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QUASI-METRIC SPACES WITH MEASURE

ALEKSANDAR STOJMIROVIĆ ∗

Abstract. The phenomenon of concentration of measure on
high dimensional structures is usually stated in terms of a
metric space with a Borel measure, also called an mm-space.
We extend some of the mm-space concepts to the setting of a
quasi-metric space with probability measure (pq-space). Our
motivation comes from biological sequence comparison: we
show that many common similarity measures on biological
sequences can be converted to quasi-metrics. We show that a
high dimensional pq-space is very close to being an mm-space.

1. Introduction

Definition 1.1. Let X be a set. A mapping q : X ×X → R+ is
called a quasi-metric if

(i) for all x, y ∈ X , q(x, y) = q(y, x) = 0 ⇐⇒ x = y,
(ii) for all x, y, z ∈ X , q(x, z) ≤ q(x, y) + q(y, z).

If q is also symmetric, that is, for all x, y ∈ X , q(x, y) = q(y, x), then
q is a metric. For each quasi-metric q, we denote by q its conjugate
quasi-metric, where q(x, y) = q(y, x). Furthermore, we call the met-
ric q̂, defined for each x, y ∈ X by q̂(x, y) = max{q(x, y), q(y, x)} =
max{q(x, y), q(x, y)}, its associated metric. The pair (X, q) is called
a quasi-metric space.
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Let w be a positive real-valued function onX . The triple (X, q, w)
is called a weighted quasi-metric space [10, 24] if for all x, y ∈ X

q(x, y) + w(x) = q(y, x) + w(y).

If w takes values in all reals, (X, q, w) is called a generalised weighted
quasi-metric space.

Due to asymmetry, many metric space structures naturally cor-
respond to two quasi-metric structures, which will be henceforth
referred to as the left- and right- structures wherever possible.

Definition 1.2. Let (X, q) be a quasi-metric space, x ∈ X , A,B ⊆
X and ε > 0. Denote by

• diam(A) := sup{q(x, y) : x, y ∈ A}, the diameter of set A;
• DL

ε (x) := {y ∈ X : q(x, y) < ε}, the left open ball of radius
ε centered at x;

• DR
ε (x) := {y ∈ X : q(y, x) < ε}, the right open ball of

radius ε centered at x;
• Dε(x) := {y ∈ X : q̂(x, y) < ε}, the associated metric open

ball of radius ε centered at x;
• q(x,A) := inf{q(x, y) : y ∈ A}, the left distance from x to
A;

• q(A, x) := inf{q(y, x) : y ∈ A}, the right distance from x
to A;

• q(A, x) := inf{q̂(x, y) : y ∈ A}, the associated metric dis-
tance from x to A;

• AL
ε := {x ∈ X : q(A, x) < ε}, the left ε-neighbourhood of

A;
• AR

ε := {x ∈ X : q(x,A) < ε}, the right ε-neighbourhood of
A;

• Aε := {x ∈ X : q̂(A, x) < ε}, the associated metric ε-
neighbourhood of A.

Each quasi-metric q naturally induces a T0 topology T (q) where
a set U is open if for each x ∈ U there is ε > 0 such that DL

ε (x) ⊆ U .
The topology T (q) can be similarly defined in by using the right
balls as its base and hence a quasi-metric space (X, q) can be nat-
urally associated with a bitopological space (X, T (q), T (q)). Topo-
logical aspects of quasi-metric spaces have been very extensively
researched - the review by Künzi [9] contains 589 references! Note
that a T0 quasi-metric is frequently called a quasi-pseudometric [9]
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while the name quasi-metric is reserved for a map q : X ×X which
satisfies q(x, y) = 0 ⇐⇒ x = y instead of axiom (i) in Definition
1.1, and whose associated topology is hence T1.

The main objective of this paper is to generalise various con-
cepts related to the phenomenon of concentration of measure on
high-dimensional structures [13, 7, 11], which are usually defined in
terms of metric spaces with measure, to quasi-metric spaces with
measure. While many constructions from the metric case carry
through to the quasi-metric case without much change, some quasi-
metric results have only trivial analogs. We will show that, in a
natural sense to be defined later,

A ‘high-dimensional’ quasi-metric space is, typically,
very close to being a metric space.

