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CAT(0) BOUNDARIES OF TRUNCATED
HYPERBOLIC SPACE

KIM RUANE

Abstract. We prove that the CAT(0) boundary of a trun-
cated hyperbolic space is homeomorphic to a sphere with disks
removed. In dimensions n 6= 5, we show that if G acts prop-
erly discontinuously by isometries on Hn with finite volume
quotient, then G has a CAT(0) boundary that is homeomor-
phic to the Sierpiński curve of dimension (n − 2). This uses
work of G. T. Whyburn (“Topological characterization of the
Sierpiński curve”) for n = 3 and of J. W. Cannon (“A posi-
tional characterization of the (n − 1)-dimensional Sierpiński
curve in Sn (n 6= 4)”) for all n 6= 4. Then, using work of
G. Christopher Hruska (“Geometric invariants of spaces with
isolated flats”), we deduce that any CAT(0) boundary for G
is a Sierpiński curve.

Introduction

In this paper, we are interested in studying the space obtained
by removing the interiors of a collection of disjoint closed horoballs
from Hn. This is often called truncated or neutered hyperbolic
space. Such spaces arise as the universal covers of finite volume
hyperbolic manifolds whose cusps have been removed. It is shown
in [1] that with the induced path metric, this is a complete CAT(0)
space. As such, we can try to determine the homeomorphism type
of the visual boundary of this space. Recall that Hn is also a
CAT(0) space and its visual boundary is homeomorphic to Sn−1.

It is important to note that this is different from studying the
limit set of a geometrically finite group action on Hn. In particular,
the limit set of a finite covolume group acting on Hn is all of ∂∞Hn,
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318 K. RUANE

whereas the CAT(0) boundary of the truncated space is certainly
not a sphere.

The ideas in this paper came about while the author was try-
ing to study groups, such as the fundamental group of the figure
eight knot complement (or more generally, any finite volume hy-
perbolic 3-manifold). Such a group acts properly discontinuously,
by isometries, and cocompactly on a truncated H3. We call this
type of group action a geometric action. The author was trying
to understand the CAT(0) boundary of this space as it relates to
the group. In that setting, one can actually show that the visual
boundary is homeomorphic to the Sierpiński carpet, using the work
of G. T. Whyburn [10]. The work of Whyburn that we use here was
generalized to all dimensions other than n = 4 by J. W. Cannon in
[3], so we can conclude an analogous result in higher dimensions.
We will discuss this further in the third section of the paper.

I would like to give many thanks to the referee for pointing out
an error in the original version of this paper and for his/her pa-
tience while the revisions were made (that took much longer than
they should have!). I would also like to thank Mladen Bestvina for
enlightening me about Cannon’s work on the higher dimensional
Sierpiński spaces.

1. CAT(0) spaces and boundaries

Let (X, d) be a metric space. Then X is proper if closed metric
balls are compact. A (unit speed) geodesic from x to y for x, y ∈
X is a map c : [0, D] → X such that c(0) = x, c(D) = y and
d(c(t), c(t′)) = |t−t′| for all t, t′ ∈ [0, D]. (X, d) is a called a geodesic
metric space if every pair of points are joined by a geodesic.

Definition 1.1. Let (X, d) be a proper complete geodesic metric
space. If M abc is a geodesic triangle in X, then we consider M abc in
E2, a triangle with the same side lengths, and call this a comparison
triangle. We say X satisfies the CAT(0) inequality if given M abc
in X, then for any comparison triangle and any two points p, q
on M abc, the corresponding points p, q on the comparison triangle
satisfy

d(p, q) ≤ d(p, q).
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If (X, d) is a CAT(0) space, then the following basic properties
hold:

(1) The distance function d : X ×X → R is convex.
(2) X has unique geodesic segments between points.
(3) X is contractible.

For details, see [1].

Let (X, d) be a proper CAT(0) space. First, define the boundary
∂X as a set as follows:

Definition 1.2. Two geodesic rays c, c′ : [0,∞) → X are said to be
asymptotic if there exists a constant K such that d(c(t), c′(t)) ≤ K
for all t > 0–this is an equivalence relation. The boundary of X,
denoted ∂X, is then the set of equivalence classes of geodesic rays.
The union X ∪ ∂X will be denoted X. The equivalence class of a
ray c is denoted by c(∞).

