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Dedicated to Professor W.W. Comfort

Abstract. Willis established a structure theory of locally
compact totally disconnected groups. An important feature
of his theory is the notion of a tidy subgroup. In this note we
provide results regarding these subgroups.

In recent years, George Willis developed a structure theory
of locally compact totally disconnected groups (see [3,4]). An im-
portant feature of his theory is the notion of a tidy subgroup, whose
definition is recalled:

Definition: (Willis) Let G be a totally disconnected locally com-
pact group and let f be a bicontinuous automorphism of G. Let U
be a compact open subgroup of G and set

U+ =
⋂∞

n=0 fn(U) and U− =
⋂∞

n=0 f−n(U).
Then U is said to be tidy for f if it satisfies:

T1 U = U+U− = U−U+, and
T2

⋃∞
n=0 fn(U+) and

⋃∞
n=0 f−n(U−) are closed in G.

Willis has shown the existence of tidy subgroups and has
described properties that are possessed by these subgroups. In this
note, we provide additional observations regarding tidy subgroups.

Throughout this paper, G will denote a locally compact to-
tally disconnected group and f a bicontinuous automorphism of G.
Let U be a compact open subgroup of G. We define U(r) =

⋂r
n=0

fn(U) for any non-negative integer r.
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Let U be an arbitrary compact open subgroup of G. The first
step in constructing a tidy subgroup is to find a compact open sub-
group V ⊆ U such that V satisfies T1. More precisely, there exists
an integer r such that U(r) satisfies T1 [3, Lemma 1]. The following
proposition provides an alternate proof showing the existence of an
integer r such that U(r) satisfies T1.

Proposition 1. Let U be a compact open subgroup of G. Then
there exists an integer r such that U(r) satisfies T1.

Proof. For each n ≥ 0, U ∩ f(U(n)) is a compact open subgroup of
f(U(n)). Hence the index [f(U(n)) : U ∩ f(U(n))] is finite. Since
U(n) ⊆ U(m), when m ≤ n, we have [f(U(m)) : U ∩ f(U(m))] ≥
[f(U(n)) : U ∩ f(U(n))]. This nonincreasing sequence of integers
{[f(U(n)) : U ∩ f(U(n))] : n = 0, 1, 2, · · ·} is bounded below by
[f(U+) : U+]. Thus there exists an integer r such that

[f(U(r)) : U ∩ f(U(r))] = [f(U(n)) : U ∩ f(U(n))] for n ≥ r.
Let V = U(r). Then V is a compact open subgroup and the

associated sequence {[f(V (n)) : V ∩ f(V (n))] : n = 0, 1, 2, · · ·}
is constant. Let m be an arbitrary non-negative integer. Then
f(V+)(V ∩ f(V (m))) is an open neighborhood of f(V+). Since
{f(V (n)): n = 0, 1, 2, · · ·} is a decreasing sequence of compact
sets with

⋂
n≥0 f(V (n)) = f(V+), there exists an integer n ≥ m

such that f(V (n)) ⊆ f(V+)(V ∩ f(V (m))). Therefore we have the
following injection map:

f(V (n))
V ∩f(V (n)) →

f(V+)(V∩f(V (m)))
V ∩f(V (m)) → f(V (m))

V ∩f(V (m))

Since [f(V (n)) : V ∩ f(V (n))] = [f(V (m)) : V ∩ f(V (m))],
[f(V (m)) : V ∩ f(V (m))] = [f(V+)(V ∩ f(V (m))) : V ∩ f(V (m))].
Therefore f(V (m)) = f(V+)(V ∩ f(V (m))) = f(V+)V (m + 1) for
any m ≥ 0. By induction, we have

(*) f j(V ) = f j(V+)V (j) for j = 1, 2, 3, · · · .
Let y ∈ V and for all j = 1, 2, 3, · · · , define Cj =

{z ∈ V+ : f j(y) ∈ f j(z)V (j)}.

The Cj is a compact subset of V+ and Cj 6= ∅ by (*). Since
Cj+1 ⊆ Cj ,

⋂
j≥1 Cj 6= ∅. Choose z in this intersection. For each j,

f j(z−1y) ∈ V (j) ⊆ V . Therefore z−1y ∈ f−j(V ) for j = 1, 2, 3, · · · .
Thus z−1y ∈ V−, so y ∈ zV−. Hence V ⊆ V+V−. By a similar
argument, V ⊆ V−V+. Therefore V satisfies T1. �
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Remark. The last paragraph of the above proof is based on
Willis’ proof of the result in [3].