Before proceeding, we will examine our motivation for doing so and
in doing so provide another example of a quasi-metric space which,
we believe, was not observed before.

2. Motivation: biological sequences

Consider sets of finite sequences over a finite alphabet Σ, denoted
Σ∗. Examples of such sets are the set of all English words and,
most importantly for us, sets of DNA or protein sequences. DNA
sequences are formed from a four letter alphabet Σ = {A,C,G, T},
while the protein alphabet consists of 20 amino acids.

Search of DNA and protein sequence datasets [3, 4] by similarity
is of fundamental importance in contemporary life sciences. The
most basic search, performed using software tools such as BLAST
[2], is the range similarity search: given a query sequence, find all
the closest neighbours of that point with respect to some similarity
measure.

The main similarity measure used is the Smith-Waterman [20]
local similarity score. We will endevour to produce one of many of
its equivalent definitions and show that under certain conditions,
which are satisfied for most common practical cases, it can be con-
verted to a (generalised weighted) quasi-metric.

Definition 2.1. Let A ⊂ N such that |A| = n ∈ N. Denote by Ai,
where i ≤ n, the i-th element of A (under the usual order on N).
If I ⊆ {1, 2, . . . , n}, set AI = {Ai ∈ A | i ∈ I}.
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Denote by g : 2N → R a gap penalty satisfying:
(1) ∀A ⊂ N, g(A) ≥ 0,
(2) g(∅) = 0, and
(3) ∀A,B ⊂ N A ⊆ B =⇒ g(A) ≤ g(B).

Let Σ be a finite alphabet. For any sequence x ∈ Σn, n ∈ N
and any set A ⊆ {1, 2, . . . , n}, let xI denote the subsequence
xA1xA2 . . . xAk

where |A| = k. Let S : Σ × Σ → R be a map
and x ∈ Σm, y ∈ Σn,m,n ∈ N. Define the local similarity score
s : Σ∗ × Σ∗ → R, by

s(x, y) = max
A,A,B,B

{T (xA, yB)− g(A) − g(B)}

where A ⊆ {1, 2, . . . , m}, B ⊆ {1, 2, . . . , n}, |A| = |B| = k, A =
{A1, A1+1, . . . , Ak−1, Ak}\A, B = {B1, B1+1, . . . , Bk−1, Bk}\B
and T (xA, yB) =

∑k
i=1 S(xAi , yBi).

Note that A,A,B,B can be all empty in which case T (xA, yB)−
g(A) − g(B) = 0 and therefore it follows that s(x, y) ≥ 0.

The Definition 2.1 can be interpreted in the following way. Firstly,
two contiguous subsequences x′ and y′, of x and y respectively, are
chosen which is why the similarity score is called local. Secondly,
each letter x′ and y′ is either aligned with a letter from the other
subsequence or deleted. The scores for aligned letters are given by
S while the costs of deletions are given by the gap penalty. Gap
penalty functions may depend not only on the number of gaps but
on their locations: contiguous gaps often have lower cost associ-
ated with them. Hence, we construct the local similarity score as
the score of the best local alignment of two sequences given the gap
penalties, or 0 if all such scores are negative.

The following result allows us to convert similarity scores to
quasi-metrics.

Lemma 2.2. Let X be a set and s : X ×X → R a map such that
(1) s(x, x) ≥ s(x, y) ∀x, y ∈ X,
(2) s(x, y) = s(x, x)∧ s(y, x) = s(y, y) =⇒ x = y ∀x, y ∈ X,
(3) s(x, y) + s(y, z) ≤ s(x, z) + s(y, y) ∀x, y, z ∈ X.

Then q : X × X → R where (x, y) 7→ s(x, x) − s(x, y) is a quasi-
metric. Furthermore, if s is symmetric, that is, s(x, y) = s(y, x)
for all x, y ∈ X, q is a generalised weighted quasi-metric with the
weight function w : x 7→ s(x, x).



QUASI-METRIC SPACES WITH MEASURE 659

Proof. Positivity of q is equivalent to (1), separation of points is
equivalent to (2) while the triangle inequality is equivalent to (3).
If s(x, y) = s(y, x) then q(y, x)+s(x, x) = s(y, y)−s(x, y)+s(x, x) =
s(x, x)−s(x, y)+s(y, y) = q(x, y)+s(y, y) and thus w : x 7→ s(x, x)
is a generalised weight. �

Theorem 2.3. Suppose S : Σ × Σ → R satisfies conditions of
the Lemma 2.2 and S(a, a) > 0 for all a ∈ Σ. Then so does the
similarity score s on Σ∗ as defined in Definition 2.1.

