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DECOMPOSITION OF UC SPACES II

THE UNIFORM CASE

G. DI MAIO, E. MECCARIELLO, AND S.A. NAIMPALLY∗

Abstract. There is a considerable literature on UC metric
or UC-uniform spaces, i.e. spaces in which continuity equals
uniform continuity. In this paper we study this topic in depth
using proximity and the authors’ recent work concerning de-
composition of UC metric spaces. We study this problem
in Tychonoff spaces endowed with a uniformity and a prox-
imity, where proximal continuity and uniform continuity are
not equivalent as in metric spaces. So, in this setting the
solution to the UC problem is more intricate than in metric
spaces. We introduce a new proximity, called Cauchy or C-
proximity, and new classes of spaces, namely C-CAU spaces
and CAU-PC spaces. These new classes are useful to offer
a decomposition of the characteristic property PC spaces, in
which real valued functions are proximally continuous.

1. Introduction

It is well known that a continuous function on a compact uni-
form space to an arbitrary uniform space is uniformly continuous
and that the converse is not true. A metric space on which, continu-
ity is equivalent to uniform continuity, is called a UC space. There
is a considerable literature on characterizations of UC spaces in
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the setting of a metric space beginning with Nagata [12] followed
by Atsuji [1], Rainwater [15], Toader [19] and others. There exists
somewhat less literature in the setting of a uniform space, see At-
suji [2]. However, there is very little literature on analogous PC
spaces (continuity equals p-continuity) involving proximity (see [7],
[4] and [14]). In this paper we study the subject in the setting
of a Tychonoff space equipped with a uniformity and a proxim-
ity compatible with the underlying topology. Mostly, we deal with
Efremovic or EF-proximities . The word “proximity” refers to EF-
proximity and other proximities, which occur sometimes, will be
indicated. Our results generalize the existing results and throw
considerable light on them.

We also study decomposition of PC spaces similar to our recent
work on decomposition of UC metric spaces ([3]). Incidentally, we
get a new class of spaces weaker than the class of complete uniform
spaces, but coinciding in the setting of metric spaces with the class
of complete metric spaces. This generalizes the recent results of
Janos in the setting of a uniform space ([8]).

We use the following notation:

(X,U), (Y,V) denote separated uniform spaces, with compatible
EF-proximities δ and η, respectively.

(X?,U?), (Y ?,V?) denote the completions of (X,U) and (Y,V),
respectively.

For any subset E of (X,U) clXE, intE and Ec stand for the clo-
sure, the interior and the complement of E in (X,U), respectively.

X ′ = the set of all limit points of X , known as the derived set of
X .

C(X, Y ) = the family of all continuous functions on X to Y .
P (X, Y ) = the family of all p-continuous functions on X to Y .
U(X, Y ) = the family of all u-continuous functions on X to Y .
C(X) = the family of all real valued continuous functions.
P (X) = the family of all real valued p-continuous functions.
U(X) = the family of all real valued u-continuous functions.
CAU(X) = the family of all real valued Cauchy maps, i.e. maps

that preserve Cauchy nets.
C?(X) (respectively, U?(X), P ?(X) and CAU?(X)) is the sub-

family of C(X) (respectively, U(X), P (X) and CAU(X)) consist-
ing of all bounded functions.
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The following conditions are considered:

UC: C(X) = U(X) and U is the coarsest uniformity for
which this holds ([2]).
PC: C(X) = P (X).
CAU-PC: CAU(X) = P (X).

All spaces in this paper are Tychonoff, i.e. completely regular
and Hausdorff. Further, for the sake of simplicity, we will assume
that all entourages are symmetric.

We give below a short bibliography on UC spaces and the inter-
ested reader will find further references in the cited articles.

Whereas, standard references on proximity include [5], [13], [11],
[18] and [20].

Let α be a binary relation on the power set of X , where AαB
means “A is near B ” and A6αB means its negation “A is far from
B ”.

Definition 1.1. We consider several relations on the power set of a
Tychonoff space X equipped with a compatible uniformity U which
are compatible Efremovic or compatible Lodato proximities.

(a) We use the symbol δ to denote the EF-proximity induced
by U , viz.

AδB if, and only if, for each U ∈ U , U [A] ∩ B 6= ∅.
(b) The symbol δF denotes the fine EF-proximity on X , viz.

A6δF B if, and only if, there is an f ∈ C?(X) with
f(A) = 0 and f(B) = 1.

(c) The symbol δ0 denotes the Wallman or fine LO-proximity :
Aδ0B if, and only if, clA∩ clB 6= ∅.

We note that X is normal if, and only if, δ0 is EF (Urysohn’s
Lemma).

Definition 1.2. (a) If α is a compatible proximity, then A �α B
means A6αX \ B and B is called an α-nbhd of A.

