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EXTENSIONAL DIMENSION
AND COMPLETION OF MAPS

H. MURAT TUNCALI, E. D. TYMCHATYN, AND VESKO VALOV

Abstract. We prove the following completion theorem for
closed maps between metrizable spaces: Let f : X → Y be a
closed surjection between metrizable spaces with e-dimf ≤ K,
e-dimX ≤ LX , and e-dimY ≤ LY for some countable CW -
complexes K, LX , and LY . Then there exist completions
eX and eY of X and Y , respectively, and a closed surjection
ef : eX → eY extending f such that e-dim ef ≤ K, e-dim eX ≤ LX ,

and e-dimeY ≤ LY . We also establish a parametric version of a
result of Miroslav Katetov characterizing the covering dimen-
sion of metrizable spaces in terms of uniformly 0-dimensional
maps into finite-dimensional cubes.

1. Introduction

Miroslav Katetov [5] and Kiiti Morita [8] proved that every finite-
dimensional metrizable space has a metrizable completion of the
same dimension. A completion theorem for extensional dimen-
sion with respect to countable CW -complexes was established by
Wojciech Olszewski [10] in the class of separable metrizable spaces
and recently by Michael Levin [7] in the class of all metrizable
spaces.

Concerning completions of maps with the same dimension, James
E. Keesling [6] proved that if f : X → Y is a closed surjective
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map between metrizable finite-dimensional spaces, then there are
completions X̃ and Ỹ of X and Y , respectively, and an extension
f̃ : X̃ → Ỹ of f such that f̃ is closed, dim f̃ = dim f , dim X̃ =
dimX, and dim Ỹ = dimY . In the present note we extend this
result for extensional dimension with respect to countable CW -
complexes. We also establish an analogue (see Theorem 3.1) of a
result of Katetov [5] characterizing the dimension dim of metriz-
able spaces in terms of uniformly 0-dimensional maps into finite-
dimensional cubes.

Recall that e − dimX ≤ K if and only if every continuous map
g : A → K, where A ⊂ X is closed, can be extended to a map
ḡ : X → K; see [3]. For a map f : X → Y , we write e− dimf ≤ K
provided e − dimf−1(y) ≤ K for every y ∈ Y . Unless indicated
otherwise, all spaces are assumed to be metrizable and all maps
continuous. By a CW -complex we always mean a countable CW -
complex.

2. Completion of maps

We begin with the following lemma.

Lemma 2.1. Let f : X → Y be a perfect map between metrizable
spaces and K a CW -complex. Then BK = {y ∈ Y : e-dimf−1(y) ≤
K} is a Gδ-subset of Y .

Proof: By [11], there exists a map g from X into the Hilbert cube
Q such that f × g : X → Y ×Q is an embedding. Let {Wi}i∈N be
a countable finitely-additive base for Q. For every i we choose a
sequence of mappings hij : Wi → K, representing all the homotopy
classes of mappings from Wi to K. (This is possible because K is a
countable CW -complex and all Wi are metrizable compacta.) For
any i, j let Uij be the set of all y ∈ Y having the following property:

the map hij ◦ g : g−1(Wi) → K can be continuously
extended to a map over the set g−1(Wi) ∪ f−1(y).

Let every Uij be open in Y . Indeed, if y0 ∈ Uij , then there exists
a map h : g−1(Wi) ∪ f−1(y0) → K extending hij ◦ g. Since K is
an absolute extensor for metrizable spaces, we can extend h to a
map h : V → K, where V ⊂ X is open and contains g−1(Wi) ∪
f−1(y0). Because f is closed, there exists a neighborhood G of y0
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in Y with f−1(G) ⊂ V . Then, for every y ∈ G, the restriction of h
on g−1(Wi) ∪ f−1(y) is an extension of hij ◦ g. Hence, G ⊂ Uij .