Proof. It is easy to see that if S satisfies the Lemma 2.2 so does
T . Since S(a, a) > 0 for all x ∈ Σ and g(∅) = 0, it is clear that
s(x, x) = T (x, x) and thus s(x, x) ≥ s(x, y) for all x, y ∈ X .

If s(x, y) = s(x, x) then s(x, y) = T (x, x) and hence x is subse-
quence of y. Similarly, if s(y, x) = s(y, y), y is subsequence of x.
Thus, s(x, y) = s(x, x) ∧ s(y, x) = s(y, y) =⇒ x = y.

To prove the third statement pick (possibly empty)A,B,A,B, C,
D, C,D such that

s(x, y) = T (xA, yB)− g(A) − g(B) and
s(y, z) = T (yC , zD)− g(C)− g(D).

Let I and J be the sets of indices (possibly empty) of A and B, and
B and C respectively, such that BI = CJ = B ∩ C. It is clear that
|I | = |J |. Denote by K and L the remaining indices of B and C
respectively, that is, the sets such that BK = B\C and CL = C\B.

Since T is a sum over sets of indices, we have

T (xA, yB) = T (xAI
, yBI

) + T (xAK
, yBK

) and
T (xC , yD) = T (yCJ

, zDJ
) + T (zCL

, zDL
).

Furthermore, let AI and DJ be sets of gaps, that is,

AI = {AI1 , AI1 + 1, . . . , A|I| − 1, A|I|} \AI and

DJ = {DJ1 , DJ1 + 1, . . . , D|J | − 1, D|J |} \DJ .

Since I and J are subsets of indices of A andD respectively, AI ⊆ A
and DJ ⊆ D and hence g(AI) ≤ g(A) and g(DJ) ≤ g(D).
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Thus, s(x, y) + s(y, z)

= T (xA, yB) − g(A) − g(B) + T (yC , zD) − g(C) − g(D)

≤ T (xAI
, yBI

) + T (xAK
, yBK

) − g(AI)

+T (yCJ
, zDJ

) + T (yCL
, zDL

) − g(DJ)

≤ T (xAI
, zDJ

) − g(AI) − g(DJ)
+T (yBI

, yBI
) + T (yBK

, yBK
) + T (yCL

, yCL
).

Observing that T (xAI
, zDJ

) − g(AI) − g(DJ) ≤ s(y, z) and,
since BI , BK and CL are disjoint subsets of indices of y,
T (yBI

, yBI
) + T (yAK

, yBK
) + T (yCL

, yDL
) ≤ T (y, y) = s(y, y)

completes the proof. �
The conditions of the Lemma 2.2 are satisfied by most of the

BLOSUM [8] similarity score matrices on the amino acid alphabet,
produced in the following way. Biologicaly closely related fragments
of protein sequences are clustered together in the form of multiple
alignments or blocks so that each row in a block represents a differ-
ent fragment. The fragments within blocks are further clustered to
reduce the effect of too closely related fragments and the relative
frequency of observing amino acid i in the same column as amino
acid j is denoted φij (this is the aggregate over all columns and
over all blocks). The similarity score S is given by

S(i, j) = 2 log2

(
φij

2ψiψj

)

where ψi is the overall frequency of amino acid i. Hence S is
symmetric and it is easy to see that the triangle inequality of the
quasi-metric obtained by the transformation from the Lemma 2.2
is equivalent to

φijφjk ≤ φikφjj

for all amino acids i, j, k. In many cases frequencies of two different
amino acids being aligned are much smaller than the frequencies
of amino acids being aligned with themselves and the triangle in-
equality is satisfied.

BLOSUM matrices are the most frequently used score matrices
for similarity search of protein sequences and, as it can be seen
from above, are also symmetric so that the quasi-metric obtained
is generalised weighted. The similarity measures on DNA alphabet
produce a metric but the distance derived from the local similarity
score on DNA sequences of different length is still asymmetric.
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Quasi-metrics were investigated quite early in the development
of biological sequence comparison algorithms by Waterman, Smith
and Bayer [25], but their emphasis at the time was on global rather
than local similarity measures. Much effort was expanded on met-
rics [19, 21] which were abandoned in favour of similarity score when
it was realised that any ‘local’ distance between two sequences can-
not satisfy the triangle inequality.

