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APPROXIMATE SEQUENCES AND
HAUSDORFF DIMENSION

TAKAHISA MIYATA AND TADASHI WATANABE

Abstract. In this paper, we introduce a new approach using
normal sequences and approximate sequences to study Haus-
dorff dimension for compact metrizable spaces. Using this
approach, for each r > 0, we construct a Cantor set Xr with
Hausdorff dimension r in the cube [0, 1]N , where N is the

least integer that is greater than or equal to log 3
log 2

(r + 1) + 1.

1. Introduction

For each subset F of Rm and for each s > 0, the s-dimensional
Hausdorff measure of F is defined as Hs(F ) = lim

δ→0
Hs

δ(F ) where for

each δ > 0,

(1.1) Hs
δ(F ) = inf

∑

U∈U

|U |s

where the infimum is taken over all countable (possibly finite) cover-
ings U of F by open balls U with radius at most δ. Here |U | denotes
the diameter of the set U . The Hausdorff dimension of F is defined
as dimH F = sup{s : Hs(F ) = ∞} (= inf{s : Hs(F ) = 0}) [2].
The present paper concerns Hausdorff dimension for non-Euclidean
spaces. More precisely, we develop a systematic approach using
normal sequences and approximate sequences to study Hausdorff
dimension for compact metrizable spaces.
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In the theory of inverse systems, in order to study properties
of X, one expands the space X into an inverse system X whose
limit is X and investigates X. It is known that the notion of
approximate sequence is a useful tool for studying the properties
of spaces and maps. An approximate sequence is an approximate
system with the index set being the set of natural numbers. An
approximate system is a generalization of an inverse system, and
it was first introduced by Sibe Mardešić and Leonard R. Rubin [4]
to deal with more general spaces than compact metrizable spaces.
(See also [9], [15] for more general versions and [4], [5], [6], [7], [14],
[16] for its applications).

Hausdorff dimension is not topologically invariant since for any
r > 0 there is a Cantor set with Hausdorff dimension r. However,
under an appropriate setting, the notion of approximate sequence
becomes a useful tool for studying Hausdorff dimension. In this
paper we introduce a new way of using approximate sequences in
the study of Hausdorff dimension.

There are two reasons for using approximate sequences. First
of all, motivated by the construction of a metric by P. Alexandroff
and P. Urysohn [1] (see also [13, Theorem 2-16]), for each compact
metrizable space X and for each approximate resolution p : X → X
of X with an approximate sequence X = (Xi,Ui, pi,i+1), we can de-
fine a new metric dp that induces the original topology. Secondly,
for any map f : X → Y between spaces (even compact metrizable
spaces), if approximate sequences X and Y are chosen in advance
so that their limits are the spaces X and Y , respectively, then there
is a system of maps between X and Y whose limit is f [8],[15].
Those facts are quite useful. For example, Lipschitz maps between
spaces with metrics induced by approximate resolutions are char-
acterized by some properties on approximate sequences [10], and
the notion of box-counting dimension of spaces with such metrics
is also studied by approximate sequences [11].

A little more simplified setting can be given by normal sequences.
Given a compact metrizable space X and a normal sequence U =
{Ui : i ∈ N} on X, there exist a trivial approximate sequence
X = (Xi, Ui, pi,i+1), where Xi = X for all i, and pi,i+1 = idX ,
and an approximate resolution p = (pi) : X → X of X, where
pi = idX . Thus, given a normal sequence U with some reasonable
property on a compact metrizable space X, one obtains a metric dU
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on X. Considering U as a “ruler” for X, one can study geometric
properties of the metric space (X, dU).

This paper consists of three primary parts. In section 3 (the
first primary part), given a σ-compact metrizable space X with a
normal sequence U, we define the Hausdorff measure Hs

U(F ) and
the Hausdorff dimension dimUH F for any subsets F of X and inves-
tigate their properties. The Hausdorff dimension which is defined
in this way coincides with the usual Hausdorff dimension for sub-
sets of Euclidean spaces as a special case if some particular normal
sequence is taken (Theorem 3.3). Fundamental properties, such
as the subset and sum theorems, hold for our Hausdorff dimension
(Theorem 3.5). For normal sequences U and V on metrizable spaces
X and Y , respectively, one can speak of Lipschitz maps with re-
spect to the metrics dU and dV. Indeed, they were characterized by
a property on the normal sequences U and V [10]. We show that
our Hausdorff dimension is Lipschitz invariant (Corollary 3.8).

In section 4 (the second primary part), we establish a more
general approximate sequence approach to Hausdorff dimension.
More precisely, given a compact metrizable space X and an ap-
proximate resolution p : X → X with an approximate sequence
X = (Xi,Ui, pi,i+1), we define the Hausdorff dimensions for the ap-
proximate resolution p and also for the approximate sequence X.
This approach gives a characterization of the Hausdorff dimension
in the above situation in terms of approximate sequences (Theo-
rem 4.8). More precisely, if p : X → X is some nice approximate
resolution with an approximate sequence X = (Xi, Ui, pi,i+1), each
compact subset F of X corresponds to an approximate sequence
F = (Fi, Ui|Fi, pi,i+1|Fi+1), which is a subsystem of X; i.e., the
coordinate spaces Fi are subspaces of Xi and the open coverings
and the bonding maps are the restrictions, so that the equalities
dimH(p|F ) = dimH F = dimUH F hold where U is the normal se-
quence {p−1

i Ui : i ∈ N}. It is also shown that such defined Haus-
dorff dimension for approximate resolutions is bounded above by
the box-counting dimension in the sense of [11] (Theorem 4.4).

Finally, in section 5 (the third primary part), we give an exam-
ple. It is well-known that if X is a compact metrizable space with
covering dimension n, then X can be embedded in [0, 1]2n+1 [3,
Theorem V 2]. Motivated by this result, we consider the follow-
ing problem: For each r > 0, find the least integer N for which



246 T. MIYATA AND T. WATANABE

there exists a Cantor set with Hausdorff dimension r in the cube
[0, 1]N . Using our approximate sequence approach, we show that
N ≤

[
log 3
log 2(r + 1) + 1

]
(Theorem 5.1). Here, for each r > 0, let [r]

denote the least integer that is greater than or equal to r.

2. Normal sequences, approximate sequences, and
metrics

Throughout the paper, all spaces are assumed to be metrizable,
and map means continuous function.

