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ABSOLUTE CONES

SAM B. NADLER, JR.

Abstract. An absolute cone is a continuum X such that for
each point p ∈ X, there is a compactum Yp such that the
pairs (X, p) and (Cone(Yp), vYp) are homeomorphic. J. de
Groot conjectured that the finite-dimensional absolute cones
are the finite-dimensional cells. Here the conjecture is verified
for dimensions 1 and 2.

1. Introduction

All spaces are metric. A compactum is a nonempty compact
space, and a continuum is a connected compactum.

We denote the cone over a space Y by Cone(Y ) and its vertex
by vY .

We use X ≈ Y to denote that the spaces X and Y are homeo-
morphic, and we use (X, p) ≈ (Cone(Y ), vY ) to mean that there is
a homeomorphism of X onto Cone(Y ) that takes the point p ∈ X
to the vertex vY .

J. de Groot [3, p. 158] defined a continuum X to be a cone in
every point, which we call an absolute cone, provided that for each
point p ∈ X, there is a compactum Yp such that

(X, p) ≈ (Cone(Yp), vYp).
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De Groot conjectured that the only n-dimensional absolute cone
is an n-cell (i.e., the n-fold Cartesian product of the interval [0, 1]
with itself).

Our main purpose here is to show that de Groot’s conjecture
about absolute cones is true in dimension 2; we also include a veri-
fication of the conjecture in dimension 1. Our results are in section
4 (Theorem 4.1 and Theorem 4.5).

We comment on the fact that our results are only for the two
lowest dimensions. In particular, we compare our results with work
on a similar problem concerning suspensions. We denote the sus-
pension over Y by Sus(Y ) and its vertices by v−Y and v+

Y .
De Groot [3, p. 158] defined a continuum X to be a suspension in

every pair of points (an absolute suspension) provided that for each
two points p, q ∈ X, there is a compactum Yp,q such that (here, ≈
means a homeomorphism of triples)

(X, p, q) ≈ (Sus(Yp,q), v−Yp,q
, v+

Yp,q
).

De Groot conjectured that the only n-dimensional absolute sus-
pension is an n-sphere. He reduced the verification of the conjecture
to proving that finite-dimensional absolute suspensions are mani-
folds [3, p. 157, Theorem 2]. Andrzej Szymański [11] showed the
conjecture is true in dimensions ≤ 3. The conjecture remains unre-
solved in higher dimensions (a partial answer is in [8]). Szymański’s
proof depended significantly on the fact that absolute suspensions
are homogeneous. (Homogeneity follows by noting that any suspen-
sion admits a self-homeomorphism that interchanges its vertices.)
On the other hand, absolute cones obviously need not be homoge-
neous; thus, we need methods different from Szymański’s methods.
The main ideas we use do not seem to generalize, even to dimension
3, although some of our ideas may be useful in higher dimensions.

2. Further Notation and Terminology

I denotes the interval [0, 1], and an arc is a space ≈ I; S1 denotes
the unit circle in the Euclidean plane R2, and a simple closed curve
is a space ≈ S1; dim stands for topological dimension [5]; A × B
denotes Cartesian product; ∂X denotes the manifold boundary of
a manifold X.
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We often assume without saying so that Cone(Y ) is specifically
the quotient space Y × I�Y×{1} [9, p. 41, 3.15], in which case we
consider Y × [0, 1) as a subspace of Cone(Y ). With this in mind,
we write points in Cone(Y ) that are not the vertex vY as ordered
pairs (y, t); however, we identify Y with the base of Cone(Y ), so
we write points (y, 0) in the base of Cone(Y ) simply as y, which
will not cause confusion.

A free arc in a space X is an arc A such that A− ∂A is open in
X.

An end point of a space X is a point e of X such that e has
arbitrarily small neighborhoods in X with one-point boundaries
(i.e., ordp(X) = 1) [9, p. 99, 6.25].

A Peano continuum is a locally connected continuum.
A simple triod is the cone over a 3-point (discrete) space. The

arcs from the base of the cone to the vertex are called legs of the
simple triod.

The cone over a simple triod is called a book with three pages;
the cone over each leg of the simple triod is called a page of the
book, and the cone over the vertex of the simple triod is called the
seam of the book.

We use AR and ANR to stand for absolute retract and absolute
neighborhood retract (compact or not), respectively.

The term nondegenerate refers to a space that contains more
than one point.