The family of all α-nbhds of A is denoted by N (A, α). Note that
the δ0-nbhds of A coincide with the ordinary nbhds of A.

(b) If α and β are two proximities on X , then α is coarser than
β (or equivalently β is finer than α), written α ≤ β, if, and only if,
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AβB ⇒ AαB (or equivalently A6αB ⇒ A6βB). Thus, each α-nbhd
of A is also a β-nbhd of A but, in general, the converse is not true.

Remark 1.3. (a) We recall that a net (xλ) in the uniform space
(X,U) is Cauchy if for each U ∈ U , eventually, for all λ, λ′,
(xλ, xλ′) ∈ U .

(b) Two nets (yµ), (zν) in the uniform space (X,U) form a
Cauchy-pair if for each U ∈ U , eventually, for all µ, ν, (yµ, zν) ∈ U
(cf. [16] where the term equivalent is used).

It is obvious that the nets (yµ), (zν) form a Cauchy-pair if, and
only if, they are both Cauchy and they converge to the same point
in the completion X?.

It is easy to see that a net (xλ) is Cauchy if, and only if, any two
of its subnets form a Cauchy-pair.

(c) A net (xλ) of distinct points in the uniform space (X,U) is
pseudo-Cauchy if for each U ∈ U , frequently, there exist λ, λ′ with
(xλ, xλ′) ∈ U .

Pseudo-Cauchy-pair can be defined similarly to Cauchy-pair.
(d) Two nets (yλ), (zλ) in the uniform space (X,U) are said to

be a parallel-pair if they have the same directed set Λ and for each
U ∈ U , eventually, for all λ, (yλ, zλ) ∈ U (see [3]).

Obviously, a parallel pair is a pseudo-Cauchy pair. The converse,
in general fails (see [3]).

(e) If (yµ), (zν) are both Cauchy nets, then (yµ), (zν) form a
pseudo-Cauchy pair if, and only if, they form a Cauchy-pair.

(f) If the nets (yµ), (zν) form a pseudo-Cauchy pair and their
ranges are both totally bounded, then there are subnets (yµk

), (zνl
)

of (yµ), (zν) respectively, which form a Cauchy-pair.

Definition 1.4. The symbol δc denotes the Cauchy or C-proximity
on X :

AδcB if, and only if, there is a Cauchy-pair of nets (yµ),
(zν) with yµ ∈ A and zν ∈ B.

Remark 1.5. (a) Obviously, AδcB ⇔ clX?A∩clX?B 6= ∅, where X?

is the completion of X .
(b) The C-proximity δc is LO since it is the subspace proximity

induced by the Wallman proximity on X?. Hence, if the completion
X? is normal, then δc is EF.
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(c) We note that R
R, with the usual product uniformity, is a

complete non-normal space and so δc = δ0 is a LO-proximity that
is not EF.

(d) It is easy to check that AδB ⇔ there is a parallel-pair of nets
(yλ), (zλ) with yλ ∈ A and zλ ∈ B. Hence, the various proximities
defined so far on X , satisfy the relations:

(i) δ ≤ δc ≤ δ0; (ii) δ ≤ δF ≤ δ0.

Moreover, in general, δc and δF are not comparable. But if δc is
EF, then

(iii) δ ≤ δc ≤ δF ≤ δ0.

Question 1.6. Is it possible for δc to be EF even when X? is not
normal?

Definition 1.7. (a) A function f : (X,U) → (Y,V) is a (pseudo-)
Cauchy map if f preserves (respectively, pseudo-) Cauchy nets (cf.
[16] and [17] where the term Cauchy-regular is used).

(b) A function f : (X, α) → (Y, β) is p-continuous if AαB implies
f(A)βf(B) (see [5] or [13]).

(c) A function f : (X,U) → (Y,V) is u-continuous if for each
V ∈ V there is some U ∈ U such that (x, y) ∈ U ⇒ (f(x), f(y)) ∈ V .

Remark 1.8. (a) A function f : (X,U) → (Y,V) is a Cauchy map
if, and only if, f preserves Cauchy pair of nets.

(b) A function f : (X,U) → (Y,V) is u-continuous ⇔ f preserves
parallel-pair of nets. Thus, if f : (X,U) → (Y,V) is u-continuous
and δ and η are the proximities induced by U and V respectively,
then f : (X, δ) → (Y, η) is p-continuous. The converse in general
fails.

(c) However, if f : (X, δ) → (Y, η) is p-continuous and either the
uniformity of the domain is pseudo-metrizable or that of the range
space is totally bounded, then f : (X,U) → (Y,V) is u-continuous
(see [13, Corollary 12.20 and Corollary 12.12 respectively]). As
a byproduct, we have P ?(X) = U?(X) since the class of totally
bounded sets and the class of bounded sets on R coincide.