Let U be a compact open subgroup of G. Since f(U) ⊇ f(U+),
we have [f(U) : U ∩ f(U)] ≥ [f(U+)(U ∩ f(U)) : U∩ f(U)] =
[f(U+) : U+], with equality if and only if U satisfies T1 [4, p.
145]. Proposition 1 shows the existence of an integer r such that
U(r) satisfies T1. If we apply the above condition to U(r), then
[f(U(r)) : U(r) ∩ f(U(r))] = [f(U(r)+) : U(r)+]. Since U(r)+ =
U+, the above equality is of the form [f(U(r)) : U(r)∩ f(U(r))] =
[f(U+) : U+], which can be written as [f(U(r)) : U ∩ f(U(r))] =
[f(U+) : U+].

Corollary 2. Let U be a compact open subgroup of G. Then
U(r) satisfies T1 if and only if [f(U(r)) : U ∩ f(U(r))] =
[f(U(n)) : U ∩ f(U(n))] for all n ≥ r. In this case
[f(U(r)) : U ∩ f(U(r))] = [f(U+) : U+].

The following lemma by Willis displays an important dynamical
property of the automorphism f :

Lemma 3 [3, Lemma 2]. Let U be a compact open subgroup of
G satisfying T1. Suppose that w ∈ G satisfies fm(w) ∈ U and
fn(w) ∈ U , where m ≤ n. Then w = yz, where fk(y) ∈ U for
k ≤ m and k ≥ n, and fk(z) ∈ U for m ≤ k ≤ n.

Remark. For k ≤ m and k ≥ n, fk(w) ∈ U if and only if
fk(z) ∈ U . For m ≤ k ≤ n, fk(w) ∈ U if and only if fk(y) ∈ U . In
particular, if fk(w) /∈ U for some m < k < n, then fk(y) /∈ U .

Given a compact open subgroup U of G, we define U++ =⋃∞
n=0 fn(U+). The following lemma gives necessary and sufficient

conditions for U++ to be closed.

Lemma 4 [1, Proposition 2]. Let U be a compact open subgroup of
G. Then U++ is closed if and only if U++ ∩ U ⊆ f l(U+) for some
l ≥ 0.

Willis has shown [3, Lemma 3] that if U satisfies T1, then U++

is closed if and only if U++ ∩U = U+. Moreover, [3, Lemma 3] also
shows that U satisfies T2 (that is, U is tidy) if and only if U++ is
closed.
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Let V be a compact open subgroup of G satisfying T1. Define
LV = {g ∈ G : fn(g) ∈ V for all but finitely many integers n}
and let LV be the closure of LV . Then LV ⊆ V++, LV is an
f− invariant subgroup of G, and V+ ∩ V− ⊆ LV . The condition
defining LV is equivalent to the existence of integers m and n such
that fm(g) ∈ V+ and fn(g) ∈ V− [3, p. 347].

The following corollary of Willis is asserted in [3]. Here we in-
clude a proof of this result.

Corollary 5 [3, Corollary to Lemma 3]. Let U be a compact open
subgroup of G satisfying T1. Then U is tidy if and only if LU =
U+ ∩ U−.

Proof. Suppose U is a tidy subgroup. By Lemma 4, U++ ∩ U ⊆
f l(U+) for some l ≥ 0. Let x ∈ LU . Then there exists an integer n
such that for m ≥ n, fm(x) ∈ U−. In particular, fn+l(x) ∈ U− ⊆
U . Thus fn+l(x) = f l(y) for some y ∈ U+. Therefore fn(x) =
y ∈ U+ ∩ U−. Hence x ∈ U+ ∩ U−.

Conversely, suppose that LU ⊆ U+ ∩ U− and U++ ∩ U " U+.
Then there exists an x ∈ U+ such that fn(x) ∈ U\U+ for some
n > 1. Also, fm(x) /∈ U for some m, where 0 < m < n. (Otherwise,
if x ∈ U+ and f(x), · · · , fn(x) ∈ U, then fn(x) ∈ U+.) By Lemma
3, x = yz, where y ∈ LU and fk(z) ∈ U for 0 ≤ k ≤ n. Since y ∈
LU ⊆ U+ ∩U−, fk(y) ∈ U for any integer k. In particular, fm(y) ∈
U . Then fm(x) = fm(y)fm(z) ∈ U , which is a contradiction.
Hence U++ ∩ U ⊆ U+. Therefore, U is tidy. �

Proposition 6. Let U be a compact open subgroup of G satisfying
T1. Then U is tidy if and only if LU is closed.