We use the following well-known fact several times (a proof is in
[7, p. 438, Theorem 1]):

Lemma 2.1. Let Z be a Peano continuum that is acyclic in dimen-
sion 1 (i.e., contractible with respect to the circle S1). If a subset
K of Z separates two points in Z, then some subcontinuum of K
separates the two points in Z.

3. A General Lemma for Absolute Cones

The lemma is for any finite-dimensional absolute cone and, thus,
is relevant to the general problem of determining absolute cones of
all finite dimensions.
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Lemma 3.1. Let X be an n-dimensional absolute cone, n < ∞.
For each point p ∈ X, let Yp be a compactum such that

(X, p) ≈ (Cone(Yp), vYp).

Then X is an AR and each Yp is an (n − 1)-dimensional ANR;
furthermore, if n ≥ 2, each Yp is a continuum.

Proof: We prove the parts of the lemma, one at a time, in Claims
1-3 and Claim 5. We use Claim 4 in the proof of Claim 5.

Claim 1. X is an AR. Each Cone(Yp) is contractible and is
locally contractible at vp; thus, X is contractible and X is locally
contractible at each point p. Therefore, since X is compact and
dim(X) < ∞, X is an AR [2, p. 122, 10.5].

Claim 2. Each Yp is an ANR. Since X is a compact finite-
dimensional AR (by Claim 1), Cone(Yp) is an AR. Hence, Yp×[0, 1)
is an ANR [2, p. 96, 10.1]. Therefore, since Yp is an r-image of
Yp × [0, 1), Yp is an ANR [2, p. 87, 3.2].

Claim 3. dim(Yp0) = n−1 for each Yp. Since dim(Cone(Yp)) =
n, we have dim(Yp × [0, 1)) = n [5, p. 32, Corollary 2]. Therefore,
since the dimension of a Cartesian product of a nonempty compact
space and a 1-dimensional space is the sum of the dimensions of
the two spaces [4], we have dim(Yp) = n− 1.

Claim 4. If n ≥ 2, then all components of each Yp are non-
degenerate. Assume that some Yp0 has a degenerate component
{q}. Then, since Yp0 is an ANR (by Claim 2), {q} is open in Yp0

[2, p. 101, 2.7]. Thus, since X ≈ Cone(Yp0), X contains a free arc
F . Let r ∈ F − ∂F . Then, since (X, r) ≈ (Cone(Yr), vYr) and F
is a neighborhood of r in X, vYr has a neighborhood in Cone(Yr)
that is an arc. Thus, since any neighborhood of the vertex of a cone
contains a copy of the cone, Cone(Yr) itself is an arc. Hence, X is
an arc. Therefore, n = 1.

Claim 5. If n ≥ 2, each Yp is a continuum. Suppose by way
of contradiction that some Yp0 is not connected. Then vYp0

is a
separating point of Cone(Yp0). Hence, p0 is a separating point
of X. On the other hand, let x0 ∈ X − {p0} and let h be a
homeomorphism of (X, x0) onto (Cone(Yx0), vYx0

). Then h(p0) ∈
Cone(Yx0)−{vYx0

}; hence, for some (unique) component K of Yx0 ,
h(p0) ∈ Cone(K) − {vYx0

}. (We consider Cone(K) in the natural
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way as a subspace of Cone(Yx0), so the vertex of Cone(K) is vYx0
.)

By Claim 4, K is a nondegenerate continuum. Thus, since the cone
over a nondegenerate continuum has no separating point, h(p0) is
not a separating point of Cone(K). Therefore, since h(p0) 6= vYx0

,
it follows that h(p0) is not a separating point of Cone(Yx0). Hence,
p0 is not a separating point of X. Therefore, we have a contradic-
tion. ¤

4. Absolute Cones in Dimensions 1 and 2

We prove theorems 4.1 and 4.5.

Theorem 4.1. A 1-dimensional continuum Xis an absolute cone
if and only if X is an arc.

Proof: An arc is an absolute cone since

(I, p) ≈ (Cone({0}), v{0}), if p = 0 or 1

and
(I, p) ≈ (Cone({0, 1}), v{0,1}), if 0 < p < 1.