For any space X, let Cov(X) denote the family of all open cov-
erings of X. For any U, V ∈ Cov(X), U is a refinement of V, in
notation, U < V, if for each U ∈ U there is V ∈ V such that
U ⊆ V . For any subset A of X and U ∈ Cov(X), let st(A,U) =⋃{U ∈ U : U ∩ A 6= ∅} and U|A = {U ∩ A : U ∈ U}. If
A = {x}, we write st(x,U) for st({x}, U). For each U ∈ Cov(X), let
stU = {st(U,U) : U ∈ U}. Let st1 U = st U and stn+1 U = st(stn U)
for each n ∈ N. For any metric space (X, d), x ∈ X, and r > 0,
let Ud(x, r) = {y ∈ X : d(x, y) < r}, and for each subset A of X,
let |A| denote the diameter of A. For any U ∈ Cov(X), two points
x, x′ ∈ X are U-near, denoted (x, x′) < U, provided x, x′ ∈ U for
some U ∈ U. For any V ∈ Cov(Y ), two maps f, g : X → Y between
spaces are V-near, denoted (f, g) < V, provided (f(x), g(x)) < V
for each x ∈ X. For each U ∈ Cov(X) and V ∈ Cov(Y ), let
f(U) = {f(U) : U ∈ U} and f−1(V) = {f−1(V ) : V ∈ V}. Let
I denote the closed interval [0, 1], and let N denote the set of all
positive integers.

2.1. Metrics induced by normal spaces

A family U = {Ui : i ∈ N} of open coverings on a space X is
said to be a normal sequence on X provided stUi+1 < Ui for each
i. Let ΣU denote the normal sequence {Vi : Vi = Ui+1, i ∈ N}
and stU the normal sequence {st Ui : i ∈ N}. Also, let Σ1U = U
and Σn+1U = Σ(ΣnU) for n ∈ N. For any normal sequences U =
{Ui : i ∈ N} and V = {Vi : i ∈ N}, we write U < V provided
Ui < Vi for each i. For each map f : X → Y and for each normal
sequence V = {Vi : i ∈ N} on Y , let f−1(V) denote the normal
sequence {f−1(Vi) : i ∈ N} on X. For any subspace A of X and
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normal sequence U = {Ui : i ∈ N} on X, let U|A denote the normal
sequence {Ui|A : i ∈ N} on A.

Let U = {Ui : i ∈ N} be any normal sequence on a space X with
the following property:

(B) For each x ∈ X, {st(x,Ui) : i ∈ N} is a base at x.

Following the approach by Alexandroff and Urysohn [1], we de-
fine the metric dU on X as follows:

dU(x, x′) = inf{DU(x, x1) + DU(x1, x2) + · · ·+ DU(xn, x′)}
where the infimum is taken over all points x1, x2, ..., xn in X, and

DU(y, z) =





9 if (y, z) 6< U1;
1

3i−2
if (y, z) < Ui but (y, z) 6< Ui+1 ;

0 if (y, z) < Ui for all i ∈ N .

Then the metric dU has the property

st(x,Ui+3) ⊆ UdU(x,
1
3i

) ⊆ st(x,Ui) for each x ∈ X and i.

In particular, if U = {Ui : i ∈ N} is the normal sequence on a metric
space (X,d) such that Ui = {Ud(x, 1

3i ) : x ∈ X}, then the metric
dU induces a uniformity which is equivalent to that induced by the
metric d. Moreover, it is proven in [10, Proposition 3.7] that if X
is a convex subset of a normed linear space, and if X is equipped
with the metric d which is induced by the norm, then dU is isometric
up to a constant multiple of the metric d. Here, we say that two
metrics d1 and d2 on a set X are isometric up to a constant multiple
if there is a constant C > 0 such that d1(x, x′) = C d2(x, x′) for
x, x′ ∈ X.

Example 2.1. Let U = {Ui} be the normal sequence on R2 with
Ui = {Ud(x, 1

3i ) : x ∈ R2}, where d is the usual metric on R2. Then
the metric dU| I is isometric up to a constant multiple of the usual
metric on I. Let X = {(x, 0) : 0 ≤ x ≤ 1} ∪ {(x, 1) : 0 ≤ x ≤
1} ∪ {(0, y) : 0 ≤ y ≤ 1}, and consider the points O = (0, 0),P =
(1, 0),Q = (1, 1). Then d(O, P) = 1 = d(P, Q) in the usual metric
d, but dU|X(O, P) = 3dU|X(P, Q).

Throughout the rest of the paper, every normal sequence is as-
sumed to have property (B).
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Proposition 2.2. Let U = {Ui : i ∈ N} and V = {Vi : i ∈ N}
be normal sequences on a space X, and let x, x′ ∈ X. Then the
following properties hold:

(1) if U < V, dU(x, x′) ≥ dV(x, x′);
(2) if dU(x, x′) ≤ 1, dΣU(x, x′) = 3 dU(x, x′);
(3) if dstU(x, x′) ≤ 1, dstU(x, x′) ≤ dU(x, x′) ≤ 3 dstU(x, x′).

Proof: (1) immediately follows from the definition of dU. To
show (2), let ε > 0 be sufficiently small. Then there exist points
x1, x2, ..., xn ∈ X so that

DU(x, x1) + DU(x1, x2) + · · ·+ DU(xn, x′) < dU(x, x′) + ε/3.

Since dU(x, x′) ≤ 1, DU(xi, xi+1) ≤ 1 + ε/3 for i = 0, 1, ..., n where
x0 = x and xn+1 = x′. So, DU(xi, xi+1) = 1

3ki−2 for some ki ≥ 2,
and DΣU(xi, xi+1) = 1

3(ki−1)−2 = 3 DU(xi, xi+1). Thus,

dΣU(x, x′) ≤ DΣU(x, x1) + DΣU(x1, x2) + · · ·+ DΣU(xn, x′)
< 3 dU(x, x′) + ε,

and hence, dΣU(x, x′) ≤ 3 dU(x, x′). For the other inequality, let ε >
0 be sufficiently small again. Then there exist points x1, x2, ..., xn ∈
X so that

DΣU(x, x1) + DΣU(x1, x2) + · · ·+ DΣU(xn, x′) < dΣU(x, x′) + ε.