It is clear that BK is contained in every Uij . It remains only
to show that ∩∞i,j=1Uij ⊂ BK . Take y ∈ ∩∞i,j=1Uij and a map
h : A → K, where A is a closed subset of f−1(y). Because the map
gy = g|f−1(y) is a homeomorphism, h

′
= h◦g−1

y : g(A) → K is well
defined. Next, extend h

′
to a map from a neighborhood W of g(A)

in Q (recall that f−1(y) is compact, so g(A) ⊂ Q is closed) into K
and find Wk with g(A) ⊂ Wk ⊂ Wk ⊂ W . Therefore, there exists a
map h

′′
: Wk → K extending h

′
. Then h

′′
is homotopy equivalent

to some hkj , so are h
′′ ◦ g and hkj ◦ g (considered as maps from

g−1(Wk) into K). Since y ∈ Ukj , hkj ◦ g can be extended to a map
from g−1(Wk)∪ f−1(y) into K. Then, by the Homotopy Extension
Theorem, there exists a map h̄ : g−1(Wk) ∪ f−1(y) → K extending
h
′′ ◦ g. Obviously, h̄|f−1(y) extends h. Hence, e-dimf−1(y) ≤

K. ¤
The next lemma, though not explicitly stated in this form, was

actually proved by Levin [7].

Lemma 2.2. Let X be a subset of the metrizable space Y with
e-dimX ≤ K for some CW -complex K. Then there exists a Gδ-
subset X̃ of Y containing X such that e-dimX̃ ≤ K.

Theorem 2.3. Let f : X → Y be a closed surjective map be-
tween metrizable spaces such that e-dimf ≤ K, e-dimX ≤ LX ,
and e-dimY ≤ LY , where K, LX , and LY are CW -complexes.
Then there exist completions X̃ and Ỹ of X and Y , respectively,
and a closed surjection f̃ : X̃ → Ỹ extending f with e-dimf̃ ≤ K,
e-dimX̃ ≤ LX , and e-dimỸ ≤ LY .

Proof: Since f is closed, Frf−1(y) = ∅ if and only if y is a discrete
point in Y , where Frf−1(y) denotes the boundary of f−1(y) in X.
On the other hand, it is easily seen that the validity of the theorem
for any metrizable Y without discrete points implies its validity for
any metrizable Y . Therefore, we can assume that Y doesn’t have
any discrete points, or equivalently, Frf−1(y) 6= ∅ for every y ∈ Y .
According to the classical result of I. A. Vǎinstěin [13] (see also [6]),
there are completions X1 and Y1 of X and Y , respectively, and a
closed surjection f1 : X1 → Y1 which extends f . For any y ∈ Y1
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we denote by Frf−1
1 (y) the boundary of f−1

1 (y) in X1. Then, the
following two facts occur:

(1) Frf−1(y) coincides with Frf−1
1 (y) provided y ∈ Y ;

(2) f−1
1 (y) = Frf−1

1 (y) provided y ∈ Y1\Y .

Therefore, Frf−1
1 (y) 6= ∅ for all y ∈ Y1. Moreover, f1|H : H →

Y1 is a perfect surjection (see [13]), where H =
⋃{Frf−1

1 (y) : y ∈
Y1}. Obviously, H is closed in X1, so e-dim(H ∩X) ≤ LX . Then,
by Lemma 2.2, there exists a Gδ-subset P of H with H ∩X ⊂ P
and

(3) e-dimP ≤ LX .

It follows from (1) that (f1|H)−1(Y ) ⊂ P . Therefore, f1(H\P )
does not meet Y . Since f1|H is a closed surjection onto Y1 and
H\P is Fσ in H, f1(H\P ) is Fσ in Y1. So, Y2 = Y1\f1(H\P ) is a
Gδ-set in Y1 containing Y such that

(4) (f1|H)−1(Y2) ⊂ P .

Condition (1) also implies that every fiber (f1|H)−1(y) is of ex-
tensional dimension ≤ K provided y ∈ Y . Hence, applying Lemma
2.1 and then Lemma 2.2, we can find a Gδ-subset Ỹ of Y2 such that
e-dimỸ ≤ LY and

(5) e-dimFrf−1
1 (y) ≤ K for all y ∈ Ỹ .