(d) The following always occur:

(1) U(X, Y ) ⊂ P (X, Y );
(2) P (X, Y ) ⊂ CAU(X, Y ) (cf. [10, Corollary 5]);
(3) CAU(X, Y ) ⊂ C(X, Y ) (cf. [17, Proposition 1]).



416 G. DI MAIO, E. MECCARIELLO, AND S.A. NAIMPALLY

2. PC spaces:

We wish to emphasize that all proximities in this section are
Efremovic unless otherwise indicated. The situation is quite differ-
ent if other generalized proximities are considered.

We call a proximity space (X, δ) a PC-space if C(X, Y )=P (X, Y )
for all proximity spaces (Y, η). In the class of metric spaces PC =
UC, but this is no longer true in uniform spaces. Since proximity
structures lie between topological and uniform structures, the study
of PC spaces is useful in dealing with uniform spaces. Material in
this section and the next is related to that in [2], which studies the
uniform case but not the proximal one, which is discussed in [7]
and [4].

Theorem 2.1. Let {An}, {Bn}, where n ∈ N, be countable fami-
lies of subsets of X. In a proximity space (X, δ) the following are
equivalent:

(a) C(X, Y ) = P (X, Y ) for each proximity space (Y, η);
(b) C(X) = P (X);
(c) if An �δF

Bn and {Bn} is a discrete family, then there is

an f ∈ P (X) such that f(An) = n and f(X \
⋃

n∈N

Bn) = 0;

(d) if there is an f ∈ C(X) such that f(An) = n, then there is
a g ∈ P (X) such that g(An) = n;

(e) for each pair of disjoint zero sets A, B there is an f ∈ P (X)
such that f(A) = 0 and f(B) = 1;

(f) each pair of disjoint zero sets A, B satisfy A6δB;
(g) δ = δF ;
(h) C?(X) = P ?(X).

Proof. (a) ⇒ (b) is trivial.
(b) ⇒ (c). Since An �δF

Bn for each n ∈ N, there is an fn ∈
C(X) such that fn(An) = n and fn(X \ Bn) = 0. Since {Bn} is
discrete, there is an f ∈ C(X) = P (X), constructed from {fn}

satisfying f(An) = n and f(X \
⋃

n∈N

Bn) = 0 (cf. [6, Problem 1A,

Page 20]).
(c) ⇒ (d). Let Bn = f−1([n− 1

3
, n+ 1

3
]). The result follows from

(c).
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(d) ⇒ (e). It is known that if A, B are disjoint zero sets, then
there is an f ∈ C(X) such that f(A) = 0 and f(B) = 1. By (d)
the result follows.

(e) ⇒ (f) and (f) ⇒ (g) are obvious.
(g) ⇒ (h). If (h) is not true, there are sets A, B in X and

f ∈ C?(X) \P ?(X) with AδB but f(A)6ηf(B) in R. Then, there is
a g : R → R satisfying g(f(A)) = 0, g(f(B)) = 1, a contradiction.

(h) ⇒ (a) If there is an f ∈ C(X, Y ) \ P (X, Y ), then there
are sets A, B in X such that AδB but f(A)6ηf(B) in Y . Then,
there is a g : Y → [0, 1] satisfying g(f(A)) = 0, g(f(B)) = 1, i.e.
g ◦ f ∈ C?(X) \ P ?(X), a contradiction. �

Remark 2.2. (a) In (2.1)(f) we cannot replace zero sets by closed
sets. However, we can do so if we are dealing with LO-proximities
rather than with EF ones.

(b) If the space (X, δ) is normal, then δF = δ0 (by Urysohn’s
Lemma) and suitable modifications can be made in the above result.
In this case, for example, we can replace zero sets by closed sets in
(2.1)(f).

(c) The space W(ω1) of all ordinals less than the first uncount-
able ordinal ω1 is normal and has a unique compatible proximity
(and uniformity). It is not complete (cf. [20, Page 10] or [6, Page
238]). So C(X) = P (X) = U(X), but the derived set X ′ is not
compact as it is in the case of a metric space (see [1], [15]).

3. UC spaces:

In this section we consider the uniform case. This case is a bit
tricky since C(X) = U(X) does not imply C(X, Y ) = U(X, Y )
for each uniform space Y and C?(X) = U?(X) does not imply
C(X) = U(X).

So, we have three cases:

(a) strong UC: C(X, Y ) = U(X, Y ) for each uniform space Y.
This case has a simple solution viz. U must be the fine

uniformity.
(b) Čech UC: C?(X) = U?(X).

In this case δ = δF and this being a proximity property
is already studied in Theorem 2.1.

(c) UC: C(X) = U(X).
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This is an interesting case which generalizes the metric
case. It requires much deeper analysis ([2]). And this is the
case that we will study in this section.