But dΣU(x, x′) ≤ 3 dU(x, x′) ≤ 3, so DΣU(xi, xi+1) = 1
3ki−2 for some

ki ≥ 1, and DU(xi, xi+1) = 1
3(ki+1)−2 = 1

3 DΣU(xi, xi+1). Thus,

3 dU(x, x′) ≤ 3DU(x, x1) + 3DU(x1, x2) + · · ·+ 3 DU(xn, x′)
< dΣU(x, x′) + ε,

and hence, 3 dU(x, x′) ≤ dΣU(x, x′). This completes the proof of
(2).

(3) follows from (1), (2), and the fact that Σ stU < U < stU. ¤

2.2. Approximate sequences and resolutions

An inverse sequence (Xi, pi,i+1) consists of spaces Xi, called coor-
dinate spaces, and maps pi,i+1 : Xi+1 → Xi, i ∈ N. We write pij for
the composite pi,i+1pi+1,i+2 · · · pj−1,j if i < j, and let pii = 1Xi , and
call the maps pij bonding maps. An approximate inverse sequence
(approximate sequence, in short) X = (Xi, Ui, pi,i+1) consists of an
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inverse sequence (Xi, pi,i+1) and Ui ∈ Cov(Xi), i ∈ N, and must
satisfy the following condition:

(AI) For each i ∈ N and U ∈ Cov(Xi), there exists i′ > i such
that Ui′′ < p−1

ii′′U for i′′ > i′.
An approximate map p = (pi) : X → X of a compact space X
into an approximate sequence X = (Xi, Ui, pi,i+1) consists of maps
pi : X → Xi for i ∈ N, called projection maps, such that pi = pijpj

for i < j, and it is an approximate resolution of X if it satisfies the
following two conditions:

(R1) For each ANR P , V ∈ Cov(P ) and map f : X → P , there
exist i ∈ N and a map g : Xi → P such that (gpi, f) < V,
and

(R2) for each ANR P and V ∈ Cov(P ), there exists V′ ∈ Cov(P )
such that whenever i ∈ N and g, g′ : Xi → P are maps with
(gpi, g

′pi) < V′, then (gpii′ , g
′pii′) < V for some i′ > i.

The following is a useful characterization.

Theorem 2.3 ([9, Theorem 2.8]). An approximate map p = (pi) :
X → X = (Xi, Ui, pi,i+1) is an approximate resolution of X if and
only if it satisfies the following two conditions:

(B1) For each U ∈ Cov(X), there exists i0 ∈ N such that p−1
i Ui <

U for i > i0, and
(B2) for each i ∈ N and U ∈ Cov(Xi), there exists i0 > i such

that pii′(Xi′) ⊆ st(pi(X), U) for i′ > i0.

An approximate resolution p = (pi) : X → X is said to be
normal if the family U = {p−1

i Ui : i ∈ N} is a normal sequence.
Note that property (B1) implies that the normal sequence U has
property (B). Hence, each normal approximate resolution p induces
a metric dU, which will be denoted by dp.

Theorem 2.4 ([9]). Every compact space X admits a normal ap-
proximate resolution p = (pi) : X → X = (Xi, Ui, pi,i+1) such that
all coordinate spaces Xi are finite polyhedra.

Proof: By [15, Theorem 3.15], there is an approximate resolution
p = (pi) : X → X = (Xi, Ui, pi,i+1) of X such that all coordinate
spaces Xi are finite polyhedra. Let U ∈ Cov(X) be such that
stU < p−1

1 U1. Then by (B1) there is i1 > 1 so that p−1
i1

Ui1 < U,
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and so st p−1
i1

Ui1 < p−1
1 U1. By the same argument, we can find a

subsequence ik so that p′ = (pik) : X → X ′ = (Xik ,Uik , pik,ik+1
) is

a normal approximate resolution of X. ¤
Throughout the paper, every normal approximate resolution is

assumed to have the property of Theorem 2.4.

Remark 2.5. The notion of approximate system was first intro-
duced by Mardešić and Rubin [4] in a more general setting. Instead
of requiring commutativity pijpjk = pik for i < j < k, it requires
only approximate commutativity, i.e., pijpjk and pik are different
but controlled by some number. The most general treatment of
inverse systems, which is for studying arbitrary topological spaces
and maps, is found in [9]. However, since our primary concern
is compact metrizable spaces, it suffices to use simpler definitions
than the original ones. Our notion of approximate resolution is also
a special case of the corresponding notion in [15].

3. Hausdorff dimension

Let X be a space with a normal sequence U = {Ui : i ∈ N}. In
what follows, by an open covering of a subset F of X, we mean
a covering of F by sets open in X. We assume that the normal
sequence U satisfies the following condition:

(3.1) Ui ∩ Uj = ∅ for i 6= j.

For each subset F of X and for each i ∈ N, let CovU,i(F ) denote
the set of all open coverings {Uk : k ∈ Λ} of F indexed by a finite
or countably infinite set Λ such that each k ∈ Λ admits m ≥ i with
Uk ∈ Um. If {Uk : k ∈ Λ} ∈ CovU,i(F ), (3.1) guarantees that for
each k ∈ Λ such m is uniquely determined, and this m is denoted
by σ(Uk;U, i). For each s > 0, we then define

Hs
U,i(F ) = inf

{∑

k∈Λ

(
1

3σ(Uk;U,i)

)s

: {Uk : k ∈ Λ} ∈ CovU,i(F )

}
,

and
Hs
U(F ) = lim

i→∞
Hs
U,i(F ).

Then Ht
U,i(F ) ≤ (

1
3i

)t−s Hs
U,i(F ) for s < t and for all i, and hence,

if Hs
U(F ) < ∞, then Ht

U(F ) = 0 for t > s. Thus, there exists a
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unique s0 ∈ [0,∞] so that Hs
U(F ) = ∞ for s < s0 and Hs

U(F ) = 0
for s > s0. We call this value (possibly∞) the Hausdorff dimension
of F with respect to U and denote it by dimUH F .

Remark 3.1. For a space X to have a normal sequence U = {Ui :
i ∈ N} with property (3.1), X must be a space with no isolated
point. Indeed, suppose that X has an isolated point x. Take any
ε > 0 so that Bε(x) ∩ X \ {x} = ∅. For any normal sequence
U = {Ui : i ∈ N} on X, by property (B), there is i0 ∈ N such that
st(x,Ui) ⊆ Bε(x) for i ≥ i0. Then {x} ∈ Ui for i ≥ i0.