Most algorithms for similarity search in datasets of biological se-
quences, even those heuristic like BLAST [2], scan the whole dataset
to retrieve close neighbours of a query point. Our interest is in at-
tempting to produce indexing schemes for similarity search [16, 17]
so that a dataset is partitioned so that very few points need to be
scanned for each search. Performance of indexing schemes depends
on many factors but it was observed [14] that the so called ‘curse of
dimensionality’, where many indexing schemes for high-dimensional
spaces perform worse than sequential scan, can be largely explained
by the concentration of measure phenomenon. The results in [14]
refer only to metric spaces and the aim of this study is to produce
foundations for studying similar phenomena in quasi-metric spaces.

It should be noted that all datasets, biological or otherwise are
finite and hence topologically discrete and zero-dimensional. How-
ever, they also carry an additional structure - the normalised count-
ing measure. Hence, each finite quasi-metric space automatically
becomes a quasi-metric space with measure.

3. pq-spaces

The main object of our study is the pq-space, the quasi-metric
space with Borel probability measure. As two topologies can be
associated with a quasi-metric, it is appropriate to use the Borel
structure generated by T (q) ∪ T (q) so that any countable union,
intersection or difference of any ‘left’- or ‘right’- open sets is mea-
surable. It is easy to see that this structure is equivalent to the
Borel structure generated by T (q̂), the topology of the associated
metric since Dε(x) = DL

ε (x)∩ DR
ε (x).

Definition 3.1. Let (X, q) be a quasi-metric space, and µ a prob-
ability measure over B, a Borel σ-algebra of measurable sets gener-
ated by T (q). We call the triple (X, q, µ) a pq-space.
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The pq-space is the quasi-metric analogue of the metric space
with Borel measure (mm- or pm- space depending on whether the
total measure is unity) defined by Gromov and Milman [6, 7, 5]. For
a metric space with measure, the concentration effects are expressed
in terms of concentration function. Two such functions, left- and
right-, can be defined for a pq-space.

Definition 3.2. Let (X, q, µ) be a pq-space and B the Borel
σ-algebra of µ-measurable sets. The left concentration function
αL

(X,q,µ), also denoted αL, is a map R+ → [0, 1
2 ] such that

αL
(X,q,µ)(0) = 1

2 and

αL
(X,q,µ)(ε) = sup

{
1 − µ(AL

ε ); A ∈ B, µ(A) ≥ 1
2

}

for ε > 0.
Similarly, the right concentration function αR

(X,q,µ), also denoted
αR, is a map R+ → [0, 1

2 ] such that αR
(X,q,µ)(0) = 1

2 and

αR
(X,q,µ)(ε) = sup

{
1 − µ(AR

ε ); A ∈ B, µ(A) ≥ 1
2

}

for ε > 0.

For an mm-space (X, d, µ), αL and αR coincide and in that case
will be denoted α(X,d,µ) or just α. It is obvious that if diam(X) is
finite, then for all ε ≥ diam(X), αL(ε) = αR(ε) = 0 and it can be
shown that αL and αR are decreasing.

Lemma 3.3. For any pq-space (X, q, µ), for each ε ≥ 0,

max{αL
(X,q,µ)(ε), α

R
(X,q,µ)(ε)} ≤ α(X,q̂,µ)(ε) ≤ αL

(X,q,µ)(ε)+α
R
(X,q,µ)(ε).