Theorem 3.1. Let {An}, {Bn}, where n ∈ N, be countable fami-
lies of subsets of X. For a uniform space (X,U) the following are
equivalent:

(a) C(X) = U(X);
(b) if An �δF

Bn and {Bn} is a discrete family, then there is
an U ∈ U , such that U [An] ⊂ Bn for each n ∈ N;

(c) if {An} is a sequence of sets such that f(An) = n for some
f ∈ C(X), then there is a U ∈ U , such that for n 6= m,
U [An]∩ Am = ∅.

Proof. (a) ⇔ (b) is due to Atsuji ([2]).
(b) ⇒ (c). Let {An} be a sequence such that there is an f ∈ C(X)

with f(An) = n. Let Bn = f−1([n − 1
3
, n + 1

3
]). Then, U = {(x, y)

such that | f(x) − f(y) |< 1
3
} ∈ U , U [An] ⊂ Bn and for n 6= m, we

have U [An] ∩ Am = ∅.
(c) ⇒ (b). Let An �δF

Bn and {Bn} a discrete family. For each
n ∈ N there is Cn ⊂ X with An �δF

Cn �δF
Bn. Since Cn �δF

Bn, there exists an fn ∈ C(X) with f(Cn) = n and f(X \Bn) = 0.
Since {Bn} is discrete, the function f : X → R defined by f(x) =
fn(x), if x ∈ Bn for some n, f(x) = 0 otherwise, is continuous. By
(c) there is a U1 ∈ U such that for n 6= m we have U1[Cn]∩Cm = ∅.
Again, since An �δF

Cn, there exists a gn ∈ C(X) with g(An) = 1
and g(X \ Cn) = 0. Since {Bn} is discrete and Cn ⊂ Bn because
Cn �δF

Bn, we have that also the family {Cn} is discrete. Thus
the function g : X → R defined by g(x) = gn(x), if x ∈ Cn for
some n, g(x) = 0 otherwise, is continuous. Again, by (c) there

is a U2 ∈ U such that U2[
⋃

An] ∩ (X \
⋃

Cn) = ∅. Let U ∈ U

with U ⊂ U1 ∩ U2. Then, we have U [An] ⊂ Bn for each n ∈ N.

In fact, let n ∈ N be fixed and y ∈ U [
⋃

An]. Then, y ∈
⋃

Cn

(because U [An] ⊂ U2[
⋃

An] and U2[
⋃

An] ∩ (X \
⋃

Cn) = ∅).

Thus y ∈ Cm for some m ∈ N. We claim m = n. Assume not. Let
x ∈ An such that (x, y) ∈ U . Then, x ∈ Cn (because An ⊂ Cn since
An �δF

Cn). Hence y ∈ U1[Cn]∩Cm for n 6= m, which contradicts
U1[Cn] ∩ Cm = ∅ for n 6= m. �
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Theorem 3.2. Consider the following statements concerning a
uniform space (X,U).

(a) U is fine;
(b) C(X, Y ) = U(X, Y ) for each uniform space Y ;
(c) C(X) = U(X);
(d) if {An} is a sequence of sets such that f(An) = n for some

f ∈ C(X), then there is a U ∈ U , such that for n 6= m,
U [An]∩ Am = ∅;

(e) for each pair of disjoint zero sets A, B of X, there is a u-
continuous function f : X → [0, 1] such that f(A) = 0 and
f(B) = 1;

(f) for each pair of disjoint zero sets A, B of X, there is a
U ∈ U , such that U [A] ∩ B = ∅;

(g) δ = δF ;
(h) C?(X) = U?(X).

Then, (a) ⇔ (b) ⇒ (c) ⇔ (d) ⇒ (e) ⇔ (f) ⇔ (g) ⇔ (h) and
none of the arrows can be reversed.

Theorem 3.3. Consider the following statements concerning a
normal uniform space (X,U).

(a) X ′ is compact and for each U ∈ U there is a V ∈ U such
that (U [X ′])c is V -discrete;

(b) U is Lebesgue, i.e. every open cover of X has a refinement
{U [x] : x ∈ X} for some U ∈ U ;

(c) U is fine;
(d) C(X, Y ) = U(X, Y ) for each uniform space Y ;
(e) C(X) = U(X);
(f) if {An} is a sequence of sets such that f(An) = n for some

f ∈ C(X), then there is a U ∈ U , such that for n 6= m,
U [An]∩ Am = ∅;

(g) δ = δ0;
(h) C?(X) = U?(X);
(i) clA ∩ clB = ∅ iff there is U ∈ U such that U [A]∩ B = ∅;
(j) the Vietoris topology on CL(X) is coarser than the Hausdorff-

Bourbaki uniform topology;
(k) every pseudo-Cauchy sequence in X of distinct points has a

cluster point.
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Then, (a) ⇒ (b) ⇒ (c) ⇔ (d) ⇒ (e) ⇔ (f) ⇒ (g) ⇔ (h) ⇔
(i) ⇔ (j) ⇒ (k). Moreover, (j) 6= (k) is not known, and none of
the arrows can be reversed.

