤ k,

|ti − si| <
2iγ

2k+1 (k + 1)Nk
≤ γ

2 (k + 1)Nk
,

and
|ti − si|
i!

N i ≤ |ti − si|N i <
γN i

2 (k + 1)Nk
≤ γ

2 (k + 1)
.

Therefore
k∑

i=0

|ti − si|
i!

N i <

k∑

i=0

γ

2 (k + 1)
=
γ

2
. Thus if d̂

(
t̂, ŝ

)
< δ,

then ρN (f, g) < γ, and ρ
(
h

(
t̂
)
, h (ŝ)

)
< ε. �

Since Q is a compact space, K is a compact subset of H (C).
Note that K is also a metric space, then the inverse mapping
h−1 : K → Q is continuous. Therefore h : Q → K is a homeo-
morphism.

Notice that K is invariant under D. Actually it is easy to check
that for each t̂ ∈ Q, D

(
h

(
t̂
))

= h
(
σ

(
t̂
))
. That is the following

diagram commutes:

Q σ−→ Q

h ↓ ↓ h
K

−−−→
D |K K

.

This implies that the maps σ and D |K have the same entropy.
By propositions 2.3 and 2.5, the proof of the next theorem is com-
plete.



THE PROCESS OF FINDING f ′ FOR AN ENTIRE FUNCTION f ... 645

Theorem 3.3. The topological entropy of D |K : K → K is infi-
nite.

4. Final remarks

We devote this section to some remarks.
1. Using proposition 2.1 and that D

(
h

(
t̂
))

= h
(
σ

(
t̂
))
, t̂ ∈ Q, it

is not difficult to show that D |K is chaotic in the sense of Devaney
on K. It is interesting that although D : H (C) → H (C) is a linear
mapping, there exists an invariant subset where it is chaotic. It is
known that a linear mapping is not chaotic on any invariant subset
if the space where it is defined is finite dimensional. We refer the
reader to [2] where he can find not only a proof of the previous
assertion but also an example (maybe the first one to appear in
the literature) of a linear and chaotic mapping. Actually it is not
difficult to show that D is chaotic on the whole space H (C) .

2. Let (X, d) be a metric space not necessarily compact. It is
possible to define the topological entropy of a continuous mapping
f : X → X (see definition 7.10 in [6]). The only condition on
f is that it must be uniformly continuous. This new definition
coincides with the one we gave in definition 2.2 if X is a compact
metric space.

In order to see that the mapping D : H (C) → H (C) fits in this
new case we recall the following theorem. The reader can find the
proof in the chapter VII of [4].

Theorem 4.1. If {fn} is a sequence in H (C) such that

lim
n→∞

ρ(fn, f) = 0,

then lim
n→∞

ρ
(
(fn)′ , f ′

)
= 0.

It follows that D : H (C) → H (C) is continuous.
Rest only to show that D is uniformly continuous. Note that D

is continuous in the constant function ϕ (z) = 0. Therefore, given
ε > 0 there exists δ > 0 such that if

ρ (f, g) = ρ (f − g, 0) < δ,

then

ρ
(
f ′, g′

)
= ρ

(
f ′ − g′, 0

)
= ρ

(
(f − g)′ , 0

)
< ε.
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Hence, D : H (C) → H (C) is uniformly continuous.
Since the topological entropy of D |K : K → K is infinite, the

topological entropy of D : H (C) → H (C) is infinite.
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