Consider the set W = X1\H. It is open in X1, so W ∩ X is
open in X. Moreover, f−1(y) ∩W is the interior of f−1(y) in X,
y ∈ Y . Therefore, e-dim

(
f−1(y) ∩ W

) ≤ K for every y ∈ Y .
Consequently, e-dim

(
W ∩ X

) ≤ K. On the other hand, W ∩ X

is a subset of X, so e-dim
(
W ∩ X

) ≤ LX . Since the property of
metrizable spaces to have extensional dimension less than or equal
to a given countable CW -complex is hereditary (see, for example
[2]), we can apply Lemma 2.2 twice to obtain a Gδ-subset U of W
which contains W ∩X such that

(6) e-dimU ≤ K and e-dimU ≤ LX .

Finally, let X̃ = f−1
1 (Ỹ ) ∩ (U ∪ P ) and f̃ = f1|X̃. Obviously,

X̃ ∩U and X̃ ∩P are disjoint, respectively, open and closed subsets
of X̃. Since e-dim

(
X̃ ∩ U

) ≤ e-dimU ≤ LX and e-dim
(
X̃ ∩ P

) ≤
e-dimP ≤ LX , X̃ can be represented as the union of countably
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many of its closed subsets Fi with e-dimFi ≤ LX for each i. Then,
by the countable sum theorem, e-dimX̃ ≤ LX . It follows from
our construction that f̃ maps X̃ onto Ỹ and each f̃−1(y), y ∈ Ỹ ,
is the union of the disjoint sets Frf−1

1 (y) and f̃−1(y) ∩ U which
are, respectively, closed and open in f̃−1(y). By (5) and (6), both
Frf−1

1 (y) and f̃−1(y)∩U are of extensional dimension ≤ K. Hence,
e-dimf−1

1 (y) ≤ K for each y ∈ Ỹ .

It remains only to show that f̃ is a closed map. To this end,
let A ⊂ X̃ be closed and yn = f̃(xn) converges to y0, where {xn}
is a sequence of points from A. Suppose that y0 6∈ f̃(A). Then,
by (1), (2), and (4), Frf−1

1 (y0) ⊂ X̃ and it does not meet A (as
a subset of f̃−1(y0)). Being compact, Frf−1

1 (y0) is closed in X̃.
Consequently, there is an open V ⊂ X1 containing Frf−1

1 (y0) such
that V ∩A = ∅. Let V1 be the union of V and the interior of f−1

1 (y0)
in X1. Obviously, V1 is open in X1, contains f−1

1 (y0), and does not
meet A. Since f1 is a closed map, there exists a neighborhood O(y0)
of y0 in Y1 such that f−1

1 (y) ⊂ V1 for all y ∈ O(y0). Therefore,
f−1
1 (ym) ⊂ V1 for some m. The last inclusion implies xm ∈ V1 ∩A,

which is a contradiction. Therefore, y0 ∈ f̃(A); i.e., f̃ is closed. ¤

3. σ-uniformly 0-dimensional maps

A map f : X → Y is called uniformly 0-dimensional [5] if there
exists a metric on X generating its topology such that for every
ε > 0 every point of f(X) has a neighborhood U in Y with f−1(U)
being the union of disjoint open subsets of X each of diameter
< ε. Uniformly 0-dimensional maps are called in [1] completely
0-dimensional. It is well known that if f : X → Y is uniformly
0-dimensional and dimY ≤ n, then dimX ≤ n (see, for example,
[5], [1], or [7]).

We say that a map g : X → Y is σ-uniformly 0-dimensional
if X can be represented as the union of countably many of its
closed subsets Xi such that each restriction g|Xi is uniformly 0-
dimensional. Katetov [5] (see also [9]) proved that a space X is at
most n-dimensional if and only if for each metrization of X there
exists a uniformly 0-dimensional map of X into In. Moreover, the
space C(X, In) with the uniform convergence topology contains a
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dense Gδ-subset consisting of uniformly 0-dimensional maps. The
next theorem can be considered as a parametric version of Katetov’s
result; (see [4] for the definition of C-spaces).