Proof. Let A ∈ B such that µ(A) ≥ 1
2 and ε > 0. Using Aε ⊆

AL
ε ∩ AR

ε ,

1 − µ(AL
ε ) ≤ 1 − µ(Aε) ≤ α(ε) =⇒ αL(ε) ≤ α(ε) and

1− µ(AR
ε ) ≤ 1 − µ(Aε) ≤ α(ε) =⇒ αR(ε) ≤ α(ε),

and it follows that max{αL(ε), αR(ε)} ≤ α(X,q̂,µ)(ε).
For the second inequality, use Aε ⊇ AL

ε ∩AR
ε , and thus X \Aε ⊆(

X \AL
ε

)
∪
(
X \AR

ε

)
, implying

1 − µ(Aε) ≤
(
1 − µ(AL

ε )
)

+
(
1 − µ(AR

ε )
)
≤ αL(ε) + αR(ε). �
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The phenomenon of concentration of measure on high-dimensional
structures refers to the observation that in many high dimensional
metric spaces with measure, the concentration function decreases
very sharply, that is, that an ε-neighbourhood of any not vanish-
ingly small set, even for very small ε, covers (in terms of the proba-
bility measure) the whole space. Examples are numerous and come
from many diverse branches of mathematics [12, 6, 1, 13, 7, 15, 23].
In this paper we will take a high dimensional pq-space to be a
pq-space where both αL and αR decrease sharply.

3.1. Deviation Inequalities.

Definition 3.4. Let (X, q) be a quasi-metric space. A map
f : X → R is called left K-Lipschitz if there exists K ∈ R+ such
that for all x, y ∈ X

f(x)− f(y) ≤ Kq(x, y).

The constant K is called a Lipschitz constant. Similarly, f is right
K-Lipschitz if f(y)−f(x) ≤ Kq(x, y). Maps that are both left and
right K-Lipschitz are called K-Lipschitz.

Left 1-Lipschitz functions were studied by Romaguera and San-
chis [18] under a name of semi-Lipschitz functions and used to ob-
tain some best approximation results. We use the above terms for
consistency with the remainder of our terminology. For example,
it is easy to verify that the functions measuring the left or right
distances to a fixed point or a set are respectively left or right
1-Lipschitz.

Definition 3.5. Let (X,B, µ) be a probability space and f a mea-
surable real-valued function on (X, q). A value mf is a median or
Lévy mean of f for µ if

µ({f ≤ mf}) ≥
1
2

and µ({f ≥ mf )} ≥ 1
2
.

A median need not be unique but it always exists. The following
lemmas are generalisations of the results for mm-spaces.

Lemma 3.6. Let (X, q, µ) be a pq-space, with left and right con-
centration functions αL and αR respectively and f a left 1-Lipschitz
function on (X, q) with a median mf . Then for any ε > 0

µ({x ∈ X : f(x) ≤ mf − ε}) ≤ αL(ε) and

µ({x ∈ X : f(x) ≥ mf + ε}) ≤ αR(ε).
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Conversely, if for some non-negative functions αL
0 and αR

0 :
R+ → R,

µ({x ∈ X : f(x) ≤ mf − ε}) ≤ αL
0 (ε) and

µ({x ∈ X : f(x) ≥ mf + ε}) ≤ αR
0 (ε)

for every left 1-Lipschitz function f : X → R with median mf and
every ε > 0, then αL ≤ αL

0 and αR ≤ αR
0 .

Proof. Set A = {x ∈ X : f(x) ≥ mf}. Take any y ∈ X such that
f(y) ≤ mf − ε. Then, for any x ∈ A, q(x, y) ≥ f(x)− f(y) ≥ ε and
hence q(A, y) ≥ ε, implying y ∈ X \AL

ε . Therefore,
µ({x ∈ X : f(x) ≤ mf − ε}) ≤ 1− µ(AL

ε ) ≤ αL(ε).
Now set B = {x ∈ X : f(x) ≤ mf}. Take any y ∈ X such that

f(y) ≥ mf + ε. Then, for any x ∈ B, q(y, x) ≥ f(y)− f(x) ≥ ε and
hence q(y, B) ≥ ε, implying y ∈ X \BR

ε . Thus,
µ({x ∈ X : f(x) ≥ mf + ε}) ≤ 1− µ(BR

ε ) ≤ αR(ε).
The converse is equivalent to finding for each Borel set A ⊆ X

such that µ(A) ≥ 1
2 , left 1-Lipschitz functions f and g : X → R with

medians mf and mg respectively, such that 1 − µ(AL
ε ) ≤ µ({x ∈

X : f(x) ≤ mf − ε}) and 1−µ(AR
ε ) ≤ µ({x ∈ X : g(x) ≥ mg + ε}).