Theorem 3.2. For each s > 0, there exists a metric outer measure
Hs
U on X with respect to the metric dU.

Proof: First, we show that Hs
U,i is an outer measure on X for

each i. Clearly, Hs
U,i(∅) = 0 and Hs

U,i(A) ≤ Hs
U,i(B) for any subsets

A,B of X with A ⊆ B. To show Hs
U,i(

∞∪
j=1

Aj) ≤
∞∑

j=1
Hs
U,i(Aj) for any

subsets Aj of X, let ε > 0. For each j ≥ 1, there exists {Uk : k ∈
Λj} ∈ CovU,i(Aj) such that

∑
k∈Λj

(
1

3σ(Uk;U,i)

)s
< Hs

U,i(Aj) + 2−jε.

So,
∞∑

j=1

∑
k∈Λj

(
1

3σ(Uk;U,i)

)s
≤

∞∑
j=1

Hs
U,i(Aj) + ε. But

∞∪
j=1

Aj ⊆
∞∪

j=1
∪

k∈Λj

Uk, and hence, Hs
U,i(

∞∪
j=1

Aj) ≤
∞∑

j=1
Hs
U,i(Aj) + ε. Since ε > 0 is

arbitrary, we have the required inequality, showing that Hs
U,i is an

outer measure on X. This immediately implies that Hs
U is an outer

measure on X. It remains to show Hs
U(A) + Hs

U(B) = Hs
U(A ∪ B)

for any subsets A,B of X such that dU(A,B) = inf{dU(x, x′) : x ∈
A, x′ ∈ B} > 0. Indeed, if dU(A,B) > 0, then there is i0 such that
st(A, Ui)∩ st(B, Ui) = ∅ for i > i0. For, if not, each i admits xi ∈ A
and x′i ∈ B such that dU(xi, x

′
i) ≤ 2

3i−2 , and hence, dU(A,B) would
be 0. Then, for i > i0, Hs

U,i(A) + Hs
U,i(B) ≤ Hs

U,i(A ∪ B). Letting
i → ∞, we have Hs

U(A) + Hs
U(B) ≤ Hs

U(A ∪ B). Since the other
inequality holds by the above argument, we have the equality. ¤

Hence, Hs
U defines a measure on the Borel subsets of X, which

we call the s-dimensional Hausdorff measure with respect to U (or
s-dimensional Hausdorff U-measure) on X.
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Theorem 3.3. Let B = {Bi : i ∈ N} be the normal sequence on Rn

which consists of the open coverings Bi by open balls with radius
1
3i . Then dimBH F = dimH F holds for any subset F of Rn.

Proof: Fix i ∈ N. For each {Uk : k ∈ Λ} ∈ CovB,i(F ),

Hs
1

3i
(F ) ≤

∑

k∈Λ

(
2

3σ(Uk;B,i)

)s

,

and so,

(3.2) Hs
1

3i
(F ) ≤ 2s Hs

B,i(F ).

Conversely, suppose that {Ud(xλ, δλ) : λ ∈ Λ} is an open covering
of F by open balls with radius at most 1

3i , where the index set Λ is
finite or countable. So, δλ ≤ 1

3i . If we choose iλ ∈ N so that

1
3iλ+1

< δλ ≤ 1
3iλ

,

then iλ ≥ i. So, {Ud(xλ, δλ) : λ ∈ Λ} ∈ CovB,i(F ), and we have

Hs
B,i(F ) ≤

∑

λ∈Λ

(
1

3iλ

)s

< 3s
∑

λ∈Λ

δs
λ =

(
3
2

)s ∑

λ∈Λ

|Ud(xλ, δλ)|s .

This implies

(3.3) Hs
B,i(F ) ≤

(
3
2

)s

Hs
1
3i

(F ).

(3.2) and (3.3) imply dimBH F = dimH F , as required. ¤

Theorem 3.4. Let U = {Ui : i ∈ N} and V = {Vi : i ∈ N} be
normal sequences on X with property (3.1), and let F be any subset
of X. Then the following results hold:

(1) If V < U, then Hs
U(F ) ≤ Hs

V(F ) and dimUH F ≤ dimVH F .
(2) Hs

ΣU(F ) = 3s Hs
U(F ) and dimΣU

H F = dimUH F .
(3) Hs

stU(F ) ≤ Hs
U(F ) ≤ 3s Hs

stU(F ) and dimstU
H F = dimUH F .

Proof: (1) immediately follows from the definition. (2) follows
from the fact that Hs

ΣU,i(F ) = 3s Hs
U,i+1(F ) for each i ∈ N and

s > 0. (3) follows from (1) and (2) since Σ stU < U < stU. ¤

Theorem 3.5. Let U be a normal sequence on X with property
(3.1). Then the following results hold:
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(1) If F1 ⊆ F2 ⊆ X, then Hs
U(F1) ≤ Hs

U(F2) and dimUH F1 ≤
dimUH F2.

(2) dimUH(F1 ∪ F2) = max{dimUH F1, dimUH F2} for any subsets
F1, F2 of X.

Proof: (1) is trivial. To see (2), it suffices to show the inequality
“≤. ” Suppose to the contrary that there is α such that

max{dimUH F1, dimUH F2} < α < dimUH(F1 ∪ F2).

Then Hα
U(F1 ∪ F2) = ∞ and Hα

U(F1) = 0 = Hα
U(F2). But since Hα

U
is an outer measure, Hα

U(F1 ∪ F2) ≤ Hα
U(F1) + Hα

U(F2), which leads
to a contradiction. ¤

For any spaces X and Y with normal sequences U = {Ui : i ∈ N}
and V = {Vi : i ∈ N}, respectively, a map f : X → Y is called a
(U,V)-Lipschitz map provided there exists a constant α > 0 such
that

dV(f(x), f(x′)) ≤ α dU(x, x′) for x, x′ ∈ X,

and it is a (U,V)-biLipschitz map provided there exist constants
α1, α2 > 0 such that

α1 dU(x, x′) ≤ dV(f(x), f(x′)) ≤ α2 dU(x, x′) for x, x′ ∈ X.

Lipschitz maps and biLipschitz maps are characterized in terms of
normal sequences as follows:

Theorem 3.6 ([10, § 5, § 7] and [12, § 3]). Let f : X → Y be
a map between spaces X and Y with normal sequences U and V,
respectively. Consider the following conditions:

(L)k dV(f(x), f(x′)) ≤ 3k dU(x, x′) for x, x′ ∈ X;
(L)k dU(x, x′) ≤ 3k dV(f(x), f(x′)) for x, x′ ∈ X;
(N)m, n ΣmU < f−1(ΣnV);
(N)m, n f−1(ΣmV) < ΣnU.