We will now give a topology on X so that the induced topology
on X is the original metric topology.

There is a natural neighborhood basis for a point in X. Let c be
a geodesic emanating from x0 and r > 0, ε > 0. Also, let S(x0, r)
denote the sphere of radius r centered at x0 with pr : X → S(x0, r)
denoting projection. Define

U(c, r, ε) = {x ∈ X|d(x, x0) > r, d(pr(x), c(r)) < ε}.

This consists of all points in X such that when projected back to
S(x0, r), this projection is not more than ε away from the intersec-
tion of that sphere with c. These sets along with the metric balls
about x0 form a basis for the cone topology on X. The induced
topology on ∂X is also called the cone topology on ∂X. The set
∂X with the cone topology is often called the visual boundary and
will be denoted ∂∞X .

As one expects, the visual boundary of En is Sn−1, as is the visual
boundary of Hn. Thus, the visual boundary does not capture the
difference between these two CAT(0) spaces. Another topology
one can put on ∂X, called the Tits topology, distinguishes these
two CAT(0) spaces. We will briefly describe this topology in the
last section of the paper.
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2. Truncated Hn

Many of the preliminary facts used here concerning truncated
hyperbolic space can be found in Part II of [1]. We quote the
necessary results without proof. The first is [1, Theorem 11.27,
p. 362].

Theorem 2.1. Let X ⊂ Hn be a subspace obtained by deleting a
family of disjoint open horoballs. When endowed with the induced
length metric, X is a complete CAT(0) space.

Remark 2.2. The theorem does not extend to more general rank
one symmetric spaces because the stabilizers of horospheres are
nilpotent and not virtually abelian. This would violate the Solv-
able Subgroup Theorem [1, p. 248 ] which says every solvable sub-
group of a group acting geometrically on a CAT(0) space is virtually
abelian.

Remark 2.3. It is an easy exercise in hyperbolic geometry to show
that any disjoint collection of closed horoballs is locally finite. This
means for any compact set C in Hn, only finitely many horoballs
intersect C. For instance, see [1, p. 363].

Recall that a group action on a proper geodesic metric space is
called geometric if it is properly discontinuous, isometric, and co-
compact. Suppose Γ is a lattice in SO(n, 1) – this simply means Γ
acts properly discontinuously by isometries on Hn. If Γ is cocom-
pact, then Γ acts geometrically on Hn, a CAT(0) space. If Γ is not
cocompact, then Γ acts geometrically on a truncated Hn. Thus,
the following is direct corollary of Theorem 2.1.

Corollary 2.4. Every lattice Γ ⊂ SO(n, 1) acts geometrically on
a CAT(0) space X.

The main theorem of this paper discusses the homeomorphism
type of the visual boundary of this space. For the proof we will use
the upper half space model of Hn. Thus, Hn = {(x1, . . . , xn) | xn >
0} with the Riemannian metric ds

xn
. An open horoball in Hn is a

translate of Hc = {(x1, . . . , xn) | xn > c} where c > 0 is a constant,
by an element of Isom(Hn). A horosphere is a translate of the set
Sc = {(x1, . . . , xn) | xn = c}. The horoball Hc is said to be centered
at the point at infinity in ∂∞Hn corresponding to the xn axis.

The following can be found in [1] in Part II as Lemma 11.32.
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Lemma 2.5. Let X be as in Theorem 2.1. The bounding horospheres
are convex subspaces of X and with the induced path metric, each
is isometric to En−1.

We use the notation En−1 when viewing Euclidean space metri-
cally, and we use Rn−1 when viewing it only as a topological space.

The next result characterizes exactly which paths in X are geo-
desics. This can be found as Corollary 11.34 in Part II of [1].

