Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics

Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT o by Topology Proceedings. All rights reserved.

Pages 377-384

EXTENSIONAL DIMENSION AND COMPLETION OF MAPS

H. MURAT TUNCALI, E. D. TYMCHATYN, AND VESKO VALOV

ABSTRACT. We prove the following completion theorem for closed maps between metrizable spaces: Let $f\colon X\to Y$ be a closed surjection between metrizable spaces with e-dim $f\le K$, e-dim $X\le L_X$, and e-dim $Y\le L_Y$ for some countable CW-complexes K, L_X , and L_Y . Then there exist completions \widetilde{X} and \widetilde{Y} of X and Y, respectively, and a closed surjection $\widetilde{f}\colon\widetilde{X}\to\widetilde{Y}$ extending f such that e-dim $\widetilde{f}\le K$, e-dim $\widetilde{X}\le L_X$, and e-dim $\widetilde{Y}\le L_Y$. We also establish a parametric version of a result of Miroslav Katetov characterizing the covering dimension of metrizable spaces in terms of uniformly 0-dimensional maps into finite-dimensional cubes.

1. Introduction

Miroslav Katetov [5] and Kiiti Morita [8] proved that every finite-dimensional metrizable space has a metrizable completion of the same dimension. A completion theorem for extensional dimension with respect to countable CW-complexes was established by Wojciech Olszewski [10] in the class of separable metrizable spaces and recently by Michael Levin [7] in the class of all metrizable spaces.

Concerning completions of maps with the same dimension, James E. Keesling [6] proved that if $f: X \to Y$ is a closed surjective

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary: 54F45; Secondary: 55M10, 54C65.

Key words and phrases. finite-dimensional spaces, regularly branched maps. The authors were partially supported by their NSERC grants.

map between metrizable finite-dimensional spaces, then there are completions \widetilde{X} and \widetilde{Y} of X and Y, respectively, and an extension $\widetilde{f}\colon\widetilde{X}\to\widetilde{Y}$ of f such that \widetilde{f} is closed, $\dim\widetilde{f}=\dim f$, $\dim\widetilde{X}=\dim X$, and $\dim\widetilde{Y}=\dim Y$. In the present note we extend this result for extensional dimension with respect to countable CW-complexes. We also establish an analogue (see Theorem 3.1) of a result of Katetov [5] characterizing the dimension dim of metrizable spaces in terms of uniformly 0-dimensional maps into finite-dimensional cubes.

Recall that $e-\dim X \leq K$ if and only if every continuous map $g\colon A\to K$, where $A\subset X$ is closed, can be extended to a map $\bar g\colon X\to K$; see [3]. For a map $f\colon X\to Y$, we write $e-\dim f\leq K$ provided $e-\dim f^{-1}(y)\leq K$ for every $y\in Y$. Unless indicated otherwise, all spaces are assumed to be metrizable and all maps continuous. By a CW-complex we always mean a countable CW-complex.

2. Completion of maps

We begin with the following lemma.

Lemma 2.1. Let $f: X \to Y$ be a perfect map between metrizable spaces and K a CW-complex. Then $B_K = \{y \in Y : \text{e-dim} f^{-1}(y) \leq K\}$ is a G_{δ} -subset of Y.

Proof: By [11], there exists a map g from X into the Hilbert cube Q such that $f \times g \colon X \to Y \times Q$ is an embedding. Let $\{W_i\}_{i \in \mathbb{N}}$ be a countable finitely-additive base for Q. For every i we choose a sequence of mappings $h_{ij} \colon \overline{W_i} \to K$, representing all the homotopy classes of mappings from $\overline{W_i}$ to K. (This is possible because K is a countable CW-complex and all $\overline{W_i}$ are metrizable compacta.) For any i, j let U_{ij} be the set of all $y \in Y$ having the following property:

the map $h_{ij} \circ g \colon g^{-1}(\overline{W_i}) \to K$ can be continuously extended to a map over the set $g^{-1}(\overline{W_i}) \cup f^{-1}(y)$.

Let every U_{ij} be open in Y. Indeed, if $y_0 \in U_{ij}$, then there exists a map $h: g^{-1}(\overline{W_i}) \cup f^{-1}(y_0) \to K$ extending $h_{ij} \circ g$. Since K is an absolute extensor for metrizable spaces, we can extend h to a map $\overline{h}: V \to K$, where $V \subset X$ is open and contains $g^{-1}(\overline{W_i}) \cup f^{-1}(y_0)$. Because f is closed, there exists a neighborhood G of y_0

in Y with $f^{-1}(G) \subset V$. Then, for every $y \in G$, the restriction of \overline{h} on $g^{-1}(\overline{W_i}) \cup f^{-1}(y)$ is an extension of $h_{ij} \circ g$. Hence, $G \subset U_{ij}$.