Proof. If U is tidy, then LU = U+ ∩ U−, so it is closed.
Conversely, suppose LU is closed. If U is not tidy, then there ex-

ists x ∈ LU\(U+ ∩ U−). We may assume that x ∈ U+, fn(x) ∈ U−
for some n > 1 and fm(x) /∈ U for some m, where 0 < m < n. (Oth-
erwise, if x ∈ U+ and f(x), · · · , fn(x) ∈ U, then fn(x) ∈ U+ ∩ U−,
so x ∈ U+ ∩ U−.) Since LU is an f− invariant subgroup, the
sequence {x, xfn(x), xfn(x)f2n(x), · · · } is contained in LU ∩ U .
Because U is compact, LU ∩U is compact. Therefore the sequence
{x, xfn(x), xfn(x)f2n(x),· · ·} has an accumulation point w∈LU∩U .
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Now w = lim
ki→∞

xfn(x)f2n(x) · · ·fkin(x). For a fixed positive inte-

ger j, consider the product:

f−jn+m(x)fn−jn+m(x)f2n−jn+m(x) · · ·fkin−jn+m(x).
Since each term in the above product is in U except fm(x), the
product is not in U . Therefore f−jn+m(w) /∈ U , so w /∈ LU , which
is a contradiction. �

Remark. The above proof is adapted from the proof of [3, Lemma
3].

Proposition 7. Let U be a compact open subgroup of G. Then
U++ is compact if and only if U+ is f− invariant.

Proof. Suppose U++ =
⋃∞

n=0 fn(U+) is compact. Since U++ is
a countable union of compact subgroups, by the Baire Category
Theorem, fk(U+) must be open for some k. Thus fn(U+) is open
for all n ≥ 0. Therefore there exists an l such that U++ = f l(U+) =
fn(U+) for all n ≥ l . Hence f(U+) = U+. Conversely, if f(U+) =
U+, then U++ = U+ is compact. �

Corollary 8. Let U be a tidy subgroup of G such that U++ is
compact. Then for any other tidy subgroup V , V++ is also compact.

Proof. Since U and V are both tidy subgroups of G, U ∩ V is also
a tidy subgroup of G [3, Lemma 10]. Since (U ∩ V )++ ⊆ U++,
(U ∩ V )++ is compact. Therefore we may assume that U ⊆ V . By
[3, Lemma 11], V+ ∩ U = U+. Since U is an open subgroup, U+ is
an open subgroup of V+. Hence the index [V+ : U+] is finite. Since
f is an automorphism, [f(V+) : f(U+)] = [V+ : U+]. From the
equation [f(V+) : f(U+)][f(U+) : U+] = [f(V+) : V+][V+ : U+], we
can conclude that f(V+) = V+. Therefore V++ is also compact. �

Let U be a compact open subgroup of G satisfying T1. Willis has
shown that LU is a relatively compact subgroup of G [3, Lemma
6]. Here we use his idea to present a different proof. Define
ε = (f(U+)\U+) ∩ LU (see [3, p. 347]). Since f(U+) is com-
pact and U+ = U ∩ f(U+) is an open subgroup of f(U+), ε is
contained in finitely many cosets {U+g1, · · · , U+gm}, where each
gi ∈ ε. Since each gi ∈ LU , there exists a least positive integer p
such that fp(gi) ∈ U− for i = 1, · · · , m.
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Proposition 9. LU ⊆ fp+1(U+)U−.

Proof. Let z ∈ LU . If z ∈ U+ ∩ U−, then clearly z ∈ fp+1(U+)U−.
Therefore, we may assume that z ∈ LU\(U+ ∩ U−). Since z ∈
LU\(U+ ∩ U−), there exists an x ∈ ε such that z = f l(x)
[3, p. 347]. To see this, we may first assume that z ∈ U−\U+.
(If z ∈ LU\(U+ ∩ U−), then fm(z) ∈ U− for some m and fm(z) /∈
U+. Otherwise, fm(z) ∈ U+ ∩ U− which would imply that z ∈
U+ ∩ U−. Now take fm(z) as z.) Because z ∈ LU , f−n(z) ∈ U+

for some n > 0. Choose the least positive integer k such that
f−k(z) ∈ U+. Then f−k+1(z) = x ∈ (f(U+)\U+) ∩ LU . Then
x = ygi, where y ∈ U+ and gi ∈ LU . Therefore z = f l(ygi), where
y ∈ U+ ∩ LU and gi ∈ LU .