Then for m, n ≥ 0, the following implications hold:
(1) (N)m, n ⇒ (L)n−m; (L)m ⇒ (N)m+4,0; (L)−m ⇒ (N)4, m, and
(2) if f is surjective, then

(L)m ⇒ (N)m+4,0; (L)−m ⇒ (N)4, m; (N)m, n ⇒ (L)m−n.

We now show that the Hausdorff dimension in our sense is Lip-
schitz invariant.
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Theorem 3.7. Let f : X → Y be a map between spaces X and Y
with normal sequences U = {Ui : i ∈ N} and V = {Vi : i ∈ N},
respectively, both of which have property (3.1), and let F be a subset
of X. Consider the following conditions:

(H)m Hs
V(f(F )) ≤ 3ms Hs

U(F ) for s > 0, and
(H)m Hs

U(F ) ≤ 3ms Hs
V(f(F )) for s > 0.

Then for m ≥ 0, the following implications hold:
(1) (L)m ⇒ (H)m+4 ⇒ dimVH f(F ) ≤ dimUH F , and
(2) if f is surjective, then

(L)m ⇒ (H)m+4 ⇒ dimVH f(F ) ≥ dimUH F .

Proof: To see the two implications in (1), it suffices to show

(N)m+4,0 ⇒ (H)m+4 by Theorem 3.6 (1). Let i > m + 4. Suppose

{Uk : k ∈ Λ} ∈ CovU,i(F ). Fix k ∈ Λ. Then, Uk ∈ Uσ(Uk;U,i). By

(N)m+4,0, there exists Vk ∈ Vσ(Uk;U,i)−m−4 such that f(Uk) ⊆ Vk.

So,

Hs
V,i−m−4(f(F )) ≤

∑

k∈Λ

(
1

3σ(Uk;U,i)−m−4

)s

= 3(m+4)s
∑

k∈Λ

(
1

3σ(Uk;U,i)

)s

,

and hence, Hs
V,i−m−4(f(F )) ≤ 3(m+4)s Hs

U,i(F ). Taking limits as
i →∞, we have (H)m+4.

To see the two implications in (2), it suffices to show (N)m+4,0

⇒ (H)m+4 by Theorem 3.6 (2). This is proven similarly to the
above. Let i > m + 4. Suppose {Vk : k ∈ Λ} ∈ CovV,i(f(F )).
Fix k ∈ Λ. Then, Vk ∈ Vσ(Vk;V,i). By (N)m+4,0, there exists Uk ∈
Uσ(Vk;V,i)−m−4 such that f−1(Vk) ⊆ Uk. So,

Hs
U,i−m−4(F ) ≤

∑

k∈Λ

(
1

3σ(Vk;V,i)−m−4

)s

= 3(m+4)s
∑

k∈Λ

(
1

3σ(Vk;V,i)

)s

,

and hence, Hs
U,i−m−4(F ) ≤ 3(m+4)s Hs

V,i(f(F )). Taking limits as
i →∞, we have (H)m+4. ¤
Corollary 3.8. Let f : X → Y be a map between spaces X and
Y with normal sequences U = {Ui : i ∈ N} and V = {Vi : i ∈ N},
respectively, both of which have property (3.1). If f is a surjective
(U,V)-biLipschitz map, then dimVH f(F ) = dimUH F for any subset
F of X.
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Proof: Suppose that f : X → Y is a surjective (U,V)-biLipschitz
map. Then there exists a positive integer m for which both (L)m
and (L)m hold. Thus, Theorem 3.7 implies the required equality.

¤

4. An approximate sequence approach

Let p = (pi) : X → X = (Xi, Ui, pi,i+1) be an approximate
resolution of a compact space X. We assume that the approximate
sequence X has the following property:

(4.1) For each j ∈ N, p−1
ij Ui ∩ p−1

i′j Ui′ = ∅ if i, i′ ≤ j and i 6= i′.

For any i, j ∈ N with i ≤ j and for each compact subset Fj of Xj ,
let CovX,i,j(Fj) denote the set of all open coverings {Vk : k ∈ Λ}
of Fj indexed by a finite set Λ such that each k admits m with
i ≤ m ≤ j and Vk ∈ p−1

mjUm. By property (4.1), for each of these
indexed coverings and k ∈ Λ, such m is uniquely determined, and
it is denoted by τ(Vk; Fj , i, j). For each s > 0 and i ∈ N, we define
Hs

i (p) as

inf
∑

k∈Λ

(
1

3τ(Vk;pj(X),i,j)

)s

,

where the infimum is over all finitely indexed {Vk : k ∈ Λ} ele-
ments of CovX,i,j(pj(X)), i ≤ j. For each s > 0, we then define the
s-dimensional Hausdorff measure of p as Hs(p) = lim

i→∞
Hs

i (p). Simi-

larly to dimUH, there exists a unique s0 ∈ [0,∞] such that Hs(p) = ∞
for s < s0 and Hs(p) = 0 for s > s0. We call this value the Haus-
dorff dimension of p and denote it by dimH(p).

Lemma 4.1. Let p = (pi) : X → X = (Xi, Ui, pi,i+1) be a nor-
mal approximate resolution of a compact space X. If the approx-
imate sequence X has property (4.1), then the normal sequence
U = {p−1

i Ui : i ∈ N} has property (3.1).

Proof: Let i < i′. Then property (4.1) for X implies that p−1
i Ui∩

p−1
i′ Ui′ = p−1

i′ p−1
ii′ Ui ∩ p−1

i′ Ui′ = ∅, which means that U satisfies
(3.1). ¤

Lemma 4.2. Let p = (pi) : X → X = (Xi, Ui, pi,i+1) be an ap-
proximate resolution of X. Let Λ be a finite index set, and for each
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k ∈ Λ, let Uk be a subset of Xik for some ik ∈ N. If X ⊆ ∪
k∈Λ

p−1
ik

(Uk)

and if j > ik for k ∈ Λ, then pj(X) ⊆ ∪
k∈Λ

p−1
ikj(Uk).