It is clear that B_K is contained in every U_{ij} . It remains only to show that $\bigcap_{i,j=1}^{\infty} U_{ij} \subset B_K$. Take $y \in \bigcap_{i,j=1}^{\infty} U_{ij}$ and a map $h \colon A \to K$, where A is a closed subset of $f^{-1}(y)$. Because the map $g_y = g|f^{-1}(y)$ is a homeomorphism, $h' = h \circ g_y^{-1} \colon g(A) \to K$ is well defined. Next, extend h' to a map from a neighborhood W of g(A) in Q (recall that $f^{-1}(y)$ is compact, so $g(A) \subset Q$ is closed) into K and find W_k with $g(A) \subset W_k \subset \overline{W_k} \subset W$. Therefore, there exists a map $h'' \colon \overline{W_k} \to K$ extending h'. Then h'' is homotopy equivalent to some h_{kj} , so are $h'' \circ g$ and $h_{kj} \circ g$ (considered as maps from $g^{-1}(\overline{W_k})$ into K). Since $g \in U_{kj}$, $h_{kj} \circ g$ can be extended to a map from $g^{-1}(\overline{W_k}) \cup f^{-1}(y)$ into K. Then, by the Homotopy Extension Theorem, there exists a map $h \colon g^{-1}(\overline{W_k}) \cup f^{-1}(y) \to K$ extending $h'' \circ g$. Obviously, $h|f^{-1}(y)$ extends h. Hence, e-dim $f^{-1}(y) \leq K$.

The next lemma, though not explicitly stated in this form, was actually proved by Levin [7].

Lemma 2.2. Let X be a subset of the metrizable space Y with $\operatorname{e-dim} X \leq K$ for some CW-complex K. Then there exists a G_{δ} -subset \widetilde{X} of Y containing X such that $\operatorname{e-dim} \widetilde{X} \leq K$.

Theorem 2.3. Let $f: X \to Y$ be a closed surjective map between metrizable spaces such that e-dim $f \leq K$, e-dim $X \leq L_X$, and e-dim $Y \leq L_Y$, where K, L_X , and L_Y are CW-complexes. Then there exist completions \widetilde{X} and \widetilde{Y} of X and Y, respectively, and a closed surjection $\widetilde{f}: \widetilde{X} \to \widetilde{Y}$ extending f with e-dim $\widetilde{f} \leq K$, e-dim $\widetilde{X} \leq L_X$, and e-dim $\widetilde{Y} \leq L_Y$.

Proof: Since f is closed, $Frf^{-1}(y) = \emptyset$ if and only if y is a discrete point in Y, where $Frf^{-1}(y)$ denotes the boundary of $f^{-1}(y)$ in X. On the other hand, it is easily seen that the validity of the theorem for any metrizable Y without discrete points implies its validity for any metrizable Y. Therefore, we can assume that Y doesn't have any discrete points, or equivalently, $Frf^{-1}(y) \neq \emptyset$ for every $y \in Y$. According to the classical result of I. A. Vainstein [13] (see also [6]), there are completions X_1 and Y_1 of X and Y, respectively, and a closed surjection $f_1 \colon X_1 \to Y_1$ which extends f. For any $y \in Y_1$

we denote by $Frf_1^{-1}(y)$ the boundary of $f_1^{-1}(y)$ in X_1 . Then, the following two facts occur:

- (1) $Frf^{-1}(y)$ coincides with $Frf_1^{-1}(y)$ provided $y \in Y$;
- (2) $f_1^{-1}(y) = Fr f_1^{-1}(y)$ provided $y \in Y_1 \backslash Y$.

Therefore, $Frf_1^{-1}(y) \neq \emptyset$ for all $y \in Y_1$. Moreover, $f_1|H: H \to Y_1$ is a perfect surjection (see [13]), where $H = \bigcup \{Frf_1^{-1}(y): y \in Y_1\}$. Obviously, H is closed in X_1 , so e-dim $(H \cap X) \leq L_X$. Then, by Lemma 2.2, there exists a G_{δ} -subset P of H with $H \cap X \subset P$ and

(3) e-dim $P \leq L_X$.