Conversely, assume that X is a 1-dimensional absolute cone. For
each point p ∈ X, let Yp be a compactum such that

(X, p) ≈ (Cone(Yp), vYp).
Fix p0 ∈ X. By Lemma 3.1, Yp0 is a 0-dimensional ANR; hence,

Yp0 is a finite set [2, p. 101, 2.7]. Therefore, since X ≈ Cone(Yp0),
there is a point p1 ∈ X such that p1 has a neighborhood in X that
is an arc. Thus, since

(X, p1) ≈ (Cone(Yp1), vYp1
),

vYp1
has a neighborhood N in Cone(Yp1) that is an arc. Now, since

N contains a copy of Cone(Yp1), we have that Cone(Yp1) is an arc.
Therefore, X is an arc. ¤

We proceed to prove our theorem about 2-dimensional absolute
cones. We prove three lemmas; we use the third lemma in the proof
of our theorem. The definitions of a book with three pages and its
seam are in section 2.

Lemma 4.2. If B is a book with three pages and seam S, then no
two points of S can be separated in B by an arc.
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Proof: Let Q1, Q2, and Q3 be the three 2-cells such that B =
∪3

i=1Qi and Qi ∩Qj = S for i 6= j. Let p, q ∈ S. Assume that S is
ordered by < so that p < q.

It suffices to prove that no arc in B − {p, q} that intersects S in
only finitely many points separates p and q in B.

So, for the proof, let A be an arc in B − {p, q} such that A ∩ S
is finite. Let s1, s2, ..., sn be the points of A ∩ S that lie between p
and q. Assume that the indexing for the points is such that

p < s1 < s2 < · · · < sn < q.
Choose points rk, tk ∈ S for each k = 1, 2, ..., n such that

p < r1 < s1 < t1 < r2 < s2 < t2 < · · · < rn < sn < tn < q.
Fix one of the points sk. Then there is an open neighborhood

Uk of sk in B such that Uk ∩A is contained in the union of at most
two of the pages Q1, Q2, and Q3 of B. Hence,

(Uk ∩A) ∩Qjk
= {sk} for some jk = 1, 2, or 3.

Thus, there is an arc αk in Qjk
joining rk and tk such that αk∩A =

∅.
Now, using interval notation for subarcs of S, let
C = [p, r1] ∪ α1 ∪ [t1, r2] ∪ α2 ∪ · · · ∪ [tn−1, rn] ∪ αn ∪ [tn, q].

It follows easily that C is a connected subset of B − A such that
p, q ∈ C. Therefore, A does not separate p and q in B. ¤

Lemma 4.3. Let Y be a continuum, and let e be an end point of
Y . Then, for any t ∈ I, (e, t) does not lie in the seam of a book
with three pages in Y × I.

Proof: Let π1 and π2 denote the projections of Y × I onto Y and
I, respectively.

Suppose by way of contradiction that for some t ∈ I, (e, t) ∈ S
where S is the seam of a book B with three pages in Y × I. Let
Q1, Q2, and Q3 be the three 2-cells such that B = ∪3

i=1Qi and
Qi ∩Qj = S for i 6= j.

Assume first, as leads to a contradiction, that π1(S) = {e} (i.e.,
S is an arc in π−1

1 (e)). Let (e, s) be a separating point of S, and
let p and q be the end points of S. Then π−1

2 (s) ∩ B separates p
and q in B into the points in B with second coordinate < s and the
points in B with second coordinate > s. Clearly, then, π−1

2 (s)∩Qi

separates p and q in Qi for each i. Thus, by Lemma 2.1, some
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subcontinuum Ci of π−1
2 (s)∩Qi separates p and q in Qi for each i.

Since Q1 ∩Q2 = S, we have that
C1 ∩ C2 = {(e, s)}.

Hence, C1 ∪ C2 is a subcontinuum of π−1
2 (s), and (e, s) is a sep-

arating point of C1 ∪ C2. Therefore, (e, s) is not an end point of
π−1

2 (s); however, since (by the vertical projection π1|π−1
2 (s))(

π−1
2 (s), (e, s)

) ≈ (
Y, e

)
,

(e, s) is an end point of π−1
2 (s). This contradiction proves that
π1(S) 6= {e}.

Therefore, since e ∈ π1(S) (because (e, t) ∈ S), π1(S) is a non-
degenerate subcontinuum of Y . Thus, since e is an end point of
Y , there is a point y0 ∈ π1(S) such that y0 separates two points of
π1(S) in Y . Hence, the arc π−1

1 (y0) separates two points p′ and q′

of S in Y × I, which implies that π−1
1 (y0) ∩ B separates p′ and q′

in B. Therefore, by Lemma 2.1, some arc in π−1
1 (y0)∩B separates

p′ and q′ in B. This contradicts Lemma 4.2. ¤

Lemma 4.4. If X is a 2-dimensional absolute cone, then X con-
tains a 2-cell with nonempty interior in X.