Lemma 2.6. Let X be as in Theorem 2.1. A path c : [a, b] → X
parameterized by arclength is a geodesic in X if and only if it can
be expressed as a concatenation of non-trivial paths c1, c2, . . . , cn

parameterized by arclength, such that
(1) each of the paths ci is either a hyperbolic geodesic or else

its image is contained in one of the horospheres bounding
X and in that horosphere it is a Euclidean geodesic;

(2) if ci is a hyperbolic geodesic, then the image of ci+1 is con-
tained in a horosphere and vice versa;

(3) when viewed as a map [a, b] → Hn, the path c is C1.

By Lemma 2.5, a truncated hyperbolic space X is a CAT(0) space
that does contain (n-1)-flats. By an n-flat, we mean an isometric
embedding of En into X. It can be shown that these are in fact,
the only flats in X. In order to understand the arrangement of flats
in X, we give the following definition due to [8].

Definition 2.7 (Isolated Flats Property). A CAT(0) space X has
the Isolated Flats Property (IFP) if it contains a family of flats F
with the following two properties.

(1) There is a constant C so that every flat in X lies in the
C-neighborhood of some flat F ∈ F .

(2) There is a function ψ : R+ → R+ such that for any two
distinct flats F1, F2 ∈ F and for any positive number r,
the intersection

Nr(F1) ∩Nr(F2)

of Hausdorff neighborhoods of F1 and F2 has diameter at
most ψ(r).

If we consider two maximal flats to be equivalent when their
Hausdorff distance is finite, then the family F in the preceding
definition consists of one maximal flat from each equivalence class.
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Remark 2.8. It is immediate from the definition of IFP that any
two maximal flats are either parallel, or disjoint at infinity, meaning
that their corresponding boundary spheres are disjoint.

G. Christopher Hruska [7, Proposition 9.1] shows that if X is a
truncated hyperbolic space, then X has IFP. We give the argument
here for completeness:

Lemma 2.9. Let X be a subspace of Hn obtained by removing a
collection of disjoint open horoballs. Then X endowed with the
induced metric, is a CAT(0) space with IFP.

Proof: We already know X is CAT(0) by Theorem 2.1. Since
X is negatively curved away from the bounding horospheres, it is
immediate that these are the only flats in X. We know a uniform
neighborhood of any horoball in Hn is a slightly larger horoball.
Then since any two horoballs have a bounded intersection, the flats
in X are clearly isolated. ¤

Intuitively, X has the IFP if, given any two maximal flats in X
which are not parallel, the two flats diverge from each other in all
directions. More precisely, we have the following lemma which will
be useful in our applications to dimension three.

Lemma 2.10. Suppose X is a CAT(0) space with IFP and fix a
basepoint x0 ∈ X. For each flat F in X let πF (x0) be the unique
projection of x0 onto F . Then there exists a constant C > 0, inde-
pendent of F such that the following is true: if γ is a geodesic ray
in X from x0 to a point in ∂∞F , then the image of γ must intersect
the ball of radius C about πF (x0).

Remark 2.11. The proof of this lemma follows easily from the
structure of the asymptotic cone of a CAT(0) space with IFP. We
will not need this notion here so we omit the details. See [8] or [5]
for details.

3. The Topology of the Boundary

For simplicity, we first consider the case that X is obtained by
removing only one horoball from Hn. The main theorem will fol-
low from this result. Recall that ∂∞Hn is homeomorphic to Sn−1.
When working in the upper half space model, we view this bound-
ary as the union of Rn−1 (corresponding to hyperplane xn = 0) and
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the point at infinity p0 corresponding to the positive xn+1 axis. The
author would like to thank Phil Bowers for recollecting the following
elementary fact from hyperbolic geometry.

Lemma 3.1. Given a point x0 in Hn that is not in Hc = Hc ∪ Sc,
there exists an R(x0) = R > 0 such that endpoints of the geodesic
rays in Hn that begin at x0 and end in Rn−1 with image disjoint
from Hc are contained in a closed (Euclidean) ball of radius R in
Rn−1.