Furthermore, if X is metrizable and U is the compatible metric
uniformity, then all the above statements are equivalent.

4. C-CAU Spaces:

As we have already observed in Remark 2.2(c), the space X =
W(ω1) of all ordinals less than the first uncountable ordinal ω1 is
a UC-space although X is not complete in contrast to the case of
a metric space. Thus, in uniform setting UC-spaces must enjoy a
property weaker than completeness.

Definition 4.1. A uniform space (X,U) is called a C-CAU space
if C(X) = CAU(X), i.e. X is a space in which all real valued
continuous functions are Cauchy.

We recall that a function f : X → Y is continuous if, and only if,
f : (X, δ0) → (Y, η) is p-continuous (note that η is any compatible
proximity on Y ). Compare this statement with the next Lemma.

Lemma 4.2. (cf. [3, (1.19)]) Let (X,U), (Y,V) be uniform spaces
with C-proximities δc, ηc respectively. Then, f : X → Y is a Cauchy
map if, and only if, f : (X, δc) → (Y, ηc) is p-continuous.

Proof. The result follows from the fact that f is p-continuous if,
and only if, f preserves the Cauchy-pair nets and by (a) in Remark
1.8 the claim holds. �

Theorem 4.3. Let (X,U) be a uniform space and {An}, {Bn}, n ∈
N, countable families of subsets of X. The following are equivalent:

(a) C(X,Y )=CAU(X,Y ) for each normal uniform space (Y,V);
(b) C(X) = CAU(X);
(c) if An �δF

Bn and {Bn} is a discrete family, then there is an

f ∈ CAU(X) such that f(An) = n and f(X \
⋃

n∈N

Bn) = 0;

(d) if there is an f ∈ C(X) such that f(An) = n, then there is
a g ∈ CAU(X) such that g(An) = n;

(e) for each pair of disjoint zero sets A, B there is an f ∈
CAU(X) such that f(A) = 0 and f(B) = 1;

(f) each pair of disjoint zero sets A, B satisfy A6δcB;
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(g) δF ≤ δc on X;
(h) C?(X) = CAU?(X).

Further, if the compatible C-proximity δc on X is EF, then (g)
is equivalent to (g?) δF = δc on X.

Proof. (a) ⇒ (b) is trivial and (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) is
similar to (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) in Theorem 2.1.

(f) ⇒ (g). Note that if a pair A, B of subsets of X , are δF -
far, then there exists a pair of zero sets A′, B′ of X with A ⊂ A′,
B ⊂ B′ and A′ ∩ B′ = ∅. By (f) A′ 6δcB

′. Since A ⊂ A′, B ⊂ B′,
we have A6δcB and the claim holds.

(g) ⇒ (h). If (h) is not true, there are an f ∈ C?(X)\CAU?(X)
and a Cauchy net (xλ) in X such that the corresponding net (f(xλ))
is not Cauchy in [0, 1]. Nevertheless, the net (f(xλ)) has at least a
cluster point p in [0, 1]. Let p ∈ V ⊂ clV ⊂ W , where V and W 6=
[0, 1] are open subsets of [0, 1]. Since (f(xλ)) does not converge but
has p as a cluster point, there are subnets (zν) and (yµ) of (xλ) such
that {f(zν)} ⊂ V and {f(yµ)} ⊂ W c. Then, there is a g : R → R

satisfying g({f(zν)}) = 0, g({f(yµ)}) = 1. Set A = (g ◦ f)−1({0})
and B = (g ◦ f)−1({1}). Clearly, A, B are disjoint zero sets, but
AδcB (in fact, the above pair of nets (yµ), (zν) is a Cauchy-pair
with yµ ∈ A and zν ∈ B), a contradiction.

(h) ⇒ (a). If there is an f ∈ C(X, Y ) \ CAU(X, Y ), then there
are sets A, B in X such that AδcB, but f(A)6η0f(B) in Y (use
Lemma 4.2 and the fact that ηc ≤ η0). Since Y is a normal space,
there is a continuous function g : Y → [0, 1] satisfying g(f(A)) = 0,
g(f(B)) = 1, i.e. g ◦ f ∈ C?(X) \ CAU?(X); a contradiction.

The last statement of the Theorem follows from (iii) in Remark
1.5 (d). �

Proposition 4.4. Every complete uniform space (X,U) is a C-
CAU space. The converse fails even in the class of normal uniform
spaces.