It follows from (1) that $(f_1|H)^{-1}(Y) \subset P$. Therefore, $f_1(H \setminus P)$ does not meet Y. Since $f_1|H$ is a closed surjection onto Y_1 and $H \setminus P$ is F_{σ} in H, $f_1(H \setminus P)$ is F_{σ} in Y_1 . So, $Y_2 = Y_1 \setminus f_1(H \setminus P)$ is a G_{δ} -set in Y_1 containing Y such that

 $(4) (f_1|H)^{-1}(Y_2) \subset P.$

Condition (1) also implies that every fiber $(f_1|H)^{-1}(y)$ is of extensional dimension $\leq K$ provided $y \in Y$. Hence, applying Lemma 2.1 and then Lemma 2.2, we can find a G_{δ} -subset \widetilde{Y} of Y_2 such that $\operatorname{e-dim} \widetilde{Y} \leq L_Y$ and

(5) e-dim $Frf_1^{-1}(y) \le K$ for all $y \in \widetilde{Y}$.

Consider the set $W = X_1 \backslash H$. It is open in X_1 , so $W \cap X$ is open in X. Moreover, $f^{-1}(y) \cap W$ is the interior of $f^{-1}(y)$ in X, $y \in Y$. Therefore, e-dim $(f^{-1}(y) \cap W) \leq K$ for every $y \in Y$. Consequently, e-dim $(W \cap X) \leq K$. On the other hand, $W \cap X$ is a subset of X, so e-dim $(W \cap X) \leq L_X$. Since the property of metrizable spaces to have extensional dimension less than or equal to a given countable CW-complex is hereditary (see, for example [2]), we can apply Lemma 2.2 twice to obtain a G_{δ} -subset U of W which contains $W \cap X$ such that

(6) e-dim $U \leq K$ and e-dim $U \leq L_X$.

Finally, let $\widetilde{X} = f_1^{-1}(\widetilde{Y}) \cap (U \cup P)$ and $\widetilde{f} = f_1 | \widetilde{X}$. Obviously, $\widetilde{X} \cap U$ and $\widetilde{X} \cap P$ are disjoint, respectively, open and closed subsets of \widetilde{X} . Since e-dim $(\widetilde{X} \cap U) \leq$ e-dim $U \leq L_X$ and e-dim $(\widetilde{X} \cap P) \leq$ e-dim $Y \leq L_X$, \widetilde{X} can be represented as the union of countably

many of its closed subsets F_i with e-dim $F_i \leq L_X$ for each i. Then, by the countable sum theorem, e-dim $\widetilde{X} \leq L_X$. It follows from our construction that \widetilde{f} maps \widetilde{X} onto \widetilde{Y} and each $\widetilde{f}^{-1}(y)$, $y \in \widetilde{Y}$, is the union of the disjoint sets $Frf_1^{-1}(y)$ and $\widetilde{f}^{-1}(y) \cap U$ which are, respectively, closed and open in $\widetilde{f}^{-1}(y)$. By (5) and (6), both $Frf_1^{-1}(y)$ and $\widetilde{f}^{-1}(y) \cap U$ are of extensional dimension $\leq K$. Hence, e-dim $f_1^{-1}(y) \leq K$ for each $y \in \widetilde{Y}$.

It remains only to show that f is a closed map. To this end, let $A \subset \widetilde{X}$ be closed and $y_n = \widetilde{f}(x_n)$ converges to y_0 , where $\{x_n\}$ is a sequence of points from A. Suppose that $y_0 \not\in \widetilde{f}(A)$. Then, by (1), (2), and (4), $Frf_1^{-1}(y_0) \subset \widetilde{X}$ and it does not meet A (as a subset of $\widetilde{f}^{-1}(y_0)$). Being compact, $Frf_1^{-1}(y_0)$ is closed in \widetilde{X} . Consequently, there is an open $V \subset X_1$ containing $Frf_1^{-1}(y_0)$ such that $V \cap A = \emptyset$. Let V_1 be the union of V and the interior of $f_1^{-1}(y_0)$ in X_1 . Obviously, V_1 is open in X_1 , contains $f_1^{-1}(y_0)$, and does not meet A. Since f_1 is a closed map, there exists a neighborhood $O(y_0)$ of y_0 in Y_1 such that $f_1^{-1}(y) \subset V_1$ for all $y \in O(y_0)$. Therefore, $f_1^{-1}(y_m) \subset V_1$ for some m. The last inclusion implies $x_m \in V_1 \cap A$, which is a contradiction. Therefore, $y_0 \in \widetilde{f}(A)$; i.e., \widetilde{f} is closed. \square