Proof: Suppose γ is such a ray. Then γ must meet Rn−1 orthog-
onally. Either the image of γ does not meet Sc or else it meets
Sc in exactly one point (tangentially). Those rays which meet Sc

tangentially (along with the choice of x0) will determine the radius
R. Note that R will depend on the choice of x0.

We indicate the proof in H2, and the general case follows the
same idea. We know Sc is at Euclidean height c and the point x0

is below the horoball at Euclidean height b, so 0 < b < c. The
extreme line, the one through the point at height b and tangent
to Sc, is a semi-circle intersecting the boundary R1 orthogonally.
Let the Euclidean center of that circle be a units away from the
orthogonal projection onto R1 of the point x0. Thus, R = a + c
and by Pythagorean, a2 + b2 = c2. Thus, R = c +

√
c2 − b2. ¤

Remark 3.2. Notice that we can start with any horoball in Hn

and any basepoint outside the corresponding closed horoball in the
above lemma and obtain a corresponding disk in ∂∞Hn. We simply
use Isom(Hn) to translate the situation to above situation.

Theorem 3.3. Suppose X = Hn−Hc. Then X is a CAT(0) space
whose visual boundary is homeomorphic to Sn−1\Dn−1.

Proof: We know X is CAT(0) by Theorem 2.1. To compute the
visual boundary ∂∞X, we describe three different types of geodesic
rays in X. Fix a basepoint x0 ∈ X so that x0 is not in Sc. It is clear
from Lemma 2.6 that if γ is a geodesic ray in X with γ(0) = x0,
then γ satisfies one of the following:

(1) γ is a hyperbolic geodesic, i.e., γ is a geodesic ray in Hn,
whose image is disjoint from Hc. In this case, either the
image of γ does not intersect Sc or else it intersects Sc in
exactly one point (tangentially).
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(2) There exists points x, y ∈ Sc so that γ can be expressed
as the concatenation of the unique hyperbolic geodesic be-
tween x0 and x, followed by the Euclidean segment between
x and y, followed by the hyperbolic segment from y to γ(∞).
In this case, the hyperbolic geodesic [x0, x] and the hy-
perbolic geodesic ray [y, γ(∞)] meet Sc tangentially and,
of course, the hyperbolic geodesic ray [y, γ(∞)] meets the
boundary Rn−1 orthogonally.

(3) There exists a point x ∈ Sc such that γ is the concatenation
of the unique hyperbolic geodesic from x0 to x followed by
the Euclidean geodesic ray from x to γ(∞). In this case, the
hyperbolic geodesic [x0, x] meets Sc tangentially. Clearly,
here γ(∞) lies in ∂∞Sc.

Thus, as a set, we can decompose ∂∞X into three disjoint pieces
corresponding to the three cases above. To see what these sets are,
look in the upper half space model. The horoball Hc used here is
the horoball centered at the point at infinity at Euclidean height c
for some c > 1.

For (1), we can view this piece as part of ∂∞Hn since these rays
are already rays in Hn. These points, when considered in ∂∞Hn,
form a subset of Rn−1. This subset will be homeomorphic to a
closed n− 1 disk D in Rn−1, by Lemma 3.1.

In (2), the endpoints of these rays are also in Rn−1, but they
are not hyperbolic geodesics. However, there is clearly a one-to-
one correspondence between the points in this set and the points
in Rn−1\D. Thus together, these two cases give all the points of
∂∞Hn except p0.

In (3), the endpoints lie in ∂Sc. Since Sc is a convex subset of X,
we know Sc is a CAT(0) subspace and ∂∞Sc embeds in ∂∞X. Since
Sc is isometric to En−1, we obtain that ∂∞Sc is homeomorphic to
Sn−2.

Thus, we can see that ∂∞X is the disjoint union of D, Rn−1\D
and ∂∞Sc (as a point set). Equivalently, we can view this as
(∂∞Hn\{p0}) ∪ ∂∞Sc which is the same as Rn−1 ∪ Sn−2. How
does the topology work?