Proof. Since X is complete, every continuous real valued function
is Cauchy. That the converse in general does not hold has been
observed at the beginning of this section. �
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Proposition 4.5. Let (X,U) be a uniform space. X is sequentially
complete if, and only if, every pair of infinite closed disjoint sets
have infinite subsets that are δ-far, i.e. they are weakly separated

(see [8]).

Proof. Necessity. Suppose X is not sequentially complete. Then,
there exists a Cauchy sequence (xn) which does not converge and
we may assume that xn 6= xm for n 6= m. Let A = {xn : n is
even} and B = {xn : n is odd}. Then A and B form a pair of
infinite closed disjoint sets which are not weakly separated, since
every infinite sequence extracted from A or B is again a Cauchy
sequence.

To show the converse, suppose (X,U) is sequentially complete
and A and B are infinite, closed and disjoint subsets of X . If A is
sequentially compact, then there is a sequence {an : n ∈ N} ⊂ A
converging to a point a ∈ A. Thus, we have that A1 = {an :n∈N}
∪ {a} is a compact subset of A disjoint from B. Hence A1 and B
are δ-far. So, it remains to deal with the case when both A and
B fail to be sequentially compact. Since they are closed and X is
sequentially complete, they cannot be totally bounded. So, there
are an entourage U and two infinite sets A1 = {an : n ∈ N} ⊂ A
and B1 = {bn : n ∈ N} ⊂ B such that (an, am) 6∈ U as well as
(bn, bm) 6∈ U for n 6= m. If the sets A1, B1 are δ-far, then we are
done again. So that it remains to consider the case that they are δ-
near, which means that V [A1]∩B1 6= ∅ for each V ∈ U . Let V ∈ U
such that V ◦ V = V 2 ⊂ U and for each n ∈ N choose Vn ∈ U such
that V n

n = Vn ◦ V n−1
n ⊂ V . Since for each n ∈ N, Vn[A1] ∩ B1 6= ∅

we have that there are a?
n ∈ A1 and b?

n ∈ B1 with (a?
n, b?

n) ∈ Vn.
Let A? = {a?

n : n odd} and B? = {b?
n : n even}. We claim that

V [A?] ∩ B? = ∅. Assume not. So, there are some a?
2n+1 and b?

2m

such that (a?
2n+1, b

?
2m) ∈ V . But (a?

2m, b?
2m) ∈ V2m ⊂ V 2m

2m ⊂ V . As
a result we have (a?

2n+1, a
?
2m) ∈ U , which contradicts (an, am) 6∈ U

for n 6= m. �

Proposition 4.6. Let (X,U) be a uniform space. If X is nor-
mal and C-CAU, then every pair of infinite closed disjoint sets are
weakly separated. Furthermore, in general, the converse fails.

Proof. The result is shown as in metric case [3] and the failure
of the converse was shown by Janos [8] in the form of a counter
example. �
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Remark 4.7. (cf. [8]). If in the above Proposition the uniformity U
is a metric uniformity, then the following are equivalent:

(a) X is complete;
(b) X is a C-CAU space;
(c) every pair of infinite closed disjoint sets of X are weakly

separated.

Corollary 4.8. Consider the following statements concerning a
normal uniform space (X,U).

(a) X is complete;
(b) C(X,Y )=CAU(X,Y ) for each normal uniform space (Y,V);
(c) C(X) = CAU(X);
(d) if An �δF

Bn and {Bn} is a discrete family, then there is an

f ∈ CAU(X) such that f(An) = n and f(X \
⋃

n∈N

Bn) = 0;

(e) if there is an f ∈ C(X) such that f(An) = n, then there is
a g ∈ CAU(X) such that g(An) = n;

(f) for each pair of disjoint zero sets A, B there is an f ∈
CAU(X) such that f(A) = 0 and f(B) = 1;

(g) δF = δ0 = δc on X;
(h) C?(X) = CAU?(X);
(i) every pair of infinite closed disjoint sets are weakly sepa-

rated;
(j) X is sequentially complete.

The following relations hold:
(a) ⇒ (b) ⇔ (c) ⇔ (d) ⇔ (e) ⇔ (f) ⇔ (h) ⇒ (i) ⇔ (j). None

of the arrows can be reversed. Further, if X is metrizable and U is
the associated metric uniformity, then all the above statements are
equivalent.

5. CAU-PC Spaces:

In this section we explore a new class of spaces which we call
CAU-PC spaces in view of (b) in Theorem 5.1. In these spaces all
real valued Cauchy maps are p-continuous. We point out that in
metric spaces, CAU-PC = CAU-UC, but in the uniform setting this
equality, in general, does not hold.
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Theorem 5.1. For a uniform space (X,U) the following are equiv-
alent:

(a) CAU(X, Y ) = P (X, Y ) for each proximity space (Y, η);
(b) CAU(X) = P (X);
(c) the completion X? of X is a PC-space;
(d) if for A, B ⊂ X there is an f ∈ CAU(X) with f(A) = 1

and f(B) = 0, then there is a g ∈ P (X) with g(A) = 1 and
g(B) = 0;

(e) if the closures in X? of two subsets A, B of X are contained
in two disjoint zero sets, then A, B are δ-far;

(f) CAU?(X) = P ?(X).

