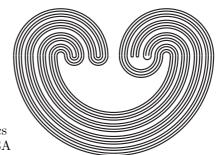
Topology Proceedings



Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

THE HEREDITARILY COLLECTIONWISE HAUSDORFF PROPERTY IN PRODUCTS OF ω_1

YASUSHI HIRATA AND NOBUYUKI KEMOTO

ABSTRACT. In this paper, we will show that

- All subspaces of finite powers of ω_1 are collectionwise Hausdorff and α -normal.
- There is a subspace of an infinite power of ω_1 which is neither collectionwise Hausdorff nor α -normal.

Spaces are assumed to be regular T_1 . A space X is collectionwise Hausdorff (CWH) if every closed discrete subspace D of X is separated, that is, there is a pairwise disjoint collection $\{U(x) : x \in D\}$ of open sets of X such that $x \in U(x)$ for each $x \in D$. Disjoint closed sets F_0 and F_1 are separated if there are open sets U_0 and U_1 such that $F_i \subset U_i$, $i \in 2 = \{0, 1\}$, and $U_0 \cap U_1 = \emptyset$. Disjoint closed sets F_0 and F_1 are α -separated (β -separated) if there are open sets U_0 and U_1 such that $\operatorname{Cl}(F_i \cap U_i) = F_i$, $i \in 2 = \{0, 1\}$, and $U_0 \cap U_1 = \emptyset$ ($\operatorname{Cl}(U_0) \cap \operatorname{Cl}(U_1) = \emptyset$, respectively). A space is normal (α -normal, β -normal) if disjoint closed sets are separated (α -separated, β -separated). α -normality and β -normality are defined by A. V. Arkhangel'skiĭ and studied in [1] and [3].

It is well known that the Tychonoff plank $(\omega + 1) \times (\omega_1 + 1) \setminus \{\langle \omega, \omega_1 \rangle\}$ and $\omega_1 \times (\omega_1 + 1)$ are not α -normal, as noted in [3].On the other hand, it is not difficult to show that these spaces are CWH. Moreover, it is known that if A and B are disjoint stationary sets in ω_1 , then $A \times B$ is not normal; see [2]. In this paper, we prove that all subspaces of finite powers of ω_1 are collectionwise Hausdorff and

²⁰⁰⁰ Mathematics Subject Classification. 54D15, 54B10.

Key words and phrases. α -normal, product space, normal, ordinal space, stationary set.

¹⁶⁷

 α -normal and that there is a subspace of an infinite power of ω_1 which is neither collectionwise Hausdorff nor α -normal.

As usual, an ordinal is equal to the set of all smaller ordinals; for example, $n = \{0, 1, 2, \dots, n-1\}$ for each natural number n. The symbols ω and ω_1 stand for the set of all finite and all countable ordinals, respectively. For notational convenience, we consider -1as the immediate predecessor of the smallest ordinal 0. Also, we consider that ordinals have the usual order topology and product spaces have the usual Tychonoff product topology.

For $A \subset \omega_1$, put $\operatorname{Lim}(A) = \{\alpha < \omega_1 : \sup(A \cap \alpha) = \alpha\}$, Succ $(A) = A \setminus \operatorname{Lim}(A)$, Lim = Lim (ω_1) , and Succ = Succ (ω_1) , where $\sup \emptyset = -1$. Observe that Lim(A) is closed and unbounded (club) in ω_1 whenever A is cofinal in ω_1 . For a club set $C \subset \omega_1$ and $\alpha < \omega_1$, set $p_C(\alpha) = \sup(C \cap \alpha)$. Observe that $p_C(\alpha) \in C \cup \{-1\}$ holds and $p_C(\alpha) = \alpha$ iff $\alpha \in \operatorname{Lim}(C)$ also holds. Note that if $\alpha \in \operatorname{Succ}(C)$, then $p_C(\alpha)$ is considered as the immediate predecessor of α in C. It is easy to show $\omega_1 \setminus C = \bigcup_{\alpha \in \operatorname{Succ}(C)} (p_C(\alpha), \alpha)$, where (α, β) denotes the usual open interval.

For sets A and B, B^A denotes the set of all functions on A to B and $\mathcal{P}(A)$ denotes the set of all subsets of A.

Remark. $X = \omega \times \omega_1 \cup \{\omega\} \times \text{Succ}$ is known to be non-normal by showing that $F_0 = \{\omega\} \times \text{Succ}$ and $F_1 = \omega \times \text{Lim}$ cannot be separated.