Proof: For each j > ik,

pikjpj(X) ⊆ ∪
k∈Λ

pikjpj(p−1
ik

(Uk)) ⊆ ∪
k∈Λ

Uk,

which implies

pj(X) ⊆ ∪
k∈Λ

p−1
ikj(Uk). ¤

Lemma 4.3. Let p = (pi) : X → X = (Xi, Ui, pi,i+1) be a normal
approximate resolution of X such that the approximate sequence X
has property (4.1), and let U = {p−1

i (Ui) : i ∈ N}. Then Hs(p) =
Hs
U(X) for each s > 0, and dimH(p) = dimUH X.

Proof: It suffices to show Hs
i (p) = Hs

U,i(X) for each i ∈ N. Sup-
pose {Vk : k ∈ Λ} ∈ CovU,i(X), where Λ is a finite or countably
infinite index set. Then Vk = p−1

ik
(Uk) for some Uk ∈ Uik , where

ik = σ(Vk;U, i). By Lemma 4.2, if j > ik for k ∈ Λ,

pj(X) ⊆ ∪
k∈Λ

p−1
ikj(Uk).

Since pj(X) is compact, there is a finite subcovering {p−1
ikj(Uk) : k ∈

Λ′}. Also ik = τ(p−1
ikj(Uk); pj(X), i, j) by property (4.1). So,

Hs
i (p) ≤

∑

k∈Λ′

(
1

3ik

)s

,

and hence, Hs
i (p) ≤ Hs

U,i(X). It remains to show Hs
i (p) ≥ Hs

U,i(X).
Let j ≥ i, and suppose {Wk : k ∈ Λ} ∈ CovX,i,j(pj(X)), where Λ is
a finite index set. For each k ∈ Λ, Wk = p−1

ikj(Uk) for some Uk ∈ Uik ,
where ik = τ(Wk; pj(X), i, j), and pj(X) ⊆ ∪

k∈Λ
Wk. So,

X ⊆ ∪
k∈Λ

p−1
j p−1

ikj(Uk) = ∪
k∈Λ

p−1
ik

(Uk).

Also ik = σ(p−1
ik

(Uk);U, i) by Proposition 4.1. So,

Hs
U,i(X) ≤

∑

k∈Λ

(
1

3ik

)s

,

and Hs
U,i(X) ≤ Hs

i (p). ¤
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Next, we recall the definition of box-counting dimension for ap-
proximate resolutions [11], which will be needed in the next section.

If p = (pi) : X → X = (Xi, Ui, pi,i+1) is a normal approximate
resolution of a compact space X, we define the upper and lower
box-counting dimensions of p by

dimB(p) = lim
i→∞

log3 βi(X)
i

and dimB(p) = lim
i→∞

log3 βi(X)
i

,

where βi(X) = lim
j→∞

Np−1
ij (Ui)

(Xj) for each i ∈ N. Here, for any

compact space Z and for any U ∈ Cov(Z), let NU(Z) be the min-
imum number of elements of U that cover Z. If the two values
coincide, the common value is denoted by dimB(p) and called the
box-counting dimension of p.

Theorem 4.4. Let p = (pi) : X → X = (Xi, Ui, pi,i+1) be a normal
approximate resolution of X. Then

dimH(p) ≤ dimB(p) ≤ dimB(p).

Proof: It suffices to verify the first inequality. For each i ∈ N
and s > 0,

Hs
i (p) ≤

(
1
3i

)s

Np−1
ij (Ui)

(pj(X)) ≤
(

1
3i

)s

Np−1
ij (Ui)

(Xj) for j ≥ i.

So, Hs
i (p) ≤ (

1
3i

)s
βi(X). If Hs(p) = ∞, then for a sufficiently large

i, 1 < Hs
i (p) ≤ (

1
3i

)s
βi(X). This implies s < log3 βi(X)

i , and so,
s ≤ dimB(p). This verifies the first inequality. ¤

For each approximate sequence X = (Xi, Ui, pi,i+1) with prop-
erty (4.1) and for each s > 0 and i ∈ N, we define Hs

i (X) as

inf
∑

k∈Λ

(
1

3τ(Vk;Xj ,i,j)

)s

,

where the infimum is over all finitely indexed {Vk : k ∈ Λ} elements
of CovX,i,j(Xj), i ≤ j. We then define the s-dimensional Hausdorff
measure of X as Hs(X) = lim

i→∞
Hs

i (X). Similarly to dimUH, there

exists a unique s0 ∈ [0,∞] such that Hs(X) = ∞ for s < s0 and
Hs(X) = 0 for s > s0. We call this value the Hausdorff dimension
of X and denote it by dimH(X). Note here that the definition of
Hs

i (X) does not depend on the projection maps pi.
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Lemma 4.5. Let p = (pi) : X → X = (Xi, Ui, pi,i+1) be a normal
approximate resolution of X such that the approximate sequence X
has the following property:

(4.2) stUj < p−1
ij Ui for i < j,

and let F ⊆ X be compact. For each i ∈ N, let Fi be a compact poly-
hedron such that st(pi(F ),Ui) ⊆ Fi ⊆ st(pi(F ), stUi). Then there
is a well-defined approximate sequence F = (Fi,Ui|Fi, pi,i+1|Fi+1),
and the restriction p|F = (pi|F ) : F → F is a normal approximate
resolution of F . Moreover, if X has property (4.1), so does F .

Proof: It suffices to show pij(st(pj(F ), stUj)) ⊆ st(pi(F ), Ui) for
i < j since all the required properties (AI), (B1), and (B2) are
deduced from the corresponding properties for p : X → X. Let
x ∈ st(pj(F ), stUj). Then x ∈ U for some U ∈ stUj such that
pj(F ) ∩ U 6= ∅. So there is y ∈ F such that pj(y) ∈ U . Then, both
pij(x) and pi(y) = pijpj(y) belong to pij(U), but by (4.2), pij(U) ⊆
U ′ for some U ′ ∈ Ui. This shows that pij(x) ∈ st(pi(F ),Ui). ¤

Lemma 4.6. Let p = (pi) : X → X = (Xi, Ui, pi,i+1) be a normal
approximate resolution of X such that the approximate sequence
X has property (4.1), and let U = {p−1

i (Ui) : i ∈ N}. Suppose
that F is a compact subset of X and that Fi, i ∈ N, are com-
pact polyhedra in Xi so that the restriction p|F = (pi|F ) : F →
F = (Fi, Ui|Fi, pi,i+1|Fi+1) is an approximate resolution of F . Then
Hs
U(F ) = Hs(F ) for each s > 0, and dimUH F = dimH F .