We consider the following cases.
(i) l < 0 : Then z = f l(ygi) ∈ f l+1(U+) ⊆ U+ ⊆ fp+1(U+)U−.
(ii) 0 ≤ l ≤ p : Then z = f l(ygi) ∈ f l+1(U+) ⊆ fp+1(U+) ⊆

fp+1(U+)U−.
(iii) l > p : If f l(y) ∈ f(U+), then f l(y) ∈ fp+1(U+) . Since

f l(gi) ∈ U−, z = f l(y)f l(gi) ∈ fp+1(U+)U−. Therefore, we may
assume that f l(y) /∈ f(U+). Since f l(y) /∈ f(U+), there exists an
integer 0 < k < l such that fk(y) ∈ ε = (f(U+)\U+) ∩ LU . Let
z′ = fk(y) ∈ ε. Then z = f l−k(z′)f l(gi). By repeating this process,
one can show that f l−k(z′) ∈ fp+1(U+)U−. Since f l(gi) ∈ U−, we
can conclude that z ∈ fp+1(U+)U−. �

Corollary 10 [3, Lemma 6]. LU = LU is a compact f− invariant
subgroup of G.

Given two compact open subgroups U and V of G, both satis-
fying T1, the following proposition provides a method to compare
the size of LU and LV .

Proposition 11. Let U and V be compact open subgroups of G
both satisfying T1. If U+ ∩ U− ⊆ V , then LU ⊆ LV .

Proof. Suppose U+∩U− ⊆ V . Since lim
n→∞

f−n(U+) = U+∩U−, there

exists a positive integer p such that f−p(U+) ⊆ V . Then for any
n ≥ 0, f−n(f−p(U+)) = f−p(f−n(U+)) ⊆ f−p(U+) ⊆ V .
Therefore, f−p(U+) ⊆ fn(V ) for any n ≥ 0. Hence f−p(U+) ⊆ V+.
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If we apply the above argument to f−1, then there exists a positive
integer q such that f q(U−) ⊆ V−.

Let x ∈ LU . Then there exists integers m and n such that
fm(x) ∈ U+ and fn(x) ∈ U−. Hence f−p(fm(x)) = f−p+m(x) ∈ V+

and f q(fn(x)) = f q+n(x) ∈ V−. Therefore x ∈ LV . �
In [4], Willis shows how to construct a tidy subgroup in three

steps. Given an arbitrary compact open subgroup U of G, the first
step is to find a compact open subgroup V ⊆ U such that V satisfies
T1. This step is Proposition 1. The second step is to identify a
particular compact f−invariant subgroup L of G. Here we take
L = LV . The third step uses L and V to produce a tidy subgroup
W . Define

V ′ = {v ∈ V : lvl−1 ∈ V L for all l ∈ L}.
Then W = V ′L is a tidy subgroup of G.

In [5], Willis describes a new procedure for constructing tidy
subgroups. This new procedure differs from the above construction
at step 2. As before, start with an arbitrary compact open subgroup
U of G, and define V as above. The second step is to define a
compact f− invariant subgroup of G. Define

K = {l ∈ G : lim
j→∞

f j(l) = e and {f−j(l)}j≥0 is bounded}.

Then K = K is an f− invariant compact subgroup of LV [5, Lemma
2.2] and LV = (V ∩ LV )K [5, Lemma 2.3]. The third step uses K
and V to produce a tidy subgroup. Define

V ′′ = {v ∈ V : lvl−1 ∈ V Kfor all l ∈ K}.
Then V ′′K is a compact open subgroup of G and is the same tidy
subgroup W produced earlier [5, Proposition 2.1]. The benefit of
this construction is that K does not depend on any compact open
subgroup.

Proposition 12. Let V be a compact open subgroup of G satisfying
T1. Then V is tidy if and only if V ⊇ K. In particular, if K = {e},
then every compact open subgroup satisfying T1 is tidy.

Proof. If V is tidy, then V ⊇ LV ⊇ K. Conversely, if V ⊇ K, then
LV = (V ∩ LV )K ⊆ V . Therefore, V is tidy. �

Corollary 13. If K is closed, then every compact open subgroup
of G contains a tidy subgroup.
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Proof. Suppose K is closed. Then f −1 |K is a contraction
(see [2]). Then for any compact subset C of K, the sequence
{(f−1)n(C)}n≤0 = {fn(C)}n≥0 converges to the identity [2, Propo-
sition 2.1]. In particular, fn(K) converges to the identity. In this
case, K = {e}, so the above proposition applies. �
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