Proof: For each point p ∈ X, let Yp be a compactum such that

(#) (X, p) ≈ (Cone(Yp), vYp).

We prove that some Yp contains a free arc, from which our lemma
follows immediately.

Suppose by way of contradiction that no Yp contains a free arc.
We will obtain a contradiction by applying Corollary 5.2 of [1,
p. 105]. We first need to prove that the assumptions of the corollary
are satisfied.

Since dim(X) = 2, each Yp is a nondegenerate Peano continuum
by Lemma 3.1. Hence, by our assumption that no Yp contains a free
arc, each Yp contains a simple triod [9, p. 135, 8.40(b)]. Therefore,
it follows from (#) that

(1) each point of X lies in the seam of a book with three pages
in X.

Fix p0 ∈ X. Then, since X ≈ Cone(Yp0), we have by (1) that
each point of Cone(Yp0) lies in the seam of a book with three pages
in Cone(Yp0). It follows that each point of Yp0 × I lies in the seam
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of a book with three pages in Yp0 × I. (The homeomorphism h of
Yp0 × I onto itself given by h(y, t) = (y, 1 − t) shows this for the
points of the form (y, 1).) Hence, by Lemma 4.3, no point of Yp0 is
an end point of Yp0 . Therefore, by [7, p. 320, Theorem 15],

(2) each point y of Yp0 lies in the manifold interior of an arc Ay

in Yp0 .
Let

M = Cone(Yp0)− (Yp0 ∪ {vYp0
})

and let (where Ay is as in (2))
Dy = Ay × [ t

2 , t+1
2 ] for each (y, t) ∈ M .

The following statements verify that Cone(Yp0) satisfies the as-
sumptions of Corollary 5.2 of [1, p. 105]: (a) Cone(Yp0) is an AR (by
Lemma 3.1); (b) M is of the second category of Baire in Cone(Yp0)
(by the Baire Theorem [6, p. 414]); (c) each point (y, t) of M lies
in the manifold interior of the 2-cell Dy in Cone(Yp0) (by (2)); (d)
none of the 2-cells Dy are neighborhoods of (y, t) in Cone(Yp0) (by
(1) since X ≈ Cone(Yp0)).

Therefore, dim(Cone(Yp0)) > 2 [1, p. 105, Corollary 5.2]. This
contradicts the assumption in our lemma that dim(X) = 2. ¤

Theorem 4.5. A 2-dimensional continuum Xis an absolute cone
if and only if X is a 2-cell.

Proof: A 2-cell is an absolute cone since (I2 denotes I × I)

(I2, p) ≈ (Cone(I), vI), if p ∈ ∂I2

and
(I2, p) ≈ (Cone(S1), vS1), if p ∈ I2 − ∂I2.

Conversely, assume that X is a 2-dimensional absolute cone.
Then, by Lemma 4.4, there is a 2-cell neighborhood of some point
p0 in X. Hence, letting Yp0 be a compactum such that

(X, p0) ≈ (Cone(Yp0), vYp0
),

the vertex vYp0
has a 2-cell neighborhood D in Cone(Yp0).

Suppose that Yp0 contains a simple triod. Then, since D con-
tains a copy of Cone(Yp0), D contains the cone over a simple triod;
however, this is impossible by the Brouwer Invariance of Domain
Theorem [5, p. 95, Theorem VI 9]. Hence, Yp0 does not contain a
simple triod.
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Furthermore, Yp0 is a locally connected continuum by Lemma
3.1. Hence, Yp0 must be an arc or a simple closed curve [9, p. 135,
8.40(b)]. Therefore, X is a 2-cell. ¤

In [10], the author determines when various types of hyperspaces
are absolute cones or absolute suspensions. In the same paper, the
author introduces the notion of absolute hyperspaces and deter-
mines the continua that are certain types of absolute hyperspaces.
As noted in section 1 of [10], the question of when the hyperspace
Cn(X) is an absolute cone remains unanswered for n ≥ 2.

Added in proof: Recently, in a preprint entitled ”A solution to
de Groot’s absolute cone conjecture,” Professor C. R. Guilbault has
solved the absolute cone problem. He has shown that de Groot’s
conjecture is true in dimensions < 4 (using techniques different
from mine) and false in dimensions > 4; he has also shown that in
dimension 4, the conjecture is true if and only if the 3-dimensional
Poincaré Conjecture is true.
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