Proof. (a) ⇒ (b) is trivial.
(b) ⇒ (c). f : X? → R is continuous ⇒ f : X? → R is Cauchy ⇒

f/X : X → R is Cauchy ⇒ f/X : (X, δ) → (R, η) is p-continuous
⇒ f : (X?, δ) → (R, η) is p-continuous.

(c) ⇒ (d). Let f ∈ CAU(X) with f(A) = 1 and f(B) = 0.
There is a continuous function f? : X? → R which extends f to
the completion X? of X (see [17]). Clearly, f?(clX?A) = 1 and
f?(clX?B) = 0. By (c) the claim holds.

(d) ⇒ (e). Let A, B ⊂ X with clX?A ⊂ A?, clX?B ⊂ B? and
A?, B? disjoint zero sets in X?. Then, there is an f ∈ C(X?)
with f(A?) = 1 and f(B?) = 0. Since X? is complete, C(X?) =
CAU(X?) and so the restriction f/X of f to X is Cauchy with
f/X(A) = 1, f/X(B) = 0. By (d) the result follows.

(e) ⇒ (f). If (f) is not true, then there are an f ∈ CAU?(X) \
P ?(X) and subsets C, D of X with CδD but f(C) = 1, f(D) = 0.
Its extension f? ∈ CAU?(X?) \ P ?(X?) and f?(C) = f(C) = 1,
f?(D) = f(D) = 0. Let A? = f?−1({1}), B? = f?−1({0}), A =
A?∩X and B = B?∩X . By construction C ⊂ A ⊂ A?, D ⊂ B ⊂ B?

with A?, B? disjoint zero sets in X?. Thus, clX?A ⊂ A?, clX?B ⊂
B? but AδB (in fact C ⊂ A, D ⊂ B and CδD) contradicting (e).

(e) ⇒ (a). Assume not. Then, there are an f ∈ CAU(X, Y ) \
P (X, Y ) and subsets A, B of X such that AδB but f(A)6ηf(B) in Y .
From Theorem 7.12 in [13] there is a g ∈ P ?(Y ) satisfying g◦f(A) =
1, g ◦ f(B) = 0. By a result of Leader (cf. [10, Corollary 5]) g ∈
CAU?(Y ). It follows g◦f ∈ CAU?(X)\P ?(X), a contradiction. �

Remark 5.2. The above Theorem 5.1 with Theorem 4.3 offers a
decomposition of the property of PC-spaces.
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Theorem 5.3. Consider the following statements concerning a
uniform space (X,U).

(a) δ = δc on X;
(b) every Cauchy map f : X → Y , where (Y,V) is any uniform

space, is p-continuous w.r.t. proximities δ, ηc on X, Y
respectively;

(c) every Cauchy map f : X → Y , where (Y,V) is any uni-
form space, is p-continuous w.r.t. proximities δ, η on X, Y
respectively;

(d) CAU(X) = P (X);
(e) the completion X? of X is a PC-space;
(f) CAU?(X) = P ?(X).

Then (a) ⇔ (b) ⇒ (c) ⇔ (d) ⇔ (e) ⇔ (f). Further, if the com-
pletion X? is normal, then all the above statements are equivalent.
Thus, if X is metrizable and U is the associated metric uniformity,
then all the above statements are equivalent.

Proof. (a) ⇒ (b). Let f : X → Y be a Cauchy map. By Lemma 4.2
f : (X, δc) → (Y, ηc) is p-continuous. Since δ = δc, the claim holds.

(b) ⇒ (a). The identity map i : X → X is a Cauchy map. By
(b) i : (X, δ) → (X, δc) is p-continuous. So, AδB implies AδcB, i.e.
δc ≤ δ. On the other hand, it is always true that δ ≤ δc (cf. (i) in
Remark 1.5 (d)). Thus, δ = δc.

(b) ⇒ (c). Let f : X → Y be a Cauchy map. By (b) f : (X, δ) →
(Y, ηc) is p-continuous. Since η ≤ ηc, f : (X, δ) → (Y, η) is p-
continuous, too.

(c) ⇔ (d) ⇔ (e) ⇔ (f) are in Theorem 5.1.
Now, suppose the completion X? is normal and (e) holds. Then,

X? is a normal PC-space. Thus, δ = δ0 on X?. It follows δ/X =
δ0/X , i.e. δ = δc on X . �

6. CAU-UC Spaces

In this section we consider the uniform case. This case is a
bit tricky since CAU(X) = U(X) does not imply CAU(X, Y ) =
U(X, Y ) for each uniform space Y and CAU?(X) = U?(X) does
not imply CAU(X) = U(X).