Let A ⊆ X be such a set such and set for each y ∈ X , f(y) =
−q(A, y) and g(y) = q(y, A). It is easy to see that both f and g
are left 1-Lipschitz and that mf = mg = 0. If y ∈ X \AL

ε , we have
q(A, y) ≥ ε and thus f(y) ≤ −ε. Similarly, if y ∈ X \AR

ε , we have
q(y, A) ≥ ε implying g(y) ≥ ε and the result follows. �

Hence, we can state the alternative definitions of αL and αR:

αL(ε) = sup
{
µ({x ∈ X : f(x) ≤ mf − ε}) : f is left 1-Lipschitz

}

and

αR(ε) = sup
{
µ({x ∈ X : f(x) ≥ mf +ε}) : f is right 1-Lipschitz

}
.

Similar results can be easily obtained for the right 1-Lipschitz
functions by remembering that if f is a right 1-Lipschitz, −f is left
1-Lipschitz. It is also straightforward to observe that the absolute
value of deviation of a 1-Lipschitz function from a median thus
depends on both αL and αR.
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Corollary 3.7. For any pq-space (X, q, µ), a left 1-Lipschitz func-
tion f with a median mf and ε > 0

µ({|f −mf | ≥ ε}) ≤ αL
(X,q,µ)(ε) + αR

(X,q,µ)(ε).

This result reduces to the well-known inequality µ({|f−mf |≥ε}) ≤
2α(ε) when q is a metric. Deviations between the values of a left
1-Lipschitz functions at any two points are also bound by both
concentration functions.

Lemma 3.8. Let (X, q, µ) be a pq-space and f : X → R a left (or
right) 1-Lipschitz function. Then

(µ⊗ µ)({(x, y) ∈ X ×X : f(x)− f(y) ≥ ε}) ≤ αL
(ε

2

)
+ αR

(ε
2

)
.

Proof.

(µ⊗ µ) ({(x, y) ∈ X ×X : f(x) − f(y) ≥ ε})

≤ (µ⊗ µ)
({

(x, y) ∈ X ×X : f(x) −mf ≥ ε

2

})

+ (µ⊗ µ)
({

(x, y) ∈ X ×X : mf − f(y) ≥ ε

2

})

= µ
({
x ∈ X : f(x) ≥ mf +

ε

2

})
+µ

({
x ∈ X : f(x) ≤ mf − ε

2

})

≤ αL
(ε

2

)
+ αR

(ε
2

)
. �

3.2. Lévy families.

Definition 3.9. A sequence of pq-spaces {(Xn, qn, µn)}∞n=1 is called
left Lévy family if the left concentration functions αL

(Xn,qn,µn) con-
verge to 0 pointwise, that is

∀ε > 0, αL
(Xn,qn,µn)(ε) → 0 as n→ ∞.

Similarly, a sequence of pq-spaces {(Xn, qn, µn)}∞n=1 is called
right Lévy family if the right concentration functions αR

(Xn,qn,µn)

converge to 0 pointwise, that is

∀ε > 0, αR
(Xn,qn,µn)(ε) → 0 as n→ ∞.

A sequence which is both left and right Lévy family will be called
a Lévy family. Furthermore, if for some constants C1, C2 > 0 one
has αn(ε) < C1 exp(C2ε

2n), such sequence is called normal Lévy
family.
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It is a straightforward corollary of Lemma 3.3 that a sequence of
pq-spaces {(Xn, qn, µn)}∞n=1 is a Lévy family if and only if the se-
quence of associated mm-spaces {(Xn, q̂n, µn)}∞n=1 is a Lévy family.

To illustrate existence of sequences of pq-spaces which are right
but not left Lévy families consider the following example.

Let X = {a, b} with µ({a}) = 2
3 and µ({b}) = 1

3 . Set qn(a, b) = 1
and qn(b, a) = 1

n where n ∈ N+.
It is clear that

αL
n (ε) =





1
2 , if ε = 0
1
3 , if 0 < ε ≤ 1
0, if ε > 1,

and αR
n (ε) =





1
2 , if ε = 0
1
3 , if 0 < ε ≤ 1

n

0, if ε > 1
n .

Hence, αR
n converges to 0 pointwise while αL

n does not. In this case
αn = αL

n .