Theorem 3.1. Let f : X → Y be a closed map of metrizable spaces
with Y being a C-space. Then dim f ≤ n if and only if there exists
a map g : X → In such that f × g is σ-uniformly 0-dimensional.
Moreover, if dim f ≤ n, then the set of all such maps g ∈ C(X, In)
is dense in C(X, In) with respect to the uniform convergence topol-
ogy generated by the Euclidean metric on In.

Proof: All function spaces in this proof are equipped with the
uniform convergence topology.

Suppose that dim f ≤ n. We represent X as the union X =
X0 ∪ (X\X0) such that X0 is closed in X, f0 = f |X0 is a per-
fect map, and dim(X\X0) ≤ n. Let X\X0 =

⋃∞
k=1 Xk such that

each Xk is closed in X. Since f0 : X0 → Y is perfect, the set C0

of all g : X → In with (f × g)|X0 being 0-dimensional is dense in
C(X, In); (see for example, [12, Theorem 1.3]). It is easily seen that
every perfect 0-dimensional map between metric spaces is uniformly
0-dimensional. Hence, all restrictions (f × g)|X0, g ∈ C0, are uni-
formly 0-dimensional. For every g ∈ C0 let H(g) = {h ∈ C(X, In) :
h|X0 = g|X0}. Each H(g) is closed in C(X, In) and C0 = ∪{H(g) :
g ∈ C0}. We also define the maps pk : C(X, In) → C(Xk, In) by
pk(h) = h|Xk, k = 1, 2, . . . , and let pk,g : H(g) → C(Xk, In) de-
note the restriction pk|H(g) for any k ∈ N and g ∈ C0. Since
X0 and each Xk are disjoint closed sets in X, we can show that
every pk,g is open and surjective. According to the Katetov result
[5], there exists a dense and Gδ-subset Ck of C(Xk, In) consist-
ing of uniformly 0-dimensional maps, k = 1, 2, . . . . Consequently,
for any g ∈ C0, the sets Hk(g) = p−1

k,g(Ck) are dense and Gδ in
H(g). Since H(g) has the Baire property (as a closed subset of
C(X, In)), M(g) =

⋂∞
k=1 Hk(g) is also dense and Gδ in H(g). Then

M = ∪{M(g) : g ∈ C0} is dense in C(X, In). Moreover, it fol-
lows from the construction that, for any g ∈ M , the restrictions
(f × g)|Xk are uniformly 0-dimensional, k = 0, 1, 2, . . . . Therefore,
M consists of σ-uniformly 0-dimensional maps.

To prove the other implication of Theorem 3.1, assume that there
exists g : X → In such that the map f × g : X → Y × In is σ-
uniformly 0-dimensional. Therefore, X can be represented as the
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union of countably many of its closed subsets Ai such that each
(f × g)|Ai is uniformly 0-dimensional. The last condition implies
that, for any y ∈ Y and i, the map g|(f−1(y) ∩ Ai) : f−1(y) ∩
Ai → In is uniformly 0-dimensional. Hence, dim

(
f−1(y)∩Ai

) ≤ n.
Since f−1(y) = ∪∞i=1f

−1(y) ∩ Ai, by the countable sum theorem,
dim f−1(y) ≤ n for each y ∈ Y . So, dim f ≤ n. ¤
Addendum. The referee of this paper suggested that Theorem
3.1 could remain true if the requirement f × g is σ-uniformly 0-
dimensional is relaxed to f × g is uniformly 0-dimensional. In the
case when f is a perfect map, this is really true, following from [12,
Theorem 1.3] and the fact that any perfect 0-dimensional map is
uniformly 0-dimensional. Unfortunately, we couldn’t arrive at any
conclusion in the general case.
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