The rays in (2) each have a finite length Euclidean subsegment
lying in Sc. To obtain rays whose endpoints are “close to infinity”
in Rn−1, we simply use longer and longer finite segments in Sc. The
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resulting limit ray is a geodesic ray from (3). The rays in (1) can
be seen as the limiting rays from rays in (2) in the other direction.
Explicitly, if the finite pieces along Sc are allowed to be arbitrarily
small, then the limiting rays will have a finite piece of size zero, i.e.,
they will meet Sc in exactly one point.

In summary, each point z ∈ ∂∞Sc can be viewed as a limit of
rays from (2) and likewise, each point in the boundary of the disk
D coming from (1), can be viewed as a limit of rays from (2).

So we now see topologically ∂∞X is the union of Rn−1 and ∂∞Sc.
This boundary is not obtained as a subset of the sphere boundary
of Hn; however, ∂∞X is obtained from ∂∞Hn as follows:

(1) Remove p0 to obtain a copy of Rn−1 (a punctured Sn−1).
(2) Compactify this Rn−1 with an Sn−2 coming from ∂∞Sc to

obtain a closed Dn−1.
The resulting topological space is simply a closed disk; however,

we wish to view it as a topological sphere minus an open disk which
we can do via the above description. The topology is that we remove
the point p0 from Hn, a topological sphere, which punctures this
sphere. Then, we stretch this puncture out to make an open disk
which is finally compactified with a Sn−2 to close it up. ¤

To obtain the main theorem from Theorem 3.3, we must remove
more than one horoball and compute the boundary of the resulting
CAT(0) space.

Theorem 3.4. Suppose X is obtained by removing the interiors of
a disjoint collection of closed horoballs H from Hn endowed with
the induced length metric. For each horoball H in H, there is a
corresponding open disk DH in a topological sphere Sn−1 such that
∂∞X is homeomorphic to Sn−1 minus the disjoint collection of open
disks {DH | H ∈ H}. Furthermore, the closures of these disks are
disjoint.

Proof: Choose a basepoint x0 in X that is not in any of the
bounding horospheres. For each H ∈ H, let SH denote the bound-
ing horosphere for H and let pH ∈ ∂∞Hn be the center of H.
Again, we give a description of the geodesic rays γ in X based at
x0. By Lemma 2.6, a typical geodesic γ in ∂∞X has the following
form: γ begins with a hyperbolic geodesic segment from x0 that
ends tangent to a horosphere SH1 followed by a Euclidean straight
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line segment in SH1 , followed by a hyperbolic geodesic that begins
tangent to SH1 and ends tangent to another horosphere SH2 , fol-
lowed by a Euclidean segment in SH2 , and so on. There are three
possible outcomes for γ that are analogous to the three outcomes
in Theorem 3.3:

(1) γ is a hyperbolic geodesic. This means the image of γ as
a ray in Hn avoids the interior of H for all H ∈ H. If γ
intersects SH for some H ∈ H, then it does so tangentially.

(2) γ jumps infinitely often from horosphere to horosphere.
(3) γ eventually enters a horosphere SH and never leaves SH ,

in which case γ(∞) lies in ∂∞SH .
Clearly, the rays from (1) and (2) correspond to points in ∂∞Hn\∪

{pH |H ∈ H}. The rays in (3) correspond to points in ∂∞SH for
some H ∈ H. As in Theorem 3.3, the rays in (1) and (3) can be
viewed as limits of the rays in (2).

We now describe the topology of ∂∞X:
(1) For each H ∈ H, there is a corresponding point pH in ∂∞Hn

which is removed from this topological sphere.
(2) Each of the points is replaced by an open disk DH .
(3) Each of the disks DH is closed by an Sn−2 coming from

∂∞SH as in Theorem 3.3.
By construction, the open disks {DH |H ∈ H} are disjoint. In-

deed, for H 6= K ∈ H, we have pH 6= pK in ∂∞Hn. The topological
boundary of a disk DH for H ∈ H corresponds to the boundary of
a flat in X. By Remark 2.8, no two of these can intersect because
X has IFP. ¤

4. Group theory and Sierpiński Curves

As stated in the introduction, the original motivation for the
main result was to understand groups, such as the fundamental
group of the figure eight knot complement or more generally, the
fundamental group of a finite volume (non-compact) hyperbolic 3-
manifold.