4. High dimensional pq-spaces are very close to
mm-spaces

Most of the above concepts and results are generalisations of
mm-space results. However, we now develop some results which
are trivial in the case of mm-spaces. The main result is that, if
both left and right concentration functions drop off sharply, the
asymmetry at each pair of point is also very small and the quasi-
metric is very close to a metric.

Definition 4.1. For a quasi-metric space (X, q), the asymmetry is
a map Γ : X ×X → R defined by Γ(x, y) = |q(x, y)− q(y, x)|.

Obviously, Γ = 0 on a metric space. However, Γ is also close to
0 for high dimensional spaces, that is, those pq-spaces for which
both αL and αR decrease sharply near zero.

Theorem 4.2. Let (X, q, µ) be a pq-space. For any ε > 0,

(µ⊗ µ)({(x, y) ∈ X ×X : Γ(x, y) ≥ ε}) ≤ αL
(ε

2

)
+ αR

(ε
2

)
.

Proof. Fix a ∈ X and set for each x ∈ X , γa(x) = q(x, a)− q(a, x).
It is clear that γa is a sum of two left 1-Lipschitz maps and there-
fore left 2-Lipschitz. Furthermore, zero is its median since there is
a measure-preserving bijection (x, y) 7→ (y, x) which maps the set
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{(x, y) ∈ X ×X : q(x, y) > q(y, x)} onto the set {(x, y) ∈ X ×X :
q(x, y) < q(y, x)}. By the Lemma 3.6, µ({x ∈ X : |γa(x)| ≥ ε}) ≤
αL
(

ε
2

)
+ αR

(
ε
2

)
. Now, using Fubini’s theorem,

(µ⊗ µ)({(x, y) ∈ X ×X : |q(x, y)− q(y, x)| ≥ ε})

=
∫

x∈X

∫

y∈X

I{|γx(y)|≥ε}dµ(y)dµ(x)

≤
(
αL
(ε

2

)
+ αR

(ε
2

)) ∫

x∈X
dµ(x)

= αL
(ε

2

)
+ αR

(ε
2

)
.

�
Thus, any pq-space where both αL and αR (and hence, by the

Lemma 3.3, α) sharply decrease are, apart from a set of very small
size, very close to an mm-space.

5. Examples

5.1. Hamming Cube.

Definition 5.1. Let n ∈ N and Σ = {0, 1}. The collection of all
binary strings of length n is denoted Σn and called the Hamming
cube.

Definition 5.2. The Hamming distance (metric) for any two strings
σ = σ1σ2 . . . σn and τ = τ1τ2 . . . τn ∈ Σn is given by

dn(σ, τ) = |{i ∈ N : σi 6= τi}| .
The normalised Hamming distance ρn is given by

ρn(σ, τ) =
d(σ, τ)
n

=
|{i ∈ N : σi 6= τi}|

n
.

Definition 5.3. The normalised counting measure µn, of any sub-
set A of a Hamming cube Σn is given by

µn(A) =
|A|
2n
.

It is easy to see that the above definitions indeed give a set with
a metric and a measure and that (Σn, ρn, µn) is an mm-space. One
may wish to consider Σn as a product space with ρn as an `1-type
sum of discrete metrics on {0, 1} and µn an n-product of µ1, where
µ1({0}) = µ1({1}) = 1

2 .
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The following bounds for the concentration function have been
established [22]:

Proposition 5.4. For the Hamming cube Σn with the normalised
Hamming distance ρn and the normalised counting measure µn, we
have

α(Σn,ρn,µn)(ε) ≤ exp(−2ε2n).

Hence the sequence {(Σn, ρn, µn)}∞i=1 is a normal Lévy family.

5.1.1. Law of Large Numbers. An easy consequence of the Propo-
sition 5.4 is the well-known Law of large numbers.

Proposition 5.5. Let (ε)i≤N be an independent sequence of
Bernoulli random variables (P (εi = 1) = P (εi <= −1) = 1

2). Then
for all t ≥ 0

P



∣∣∣∣∣∣
∑

i≤N

εi

∣∣∣∣∣∣
≥ t


 ≤ 2 exp

(
− t2

2N

)
.

Equivalently, if BN is the number of ones in the sequence (ε)i≤N

then

P

(∣∣∣∣BN − N

2

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−2t2

N

)
.