If X were β -normal, then F_0 and F_1 would be β -separated by open sets U_0 and U_1 , respectively. Then, since F_0 is closed discrete and $\operatorname{Cl}(F_0 \cap U_0) = F_0$, actually U_0 includes F_0 . Since $\operatorname{Cl}(U_0) \cap F_1 \subset$ $\operatorname{Cl}(U_0) \cap \operatorname{Cl}(U_1) = \emptyset$, F_0 and F_1 are separated by U_0 and $X \setminus \operatorname{Cl}(U_0)$, a contradiction. Thus, X is not β -normal. However, Theorem 1 shows that X is α -normal.

This example answers negatively, in ZFC, a problem posed by Arkhangel'skiĭ and noted in [3, Problem 7.39]:

Is a first-countable Tychonoff α -normal space normal?

Theorem 1. All subspaces of finite powers of ω_1 are CWH and α -normal.

Proof: First, we give a direct proof of the α -normality. Let F_0 and F_1 be disjoint closed sets in $X \subset \omega_1^n$, where $1 \leq n \in \omega$. For

168

each $K \in \mathcal{P}(n) \setminus \{\emptyset\}, s \in \omega_1^{n \setminus K}$, and $\alpha < \omega_1$, define $x_{\alpha s} \in \omega_1^n$ by $x_{\alpha s}(k) = \begin{cases} s(k), & \text{if } k \in n \setminus K, \\ \alpha, & \text{if } k \in K. \end{cases}$

Moreover, for each $Y \subset \omega_1^n$, set

$$V_s(Y) = \{ \alpha < \omega_1 : x_{\alpha s} \in Y \}.$$

For each $K \in \mathcal{P}(n) \setminus \{\emptyset\}$ and $s \in \omega_1^{n \setminus K}$, take a club set C_s in ω_1 such that

- if $i \in 2$ and $V_s(F_i)$ is cofinal, then $C_s \subset \text{Lim}(V_s(F_i))$;
- if $i \in 2$ and $V_s(F_i)$ is non-stationary in ω_1 , then $V_s(F_i) \cap C_s = \emptyset$.

It is then straightforward to show that

$$C = \{ \alpha < \omega_1 : \forall K \in \mathcal{P}(n) \setminus \{ \emptyset \} \forall s \in \alpha^{n \setminus K} (\alpha \in C_s) \}$$

is a club set in ω_1 .

Now for each $\alpha \in \text{Succ}(C)$ and $K \in \mathcal{P}(n) \setminus \{\emptyset\}$, let

$$X(\alpha, K) =$$

 $\{x \in X : \forall k \in n \setminus K(x(k) \leq p_C(\alpha)), \forall k \in K(p_C(\alpha) < x(k) \leq \alpha)\}.$ Then $\{X(\alpha, K) : \alpha \in \operatorname{Succ}(C), K \in \mathcal{P}(n) \setminus \{\emptyset\}\}$ is a pairwise disjoint collection of open sets in X. Since each $X(\alpha, K)$ is countable (hence, normal), there are disjoint open sets $U_0(\alpha, K)$ and $U_1(\alpha, K)$ in X such that $X(\alpha, K) \cap F_i \subset U_i(\alpha, K) \subset X(\alpha, K), i \in 2$. Set for each $i \in 2$,

$$U_i = \bigcup \{ U_i(\alpha, K) : \alpha \in \operatorname{Succ}(C), K \in \mathcal{P}(n) \setminus \{ \emptyset \} \}$$

Since U_0 and U_1 are disjoint, it suffices to show that $F_i \subset \operatorname{Cl}(F_i \cap U_i)$. To do this, let $x \in F_i$ and $\alpha = \min\{\alpha \in C : \max\{x(k) : k \in n\} \le \alpha\}$.

Case 1. $\alpha \in \operatorname{Succ}(C)$.

Let $K = \{k \in n : p_C(\alpha) < x(k) \leq \alpha\}$. Then $K \neq \emptyset$ and $x \in X(\alpha, K) \cap F_i \subset F_i \cap U_i \subset \operatorname{Cl}(F_i \cap U_i)$.

Case 2. $\alpha \in \text{Lim}(C)$.