Proof: It suffices to show Hs
U,i(F ) = Hs

i (F ) for each i ∈ N. Fix
i ∈ N, and suppose {Vk : k ∈ Λ} ∈ CovU,i(F ), where Λ is a finite
or a countably infinite index set. Then Vk = p−1

ik
(Uk) for some

Uk ∈ Uik , where ik = σ(Vk;U, i). By Lemma 4.2, we have

pj(F ) ⊆ ∪
k∈Λ

p−1
ikj(Uk) for each j > ik.

This, together with property (B2) for p|F : F → F (Theorem 2.3),
implies that there is j′ > j such that

pjj′(Fj′) ⊆ ∪
k∈Λ

p−1
ikj(Uk),

and hence,
Fj′ ⊆ ∪

k∈Λ
(pikj′ |Fj′)−1(Uk ∩ Fik).
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Since Fj′ is compact, there is a finite subcovering {(pikj′ |Fj′)−1(Uk∩
Fik) : k ∈ Λ′}. Also, property (4.1) for X implies property (4.1)
for F , and so

ik = τ((pikj′ |Fj′)−1(Uk ∩ Fik);Fj′ , i, j
′).

So,

Hs
i (F ) ≤

∑

k∈Λ′

(
1

3ik

)s

,

and hence, Hs
i (F ) ≤ Hs

U,i(F ). It remains to show Hs
i (F ) ≥ Hs

U,i(F ).
Let j ≥ i, and suppose {Wk : k ∈ Λ} ∈ CovF ,i,j(Fj), where Λ is
a finite index set. Then Wk = p−1

ikj(Uk ∩ Fik) for some Uk ∈ Uik ,
where ik = τ(Wk;Fj , i, j), and Fj ⊆ ∪

k∈Λ
Wk. So,

F ⊆ ∪
k∈Λ

p−1
j p−1

ikj(Uk) = ∪
k∈Λ

p−1
ik

(Uk).

Also ik = σ(p−1
ik

(Uk);U, i). So,

Hs
U,i(F ) ≤

∑

k∈Λ

(
1

3ik

)s

,

and hence, Hs
U,i(F ) ≤ Hs

i (F ). ¤

Remark 4.7. Given any normal approximate resolution p = (pi) :
X → X = (Xi, Ui, pi,i+1) of X, we can always find a normal ap-
proximate resolution p′ = (pik) : X → X ′ = (Xik ,Uik , pik,ik+1

) of
X so that X ′ has property (4.2).

By lemmas 4.5, 4.6, and 4.3, we have characterizations of dimUH in
terms of an approximate sequence and in terms of an approximate
resolution.

Theorem 4.8. Let p = (pi) : X → X = (Xi, Ui, pi,i+1) be a normal
approximate resolution of X such that the approximate sequence X
has properties (4.1) and (4.2), and let U = {p−1

i (Ui) : i ∈ N}. For
each compact subset F of X, there exists an approximate sequence
F = (Fi, Ui|Fi, pi,i+1|Fi+1) with Fi ⊆ Xi, i ∈ N, being compact
polyhedra in Xi so that p|F = (pi|F ) : F → F forms a normal
approximate resolution of F and dimH F = dimH(p|F ) = dimUH F .
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5. Cantor sets

For each N ∈ N and for each i ∈ N, let INi = IN with the usual
metric d of the Euclidean space RN , let Ui be the open covering
by open 1

3i+1 -balls, and let qi,i+1 : INi+1 → INi be the identity map.
Then it is easy to see that IN = (INi , Ui, qi,i+1) is an approximate
sequence with property (4.1). For each i ≥ 1, let qi : IN → INi be
the identity map. Then the approximate map q = (qi) : IN → IN

is a normal approximate resolution of IN .

Theorem 5.1. For each positive real number r, let

N =
[
log 3
log 2

(r + 1) + 1
]

.

Then there exist compact subsets Xi, i ∈ N, of INi such that X =
∞⋂
i=1

Xi is a Cantor set, so that the restriction p = (qi|X) : X →
X = (Xi,Ui|Xi, qi,i+1|Xi+1) is a normal approximate resolution of
X, and dimH(p) = dimB(p) = r.

Proof: First, let us introduce some notation. Let B1 = [0, 1
3 ] ∪

[23 , 1], and let f0, f1 : I → I be the maps defined by f0(x) = 1
3x and

f1(x) = 1
3x+ 2

3 , respectively. Then we define Bn, n ∈ N, inductively
by Bn+1 = f0(Bn) ∪ f1(Bn).

For each n ∈ N, we let BN
n = {(xi) ∈ IN : xi ∈ Bn, 1 ≤ i ≤ N}.

Note that BN
n consists of 2nN components.

Now, let r be any positive real number. For each n ∈ N, let an

be the unique integer satisfying

(5.1) an − 1 < nr ≤ an.

Then an ≤ an+1 and lim
n→∞

an
n = r. Define the sequence {bn} by

b1 = a1 and bn+1 = an+1 − an (≥ 0). Then, by (5.1) for an+1 and
an,

(5.2) bn ≤ r + 1 for n ∈ N.

Moreover, for each n ∈ N, let cn be the unique integer satisfying

(5.3) cn − 1 <
log 3
log 2

bn ≤ cn.

Then we have

(5.4) 2cn−1 < 3bn ≤ 2cn for n ∈ N.
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By the first inequality of (5.3) and (5.2),

(5.5) cn <
log 3
log 2

bn + 1 ≤ log 3
log 2

(r + 1) + 1 for n ∈ N.

By the second inequality of (5.4), (5.5), and the definition of N ,

(5.6) 3bn ≤ 2N for n ∈ N.

We wish to define compact subsets Xn of INn (n ∈ N) with the
following properties:

(1) Xn is the disjoint sum of 3an (= 3bn · · · · · 3b1) components
Ci1···in (1 ≤ i1 ≤ 3b1 , ..., 1 ≤ in ≤ 3bn) of BN

n , and
(2) if C is any one of the 3an−1 components of Xn−1, then C∩Xn

is the disjoint sum of 3bn components of Xn.
First, we take any 3b1 components Ci1 (1 ≤ i1 ≤ 3b1) of BN

1 , which
is possible by (5.6), and let

X1 =
⋃{

Ci1 : 1 ≤ i1 ≤ 3b1
}

.