So, we have three cases:

(a) strong CAU-UC: CAU(X, Y ) = U(X, Y ) for each uni-
form space Y.
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(b) Čech CAU-UC: CAU?(X) = U?(X).
In this case U?(X) = P ?(X) (cf. (c) and (d) in Remark

1.8) and this being a proximity property is already studied
in Theorem 5.1.

(c) UC: CAU(X) = U(X).

Theorem 6.1. For a uniform space (X,U) the following are equiv-
alent:

(a) CAU(X) = U(X) (CAU(X, Y ) = U(X, Y ) for each uni-
form space Y );

(b) (X?,U?) is UC (respectively, (X?,U?) is strong UC), where
(X?,U?) is the completion of (X,U).

Proof. Let X? (respectively, Y ?) the completion of X (respectively,
the completion of Y ). To show the equivalence of (a) and (b) note
that the class CAU(X) (respectively, CAU(X, Y )) equals the class
C(X?) (respectively, C(X?, Y ?)) as well as U(X) (respectively,
U(X, Y )) equals U(X?) (respectively, U(X?, Y ?)). �

Remark 6.2. By the above Theorem 6.1 we have:

(a) (X,U) is a strong CAU-UC space if, and only if, the trace
on X of the fine uniformity of X? equals U .

(b) (X,U) is a CAU-UC space if, and only if, U? is the coarsest
uniformity for which C(X?) = U(X?).

From the above Remark and the results in Sections 4 and 5 the
following are clear and do not need proofs.

Theorem 6.3. Let (X,U) be a uniform space and {An}, {Bn}, n ∈
N, countable families of subsets of X. The following are equivalent:

(a) CAU(X) = U(X);
(b) if {clX?Bn} is a discrete family in X? and for each n ∈ N

there is a function fn ∈ CAU(X), 0 ≤ fn ≤ 1 with values
1 on An and 0 on the complements of Bn, then there is an
U ∈ U , such that U [An] ⊂ Bn for each n ∈ N;

(c) if {An} is a sequence of sets such that f(An) = n for some
f ∈ CAU(X), then there is a U ∈ U , such that for n 6= m,
U [An]∩ Am = ∅.
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Theorem 6.4. Consider the following statements concerning a
uniform space (X,U).

(a) U? is fine;
(b) CAU(X, Y ) = U(X, Y ) for each uniform space Y ;
(c) CAU(X) = U(X);
(d) if {clX?Bn} is a discrete family in X? and for each n ∈ N

there is a function fn ∈ CAU(X), 0 ≤ fn ≤ 1 with values
1 on An and 0 on the complements of Bn, then there is an
U ∈ U , such that U [An] ⊂ Bn for each n ∈ N;

(e) if {An} is a sequence of sets such that f(An) = n for some
f ∈ CAU(X), then there is a U ∈ U , such that for n 6= m,
U [An]∩ Am = ∅;

(f) for each pair of sets A, B of X which have a Cauchy map
f : X → [0, 1] such that f(A) = 0 and f(B) = 1, there is a
uniformly continuous function g : X → [0, 1] with g(A) = 0
and g(B) = 1;

(g) if the closures in X? of two subsets A, B of X are contained
in two disjoint zero sets, then there is a U ∈ U , such that
U [A] ∩ B = ∅.

Then, (a) ⇔ (b) ⇒ (c) ⇔ (d) ⇔ (e) ⇒ (f) ⇔ (g) and none of
the arrows can be reversed.

Theorem 6.5. Consider the following statements concerning a
uniform space (X,U) such that the completion (X?,U?) is normal.

(a) (X?)′ is compact and for each U? ∈ U? there is a V ? ∈ U?

such that (U?[(X?)′])c is V ?-discrete;
(b) U? is Lebesgue, i.e. every open cover of X? has a refinement

{U?[x?] : x? ∈ X?} for some U? ∈ U?;
(c) U? is fine;
(d) CAU(X, Y ) = U(X, Y ) for each uniform space Y ;
(e) CAU(X) = U(X);
(f) δ = δc;
(g) X? is a normal PC-space.

Then, (a) ⇒ (b) ⇒ (c) ⇔ (d) ⇒ (e) ⇒ (f) ⇔ (g), and none of
the arrows can be reversed.

Furthermore, if X is metrizable and U is the associated metric
uniformity, then all the above statements are equivalent.
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Università del Sannio, Facoltà di Ingegneria, Piazza Roma, Palazzo

Bosco Lucarelli, 82100 Benevento, Italia

E-mail address: meccariello@unisannio.it

96 Dewson Street, Toronto, Ontario, M6H 1H3, Canada

E-mail address: somnaimpally@yahoo.ca