5.1.2. Asymmetric Hamming Cube. We will now produce a
pq-space based on the Hamming cube by replacing ρn by a quasi-
metric. The simplest way is to define q1 : Σ → R by q1(0, 1) = 1 and
q1(1, 0) = q1(0, 0) = q1(1, 1) = 0 and set qn(σ, τ) = 1

n

∑n
i=1 q1(σi, τi).

The triple (Σn, qn, µn) forms a pq-space. One immediately observes
that {(Σn, qn, µn)}∞i=1 forms a normal Lévy family since the associ-
ated metric q̂n is the Hamming metric ρn.

Take two strings σ and τ and let us consider the asymmetry
Γn(σ, τ). It is easy to see that Γn takes value between 0 and 1,
being equal to the quantity

1
n

∣∣∣ |{i : σi = 0∧ τi = 1}| − |{i : σi = 1∧ τi = 0}|
∣∣∣.

Since our asymmetric Hamming cube is a product space, we can
consider for each i ≤ n the value δi = q(σi, τi) − q(τi, σi) as a
random variable taking values of 0, −1 and 1 with P (δi = 0) = 1

2

and P (δi = −1) = P (δi = 1) = 1
4 so that Γn(σ, τ) = 1

n

∑
i≤n |δi|.
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Now,

(µn ⊗ µn)({(σ, τ) ∈ Σn × Σn : Γn(σ, τ) ≥ ε}) = P


∑

i≤n

1
n
|δi| ≥ ε




≤ P


∑

i≤n

|εi| ≥ nε




≤ 2 exp
(
−nε

2

2

)
.

This is obviously the same bound as would be obtained by
application of Theorem 4.2 and Proposition 5.4.

5.2. Penalties. Talagrand [22] obtained the exponential bounds
for product spaces endowed with a non-negative ‘penalty’ func-
tion generalising the distance between two points. Penalties form a
much wider class of distances than quasi-metrics but provide ready
bounds for the left- and right- concentration functions.

We will outline here just one of results from [22] and apply it to
obtain bounds for concentration functions in product quasi-metric
spaces with product measure.

Consider a probability space (Ω,Σ, µ) and the product (ΩN , µN)
where the product probability µN will be denoted by P . Consider
a function f : 2ΩN × ΩN → R+ which will measure the distance
between a set and a point in ΩN . More specifically, given a function
h : Ω × Ω → R+ such that h(ω, ω) = 0 for all ω ∈ Ω set

f(A, x) = inf




∑

i≤N

h(xi, yi); y ∈ A



 .

Theorem 5.6 ([22]). Assume that

‖h‖∞ = sup
x,y∈Ω

h(x, y)

is finite and set

‖h‖2 =
(∫ ∫

Ω2

h2(ω, ω′)dµ(ω)dµ(ω′)
)1/2

.
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Then

P ({f(A, ·) ≥ u}) ≤ 1
P (A)

exp

(
−min

(
u2

8N ‖h‖2
2

,
u

2 ‖h‖∞

))
.

If we replace h above by qΩ, a quasi-metric on Ω, and endow
ΩN with the `1-type quasi-metric q so that x, y ∈ ΩN , q(x, y) =∑

i≤N qΩ(xi, yi), we have f(A, x) = q(x,A) and the following corol-
lary is obtained.

Corollary 5.7. Suppose ‖qΩ‖∞ <∞. Then

α(ΩN ,q,µN )(ε) ≤ 2 exp

(
−min

(
ε2

8N ‖qΩ‖2
2

,
ε

2 ‖qΩ‖∞

))
.

Note that the bound applies to α and hence to both αL and αR

because the norms referred to above are symmetric.
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MA, 1999, Based on the 1981 French original, With appendices by M. Katz,
P. Pansu and S. Semmes, Translated from the French by Sean Michael
Bates.

8. S. Henikoff and J.G. Henikoff, Amino acid substitution matrices from pro-
tein blocks, Proc. Natl. Acad. Sci. U.S.A. 89 (1992), 10915–10919.

9. Hans-Peter A. Künzi, Nonsymmetric distances and their associated topolo-
gies: about the origins of basic ideas in the area of asymmetric topology,
Handbook of the history of general topology, Vol. 3, Hist. Topol., vol. 3,
Kluwer Acad. Publ., Dordrecht, 2001, pp. 853–968.



QUASI-METRIC SPACES WITH MEASURE 671
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