Suppose that we have defined compact subsets Xl of INl (l ≤ n)
with properties (1) and (2). Then

Xn =
⋃{

Ci1···in : 1 ≤ ik ≤ 3bk , k = 1, ..., n
}

,

where Ci1···in are components of BN
n . For each Ci1···in , Ci1···in∩BN

n+1

consists of 2N components of BN
n+1. Take any 3bn+1 components

Ci1···inin+1 (1 ≤ in+1 ≤ 3bn+1) from those components. Define the
compact subset Xn+1 of INn+1 as

Xn+1 =
⋃{

Ci1···inin+1 : 1 ≤ ik ≤ 3bk , k = 1, ..., n, n + 1
}

.

Then Xn+1 clearly has the desired properties.
Note that Xn+1 ⊆ Xn, and let X =

∞∩
n=1

Xn. Thus, we have a

well-defined normal approximate resolution p = (qi|X) : X → X =
(Xi,Ui|Xi, qi,i+1|Xi+1).

Claim 1. There is α(N) ∈ N such that for each n ∈ N each
component of Xn can be covered by α(N) open balls from Un.

Fix n ∈ N, and let D be a component of Xn. Then D is a cube
with dimension N and each side having length 1

3n . Let m =
[
3
√

N
]
.

Divide each of the N sides of D equally into m intervals, and obtain
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mN cubes Di1···iN (1 ≤ i1 ≤ m, . . . , 1 ≤ iN ≤ m) which subdivide
D. Then each side of Di1···iN has length 1

3nm , and the diagonal of
Di1···iN has length

√
N

3nm . Since m ≥ 3
√

N , we have
√

N
3nm ≤ 1

3n+1 .
So, each Di1···iN is covered by a single open ball with radius 1

3n+1 .
Thus, if we let α(N) = mN , then D can be covered by α(N) open
balls with radius 1

3n+1 , which establishes the claim.

Claim 2. Let j ∈ N, and let Xj =
n∪

k=1
q−1
ikj(Uk), where for each

k = 1, . . . , n, Uk ∈ Uik for some ik ≤ j. Then
n∑

k=1

3aj−aik ≥ 3aj .

If C and C ′ are two different components of Xik , the distance
between C and C ′ are ≥ 1

3ik
since they are also components of

BN
ik

. Since each Uk ∈ Uik is an open ball with radius 1
3ik+1 , Uk

intersects at most one component of Xik . Let Λ be the set of all k
for which Uk intersects a component of Xik . For each k ∈ Λ, we call
this component Ck. Then each component C of Xj is contained in
some Ck. To see this, fix x ∈ C. Then x ∈ Uk for some k ∈ Λ since
Uk, k ∈ Λ, cover Xj . C is contained in exactly one component
C ′ of Xik , so Uk ∩ C ′ 6= ∅. Since Ck is the only component of
Xik that intersects Uk, then C ′ = Ck, so C ⊆ Ck. Thus, ∪

k∈Λ
Ck

contains all the components of Xj . Each Ck consists of 3aj−aik

(= 3bj · · · · · · · 3bik+1) components of Xj , and Xj consists of 3aj

components of BN
j . Thus, we have the required inequality.

Claim 3. dimH(p) = dimB(p) = r.

By Theorem 4.4, it suffices to show dimB(p) = r and r ≤
dimH(p). For each n ≥ 1, Xn consists of 3an components of BN

n ,
and each open ball of Un intersects at most one component of Xn.
Hence, 3an ≤ Nq−1

nj (Un)(Xj) for any j ≥ n. On the other hand, by

Claim 1, there is α(N) ∈ N such that each component of Xn can be
covered by α(N) open balls from Un. So, Nq−1

nj (Un)(Xj) ≤ α(N)·3an

for any j ≥ n. So, 3an ≤ βn(X) ≤ α(N) · 3an , which implies

an

n
≤ log3 βn(X)

n
≤ log3 α(N)

n
+

an

n
.

Thus, dimB(p) = lim
n→∞

an
n = r, as required.
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It remains to verify r ≤ dimH(p). Since dimH(p) = dimH(X)
(Theorem 4.8), it suffices to show r ≤ dimH(X). Let i ∈ N, and
suppose there exist ik, j with i ≤ ik ≤ j and Uk ∈ Uik for k = 1, ..., n

such that Xj =
n∪

k=1
q−1
ikj(Uk). By the choices of aik and aj in (5.1),

we have ikr ≤ aik and aj − 1 < jr, which imply

−ikr ≥ −aik ≥ aj − aik − jr − 1.

So,

(5.7)
n∑

k=1

(
1

3ik

)r

≥ 3−jr−1
n∑

k=1

3aj−aik .

By Claim 2, we have

(5.8)
n∑

k=1

3aj−aik ≥ 3aj .

(5.7) and (5.8) together with the second inequality of (5.1) for aj

imply
n∑

k=1

(
1

3ik

)r

≥ 3aj−rj−1 ≥ 1
3
.

This means Hr
i (X) ≥ 1

3 , and hence, dimH(X) ≥ r, as required.
This proves Claim 3, and hence completes the proof of the theorem.

¤
Corollary 5.2. For each positive real number r, let

N(r) =





[2r + 1] if r ≥ log 3
2 log 2− log 3

,

[2r + 2] otherwise.

Then there exists a Cantor set X in IN(r) such that dimH X = r.

Proof: Let M(r) =
[

log 3
log 2(r + 1) + 1

]
. Theorem 5.1 implies that

there exist a Cantor set X in IM(r) and a normal approximate
resolution p = (qi|X) : X → X = (Xi, Ui|Xi, qi,i+1|Xi+1) of X

with dimH(p) = r for some compact subsets Xi of IM(r)
i . For each

i ∈ N, Ui|X = (qi|X)−1(Ui|Xi). If we let U = {Ui|X : i ∈ N}, by
Lemma 4.3, dimH(p) = dimUH X. If B = {Bi : i ∈ N} is the normal
sequence on RM(r) which consists of the open coverings Bi by open
balls with radius 1

3i , then dimUH X = dimΣB
H X. Theorem 3.4(2)
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and Theorem 3.3 imply dimΣB
H X = dimBH X = dimH X. Thus,

dimH X = r. Moreover, since M(r) ≤ N(r), X is a Cantor set in
IN(r). This proves the corollary. ¤
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