Begin with a group G that acts properly discontinuously by
isometries on H3 with finite volume quotient. These groups have
been studied in many places in the literature. For our purposes,
[9] and [2] contain all the necessary background. The main facts
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needed here about these discrete, finite volume groups are as fol-
lows:

(1) The limit set of G is all of ∂∞Hn (cf. [9, Lemma 12.1.15]).
Recall that the limit set of G is the set of all limit points of
G. A point p ∈ ∂∞Hn is a limit point of G if there exists
x ∈ Hn and a sequence of elements {gi} of G such that the
sequence {gi · x} converges to p in Hn ∪ ∂∞Hn.

(2) G acts cocompactly (and thus geometrically) on a truncated
Hn X, and thus, G is a CAT(0) group by Theorem 2.1. The
truncated space is obtained by removing the interiors of
a G-equivariant disjoint collection of closed horoballs cen-
tered around the parabolic fixed points. The collection of
horoballs is locally finite

We know from Theorem 3.4 that ∂∞X is homeomorphic to Sn−1

minus a disjoint collection of open disks. In this setting, we can
actually say a bit more than this.

Theorem 4.1. Suppose G acts properly discontinuously by isome-
tries on Hn with finite volume quotient. Let X denote the cor-
responding truncated space on which G acts geometrically and let
{DH | H ∈ H} be the collection of disks as in the conclusion of
Theorem 3.4. Then the following are true:

(1) The union ∪H∈HDH is dense in the sphere Sn−1;
(2) the collection of closed disks {DH | h ∈ H} in Sn−1 is

disjoint and shrinking, i.e., for any given diameter D > 0,
there are only finitely many DH with diameter greater than
D (use any metric on Sn−1).

Proof: The first part follows easily from the fact that the limit
set of G is all of ∂∞Hn. The fact that the closed disks {DH |H ∈ H}
are disjoint follows from Remark 2.8.

Fix a basepoint x0 in X which is not contained in any of the
closed horoballs. To each disk DH , we would like to associate a
size to DH . To do this, we will measure the size of the topological
boundary sphere of DH in ∂∞X from the viewpoint of x0. Even
though the size of a given DH depends on x0, the fact that the
collection is shrinking will not depend on the choice of basepoint.
Recall that the topological boundary of the disk DH is ∂∞SH for
the corresponding horosphere in Hn, and that SH is isometric to
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an (n − 1)-flat FH in X. Let πH denote the unique projection of
x0 onto the flat FH .

Again, we use the fact that X has IFP. Let rH = d(x0, FH) =
d(x0, πH), and let C be the constant coming from Lemma 2.10.
Denote by sH the unique geodesic ray from x0 to some point in
∂∞FH . Then for any z ∈ ∂∞FH we have z ∈ U(sH , rH , C) ∩ ∂∞X.
This is an open set in ∂∞X that contains the entire topological
boundary of DH .

Recall that U(sH , rH , C) consists of all rays that travel C-close
to sH for at least rH units of time. So if we have a number d > rH ,
then the set U(sH , d, C) appears smaller than U(sH , rH , C) from
the viewpoint of x0. This smaller set may not contain all of the
points in ∂∞FH . If d < rH , then we have an even larger open set
that does contain all of ∂∞FH . Thus, we can view rH as measuring
the size of the sphere ∂∞FH in ∂∞X.

In particular, if H, K ∈ H with rH < rK , then the set U(sH , rH , C)
is bigger than the set U(sK , rH , C). It takes a bigger open set to
contain ∂∞FH than it does for ∂∞FK .