Since $x(k) = \alpha$ for some $k \in n$, $K = \{k \in n : x(k) = \alpha\}$ is not empty. Set $s = x \upharpoonright (n \setminus K)$. Then $s \in \alpha^{n \setminus K}$ and by the definition of C, we have $\alpha \in C_s \cap V_s(F_i)$. Moreover, by the definition of C_s , $V_s(F_i)$ is stationary, hence cofinal in ω_1 ; thus, we have $C_s \subset$ Lim $(V_s(F_i))$. Let W be a neighborhood of x; then there is $\gamma < \alpha$ such that $s \in \gamma^{n \setminus K}$ and $X \cap \{x_{\beta s} : \beta \in (\gamma, \alpha]\} \subset W$. Since $\gamma < \alpha \in \operatorname{Lim}(C)$, there is $\delta \in \operatorname{Succ}(C)$ such that $\gamma < p_C(\delta) < \delta < \alpha$. Then it follows from $\delta \in C \cap \alpha$ and $s \in \delta^{n \setminus K}$ that $\gamma < p_C(\delta) < \delta \in C_s \subset \operatorname{Lim}(V_s(F_i))$. Pick $\beta \in V_s(F_i)$ with $p_C(\delta) < \beta < \delta$. Then

$$x_{\beta s} \in W \cap F_i \cap X(\delta, K) \subset$$

$$W \cap F_i \cap U_i(\delta, K) \subset W \cap F_i \cap U_i.$$

Thus, $x \in \operatorname{Cl}(F_i \cap U_i)$.

Next, we show the CWH-ness. This proof is similar to the proof above, so we only give its abstract proof. Let D be a closed discrete subspace of $X \subset \omega_1^n$. For each $K \in \mathcal{P}(n) \setminus \{\emptyset\}$ and $s \in \omega_1^{n \setminus K}$, since $V_s(D)$ is not stationary, take a club set C_s in ω_1 which is disjoint from $V_s(D)$. As above, let

$$C = \{ \alpha < \omega_1 : \forall K \in \mathcal{P}(n) \setminus \{ \emptyset \} \forall s \in \alpha^{n \setminus K} (\alpha \in C_s) \},$$
$$X(\alpha, K) =$$

 $\{x \in X : \forall k \in n \setminus K(x(k) \le p_C(\alpha)), \forall k \in K(p_C(\alpha) < x(k) \le \alpha)\}$ for each $\alpha \in \text{Succ}(C)$ and $K \in \mathcal{P}(n) \setminus \{\emptyset\}$. Moreover, let

$$U = \bigcup \{ X(\alpha, K) : \alpha \in \operatorname{Succ}(C), K \in \mathcal{P}(n) \setminus \{ \emptyset \} \}.$$

Then, as in the proof of $F_i \subset \operatorname{Cl}(F_i \cap U_i)$ above, we can also show $D \subset U$. Since $\{X(\alpha, K) : \alpha \in \operatorname{Succ}(C), K \in \mathcal{P}(n) \setminus \{\emptyset\}\}$ is a pairwise disjoint collection of countable regular (hence, CWH) open subspaces of X, U is also CWH. Since D is separated in U, it is, in fact, separated in X.

In a private conversation, John E. Porter informed us that scattered hereditarily CWH spaces are hereditarily α -normal (see also [4]), so we can also get hereditarily α -normality of finite powers of ω_1 from its hereditarily CWH-ness.

Remark. Note that the Tychonoff plank and $\omega_1 \times (\omega_1 + 1)$ are scattered CWH but not α -normal spaces.

Theorem 2. There is a subspace of the product of denumerably many copies of ω_1 which is neither CWH nor α -normal.

Proof: Let $\{S_n : n \in \omega\}$ be a decreasing sequence of stationary sets in ω_1 with the empty intersection. We will show that the closed subspace

$$X = \{x \in \prod_{n \in \omega} S_n : \forall n \in \omega(x(n) \le x(n+1))\}$$

of $\prod_{n \in \omega} S_n$ is neither CWH nor α -normal.

For each $n \in \omega$ and $\alpha \in S_n$, fix $x_{\alpha n} \in X$ such that

$$\alpha = x_{\alpha n}(0) = \dots = x_{\alpha n}(n) < x_{\alpha n}(n+1)$$

and let

$$\gamma(\alpha, n) = \sup\{x_{\alpha n}(k) : k \in \omega\}.$$

Then

$$C = \operatorname{Lim}(S_0) \cap \bigcap_{n \in \omega} \{\beta < \omega_1 : \forall \alpha \in S_n \cap \beta(\gamma(\alpha, n) < \beta)\}$$

is a club set in ω_1 . Since $C \subset \text{Lim}(S_0)$, $|S_0 \setminus C| = \omega_1$ holds. So take an uncountable subset $E \subset S_0 \setminus C$ such that $p_C(\alpha) \neq p_C(\alpha')$ whenever $\alpha \neq \alpha' \in E$.

Let

$$F_0 = \{x_{\alpha 0} : \alpha \in E\}, F_1 = \bigcup_{n \in \omega} \{x_{\alpha n} : \alpha \in S_n \cap C\}.$$

Obviously, F_0 and F_1 are disjoint.

We show:

CLAIM. Both F_0 and F_1 are closed discrete.