3. σ -uniformly 0-dimensional maps

A map $f \colon X \to Y$ is called uniformly 0-dimensional [5] if there exists a metric on X generating its topology such that for every $\epsilon > 0$ every point of f(X) has a neighborhood U in Y with $f^{-1}(U)$ being the union of disjoint open subsets of X each of diameter $< \epsilon$. Uniformly 0-dimensional maps are called in [1] completely 0-dimensional. It is well known that if $f \colon X \to Y$ is uniformly 0-dimensional and $\dim Y \le n$, then $\dim X \le n$ (see, for example, [5], [1], or [7]).

We say that a map $g: X \to Y$ is σ -uniformly 0-dimensional if X can be represented as the union of countably many of its closed subsets X_i such that each restriction $g|X_i$ is uniformly 0-dimensional. Katetov [5] (see also [9]) proved that a space X is at most n-dimensional if and only if for each metrization of X there exists a uniformly 0-dimensional map of X into \mathbb{I}^n . Moreover, the space $C(X, \mathbb{I}^n)$ with the uniform convergence topology contains a

dense G_{δ} -subset consisting of uniformly 0-dimensional maps. The next theorem can be considered as a parametric version of Katetov's result; (see [4] for the definition of C-spaces).

Theorem 3.1. Let $f: X \to Y$ be a closed map of metrizable spaces with Y being a C-space. Then $\dim f \leq n$ if and only if there exists a map $g: X \to \mathbb{I}^n$ such that $f \times g$ is σ -uniformly 0-dimensional. Moreover, if $\dim f \leq n$, then the set of all such maps $g \in C(X, \mathbb{I}^n)$ is dense in $C(X, \mathbb{I}^n)$ with respect to the uniform convergence topology generated by the Euclidean metric on \mathbb{I}^n .

Proof: All function spaces in this proof are equipped with the uniform convergence topology.

Suppose that dim $f \leq n$. We represent X as the union X = $X_0 \cup (X \setminus X_0)$ such that X_0 is closed in X, $f_0 = f | X_0$ is a perfect map, and dim $(X\setminus X_0) \leq n$. Let $X\setminus X_0 = \bigcup_{k=1}^{\infty} X_k$ such that each X_k is closed in X. Since $f_0: X_0 \to Y$ is perfect, the set C_0 of all $g: X \to \mathbb{I}^n$ with $(f \times g)|X_0$ being 0-dimensional is dense in $C(X,\mathbb{I}^n)$; (see for example, [12, Theorem 1.3]). It is easily seen that every perfect 0-dimensional map between metric spaces is uniformly 0-dimensional. Hence, all restrictions $(f \times g)|X_0, g \in C_0$, are uniformly 0-dimensional. For every $g \in C_0$ let $H(g) = \{h \in C(X, \mathbb{I}^n) : g \in C_0 \}$ $h|X_0=g|X_0$. Each H(g) is closed in $C(X,\mathbb{I}^n)$ and $C_0=\cup\{H(g):$ $g \in C_0$. We also define the maps $p_k : C(X, \mathbb{I}^n) \to C(X_k, \mathbb{I}^n)$ by $p_k(h) = h|X_k, k = 1, 2, \ldots, \text{ and let } p_{k,g} \colon H(g) \to C(X_k, \mathbb{I}^n) \text{ de-}$ note the restriction $p_k|H(g)$ for any $k \in \mathbb{N}$ and $g \in C_0$. Since X_0 and each X_k are disjoint closed sets in X, we can show that every $p_{k,g}$ is open and surjective. According to the Katetov result [5], there exists a dense and G_{δ} -subset C_k of $C(X_k, \mathbb{I}^n)$ consisting of uniformly 0-dimensional maps, $k=1,2,\ldots$ Consequently, for any $g\in C_0$, the sets $H_k(g)=p_{k,g}^{-1}(C_k)$ are dense and G_δ in H(g). Since H(g) has the Baire property (as a closed subset of $C(X,\mathbb{I}^n)$, $M(g) = \bigcap_{k=1}^{\infty} H_k(g)$ is also dense and G_{δ} in H(g). Then $M = \bigcup \{M(g) : g \in C_0\}$ is dense in $C(X, \mathbb{I}^n)$. Moreover, it follows from the construction that, for any $g \in M$, the restrictions $(f \times g)|X_k$ are uniformly 0-dimensional, $k = 0, 1, 2, \ldots$ Therefore, M consists of σ -uniformly 0-dimensional maps.