Since the collection of horoballs in Hn is locally finite (see Re-
mark 2.3), we also have that the collection of flats in X is locally
finite. Thus, given a number D > 0, there are only finitely many
H ∈ H with rH < D. Thus, there are only finitely many disks DH

of size bigger than D. ¤
In dimension three, we can identify the boundary using the main

results of Whyburn [10]. Recall that one can construct a topologi-
cal space called the Sierpiński carpet using a Cantor-like construc-
tion. Specifically, start with the unit square in the plane, subdi-
vide it into nine equal subsquares, remove the middle open square,
and then repeat this inductively on the remaining squares. This
space can be characterized as a compact, 1-dimensional, planar,
connected, locally connected space with no local cut points [10].
In the same article, another characterization is given in terms of
removing a collection of disks from S2. The Sierpiński carpet is ob-
tained from S2 minus the interiors of a disjoint collection of closed
disks whose union is dense in S2 and whose diameters are shrinking
as in Lemma 4.1. Moreover, any Sierpiński carpet embedded in S2

is obtained this way. Thus, the following is a direct corollary of
Whyburn’s characterization [10] and Theorem 4.1
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Corollary 4.2. Suppose G acts properly discontinuously by isome-
tries on H3 with finite volume quotient. Then we know G acts
geometrically on an appropriately truncated H3; call this space X.
Then X is a CAT(0) space with ∂∞X homeomorphic to the Sierpiń-
ski carpet.

In higher dimensions, we still have the results of Theorem 4.1.
Bestvina pointed out to me that, in [3], Cannon generalizes the
results of Whyburn [10] to all n 6= 4. Using the work there, we
have the following corollary in higher dimensions.

Corollary 4.3. Suppose G acts properly discontinuously by isome-
tries on Hn for n 6= 5 with finite volume quotient. Then G acts
geometrically on an appropriately truncated Hn; call this space X.
Then X is a CAT(0) space with ∂∞X homeomorphic to the Sierpiń-
ski curve of dimension (n− 2).

5. Final Remarks

Concerning these spaces and groups, most of the results can be
found in [7] and [8] where the theory of CAT(0) spaces with IFP is
developed more precisely.

In the general setting of groups acting geometrically on CAT(0)
spaces, one can ask whether such a group uniquely determines a
topological space at infinity. More precisely, if a group G acts
geometrically on two CAT(0) spaces X and Y , must their visual
boundaries be homeomorphic? The answer to this question in gen-
eral, is no. In [4], the authors give an example of a group G acting
geometrically on two CAT(0) spaces that have non-homeomorphic
visual boundaries. The following theorem of Hruska [7] shows that
this does not happen if G is one of the groups we are dealing with
in this section. More recently, this theorem has been generalized
to include all groups acting on CAT(0) spaces with isolated flats in
[8].

Theorem 5.1 ([7]). Suppose G acts properly discontinuously by
isometries on Hn with finite quotient. Then G acts geometrically
on a CAT(0) space X obtained by truncating Hn. Now suppose G
acts geometrically on any other CAT(0) space Y . Then ∂∞X is
homeomorphic to ∂∞Y . Thus, we can say G has unique boundary.
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As a final remark, we briefly discuss the Tits boundary for these
spaces without giving formal definitions since, again, we will merely
be quoting a result from [8]. For formal definitions, see Part II,
section 9 of [1].

As mentioned in the introduction, the visual topology on ∂X is
not always the most useful topology. For instance, it is the same
for both En and Hn. The Tits topology is defined to be the length
metric associated to the angle metric. The angle metric on ∂X is
defined as one would expect: for p, q ∈ ∂X, we have d(p, q) is the
angle between geodesic rays for p and q. Of course, one has to
be careful with basepoints. It certainly makes sense to talk about
the angle between geodesics p and q beginning at a point x0 using
comparison triangles (see [1, Definition 1.12, p. 9]).

To define ∠(p, q), one must take the supremum of these angles
over all possible basepoints in X. This gives the angle metric on
∂X. For X = E2, the angle metric is the arclength metric on
∂X = S1 (viewed as the unit sphere in E2). In X = H2, the angle
metric is discrete since any two points p, q ∈ ∂X can be joined by
a geodesic line in X (i.e., pick a basepoint on that line to realize
the supremum angle of π.)

In [8], the authors prove that if X is a CAT(0) space with the
IFP,then the Tits boundary of X is a disjoint collection of points
and spheres. Since our truncated spaces are spaces with this prop-
erty, they also have this Tits structure.
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