Proof of Claim: Let $x \in X$, $\beta = x(0)$ and $n \in \omega$ be the smallest n such that x(n) < x(n+1).

Case 1. $\beta \in C$.

Consider the open neighborhood

$$U = \{y \in X : \forall k \le n(y(k) \le \beta), y(n+1) \in (\beta, x(n+1)]\}$$

of x. If $\beta < \alpha \in S_m$ and $m \in \omega$, then obviously $x_{\alpha m} \notin U$ holds. If $\beta > \alpha \in S_m$ and $m \in \omega$, then by $\alpha < \beta \in C$, we have $\gamma(\alpha, m) < \beta$. Therefore, $x_{\alpha m}(n+1) < \beta$ so $x_{\alpha m} \notin U$ holds. If $\beta = \alpha \in S_m$ and $n \neq m \in \omega$, then obviously $x_{\alpha m} \notin U$ holds. This argument shows $|U \cap F_1| \leq 1$. Similarly, we can show $U \cap F_0 = \emptyset$.

Case 2. $\beta \notin C$.

In this case, the open neighborhood

$$U = \{ y \in X : y(0) \in (p_C(\beta), \beta] \}$$

of x misses F_1 and satisfies $|U \cap F_0| \leq 1$.

Assume that F_0 and F_1 are α -separated by U_0 and U_1 , respectively. By the claim, in fact, F_0 and F_1 are separated by U_0 and U_1 . For each $\alpha \in E$, by $x_{\alpha 0} \in U_0$, there is $n(\alpha) \in \omega$ such that

$$V_{\alpha} = \{ y \in X : \forall k \le n(\alpha)(x_{\alpha 0}(k) = y(k)) \} \subset U_0.$$

Then there are an uncountable subset $E' \subset E$ and $n \in \omega$ such that $n(\alpha) = n$ for all $\alpha \in E'$. Pick $\beta \in \text{Lim}(E') \cap C \cap S_n$, then $x_{\beta n} \in F_1 \subset U_1$.

Since U_1 is open, there are i > n and $\gamma < \beta$ such that

$$V = \{ y \in X : \forall k \le n(y(k) \in (\gamma, \beta]), n < \forall k \le i(y(k) = x_{\beta n}(k)) \}$$

is a subset of U_1 .

By $\gamma < \beta \in \text{Lim}(E')$, fix $\alpha \in E'$ with $\gamma < \alpha < \beta$. Let

$$x(k) = \begin{cases} x_{\alpha 0}(k), & \text{if } k \le n, \\ x_{\beta n}(k), & \text{if } k > n. \end{cases}$$

Then $x \in V_{\alpha} \cap V \subset U_0 \cap U_1$, a contradiction. This shows that X is not α -normal.

Now, consider the closed discrete subspace $D = F_0 \cup F_1$. If D were separated by $\{U(x) : x \in D\}$, then F_0 and F_1 would be separated by $\bigcup \{U(x) : x \in F_0\}$ and $\bigcup \{U(x) : x \in F_1\}$, a contradiction. This shows that X is not CWH. This completes the proof. \Box

By Theorem 1 and a result in [2], if A and B are disjoint stationary sets in ω_1 , then $A \times B$ is CWH and α -normal but not normal. In connection with Theorem 2, it is natural to ask:

Question. If $\{S_n : n \in \omega\}$ is a pairwise disjoint sequence of stationary sets in ω_1 , then is the product $\prod_{n \in \omega} S_n$ neither CWH nor α -normal?

Acknowledgment. The authors thank Professor Porter for his valuable comments.

172

THE HEREDITARILY COLLECTIONWISE HAUSDORFF PROPERTY 173

References

- A. V. Arhangel'skiĭ and L. Ludwig, "On α-normal and β-normal spaces," Comment. Math. Univ. Carolin. 42 (2001), no. 3, 507–519.
- [2] Nobuyuki Kemoto, Haruto Ohta, and Ken-ichi Tamano, "Products of spaces of ordinal numbers," *Topology Appl.* 45 (1992), no. 3, 245–260.
- [3] Lewis D. Ludwig, "Two Generalizations of Normality: α -Normality and β -Normality." Dissertation. Ohio University, 2001.
- [4] Peter J. Nyikos and John E. Porter, "Hereditarily strongly cwH and wD(ℵ₁) in relation to other separation properties." Preprint.

Graduate School of Mathematics; University of Tsukuba; Ibaraki 305-8571, Japan

 $E\text{-}mail\ address:\ \texttt{yhira@jb3.so-net.ne.jp}$

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION; OITA UNIVERSITY; DANNOHARU, OITA, 870-1192, JAPAN

E-mail address: nkemoto@cc.oita-u.ac.jp