To prove the other implication of Theorem 3.1, assume that there exists $g\colon X\to \mathbb{I}^n$ such that the map $f\times g\colon X\to Y\times \mathbb{I}^n$ is σ -uniformly 0-dimensional. Therefore, X can be represented as the

union of countably many of its closed subsets A_i such that each $(f \times g)|A_i$ is uniformly 0-dimensional. The last condition implies that, for any $y \in Y$ and i, the map $g|(f^{-1}(y) \cap A_i): f^{-1}(y) \cap A_i \to \mathbb{I}^n$ is uniformly 0-dimensional. Hence, dim $(f^{-1}(y) \cap A_i) \leq n$. Since $f^{-1}(y) = \bigcup_{i=1}^{\infty} f^{-1}(y) \cap A_i$, by the countable sum theorem, dim $f^{-1}(y) \leq n$ for each $y \in Y$. So, dim $f \leq n$.

Addendum. The referee of this paper suggested that Theorem 3.1 could remain true if the requirement $f \times g$ is σ -uniformly 0-dimensional is relaxed to $f \times g$ is uniformly 0-dimensional. In the case when f is a perfect map, this is really true, following from [12, Theorem 1.3] and the fact that any perfect 0-dimensional map is uniformly 0-dimensional. Unfortunately, we couldn't arrive at any conclusion in the general case.

References

- [1] P. S. Alexandrov and B. A. Pasynkov, Introduction to Dimension Theory: An Introduction to the Theory of Topological Space and the General Theory of Dimension (Russian). Moscow: Nauka, 1973.
- [2] Alex Chigogidze, "Cohomological dimension of Tychonov spaces," *Topology Appl.* **79** (1997), no. 3, 197–228.
- [3] A. N. Dranishnikov, "The Eilenberg-Borsuk theorem for mappings in an arbitrary complex," Russian Acad. Sci. Sb. Math. 81 (1995), no. 2, 467– 475.
- [4] Ryszard Engelking, *Theory of Dimensions: Finite and Infinite*. Sigma Series in Pure Mathematics, 10. Lemgo: Heldermann Verlag, 1995.
- [5] Miroslav Katetov, "On the dimension of non-separable spaces, I" (Russian), Čehoslovack. Mat. Ž **2(77)** (1952), 333–368.
- [6] James E. Keesling, "Mappings and dimension in metric spaces," General Topology and Appl. 2 (1972), 181–192.
- [7] Michael Levin, "On extensional dimension of metrizable spaces." Preprint.
- [8] Kiiti Morita, "Normal Families and Dimension Theory for Metric Spaces," *Math. Ann.* **128** (1954), 350–362.
- [9] Jun-iti Nagata, *Modern Dimension Theory*. Revised edition. Sigma Series in Pure Mathematics, 2. Berlin: Heldermann Verlag, 1983.
- [10] Wojciech Olszewski, "Completion theorem for cohomological dimensions," Proc. Amer. Math. Soc. 123 (1995), no. 7, 2261–2264.
- [11] B. A. Pasynkov, "On the geometry of continuous mappings of countable functional weight" (Russian), Fundam. Prikl. Mat. 4 (1998), no. 1, 155– 164.

- [12] H. Murat Tuncali and Vesko Valov, "On dimensionally restricted maps," Fund. Math. 175 (2002), no. 1, 35–52.
- [13] I. A. Vainštein, "On closed mappings and metric spaces" (Russian), *Dokl. Akad. Nauk SSSR* **57** (1947), 319–321.

(Tuncali) Department of Computer Science and Mathematics; Nipissing University; 100 College Drive; P.O. Box 5002; North Bay, ON, P1B 8L7, Canada

E-mail address: muratt@nipissingu.ca

(Tymchatyn) Department of Mathematics and Statistics; University of Saskatchewan; McLean Hall; 106 Wiggins Road; Saskatoon, SK, S7N 5E6, Canada

 $E ext{-}mail\ address: tymchat@math.usask.ca}$

(Valov) Department of Computer Science and Mathematics; Nipissing University; 100 College Drive; P.O. Box 5002; North Bay, ON, P1B 8L7, Canada

E-mail address: veskov@nipissingu.ca