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NON-SYMMETRIC CONVENIENT TOPOLOGY
AND ITS RELATIONS TO CONVENIENT
TOPOLOGY

GERHARD PREUSS*

ABSTRACT. Preuniform convergence spaces are introduced as
a generalization of semiuniform convergence spaces with the
advantage that the construct PUConv of preuniform conver-
gence spaces is not only a strong topological universe, i.e. it
fulfills nice convenient properties, such as the construct SU-
Conv of semiuniform convergence spaces, but it allows one
to study even non-symmetric topological concepts as well as
quasiuniform concepts. Furthermore, a completion for preuni-
form convergence spaces is investigated from which the usual
Hausdorff completion of a separated uniform space as well as
the Th-quasiuniform bicompletion of a Tp-quasiuniform space
in the sense of P. Fletcher and W. F. Lindgren can be derived.

0. INTRODUCTION

Convenient Topology consists in the study of strong topological uni-
verses in which symmetric convergence structures, such as symmet-
ric topological structures and various generalizations, and uniform
convergence structures, such as uniform structures and various gen-
eralizations, are available, whereas in Non-Symmetric Convenient
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Topology strong topological universes are studied, in which non-
symmetric convergence structures, such as topological structures
and various generalizations, and quasiuniform convergence struc-
tures, such as quasiuniform structures and various generalizations,
are at hand. Furthermore, in both cases, such a strong topological
universe should be easily described by means of suitable axioms
and should not be too big. Thus, the construct SUConv of semi-
uniform convergence spaces is a good candidate for this purpose
in Convenient Topology (cf. [6]). Omitting the ‘symmetry’ axiom
in the definition of a semiuniform convergence space, we obtain a
preuniform convergence space, and the construct PUConv of pre-
convergence spaces is mainly studied in Non-Symmetric Convenient
Topology.

It is well-known that the construct QUnif of quasiuniform spaces
contains the construct Unif of uniform spaces in the sense of A.
Weil [7] as a bireflective and bicoreflective subconstruct, and the
construct Top of topological spaces as a bicoreflectively embedded
subconstruct. This situation has an analogue in Non-Symmetric
Convenient Topology: SUConv is a bireflective and bicoreflective
subconstruct of PUConv, and the construct GConv of general-
ized convergence spaces can be bicoreflectively embedded in PU-
Conv. Consequently, each preuniform convergence space has an
underlying generalized convergence space, namely its bicoreflective
GConv-modification. Further, SUConv contains the construct
KConvg of symmetric Kent convergence spaces as a bicoreflec-
tively embedded subconstruct. Therefore, each preuniform conver-
gence space has an underlying symmetric Kent convergence space,
namely its bicoreflective KConvg-modification. Hence, there are
two possibilities of defining filter convergence in a preuniform con-
vergence space X:

19 convergence in the underlying symmetric Kent convergence
space, now called convergence in X, and

20 convergence in the underlying generalized convergence space,
now called preconvergence in X.

It is easily checked that each convergent filter is preconvergent, but
not vice versa.

If a filter on a preuniform convergence space is called a Cauchy filter
iff it is a Cauchy filter on its bicoreflective SUConv-modification
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(or equivalently: on its bireflective SUConv-modification), then
completeness (i.e. convergence of Cauchy filters) and completions
can be studied in PUConv, and it turns out that the simple
completion, known from Convenient Topology, exists in PUConv.
Since Unif and QUnif are bireflective in PUConv, every pre-
uniform convergence space has an underlying uniform space and
an underlying quasiuniform space, namely its bireflective Unif-
modification and its bireflective QUnif-modification respectively.
It turns out that for a Ty-quasiuniform space (resp. separated
uniform space) the underlying quasiuniform space (resp. uniform
space) of its simple completion is the Ty-quasiuniform bicompletion
in the sense of P. Fletcher and W. F. Lindgren [2] (resp. the usual
Hausdorff completion).

By the way, the natural function space structure in GConv, i.e.
the structure of continuous convergence, can be derived from the
natural function space structure in PUConv by bicoreflective mod-
ification.

The terminology of this paper corresponds to [6].

1. PRELIMINARIES

Definition 1.1. 1) A preuniform convergence spaceis a pair (X, Jx),
where X is a set and Jx a set of filters on X x X such the following
are satisfied:

UCY) The filter generated by {(z,x)}, i.e. & x &, belongs to Jx for
each r € X.

UCy) G € Jx whenever F € Jx and F C G.

If (X, Jx) is a preuniform convergence space, then the elements of
Jx are called uniform filters.

2) Amap f:(X,TIx) — (Y, Jy) between preuniform convergence
spaces is called uniformly continuous provided that (fx f)(F) € Jy
for each F € Jx.

3) The construct of preuniform convergence spaces (and uniformly
continuous maps) is denoted by PUConv.

Proposition 1.2. PUConv is a strong topological universe.

Proof. cf. [5; 3.10] O
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Remark 1.3. 1) If X is a set and F'(X) denotes the set of all filters
on X, then further axioms for subsets Jx of F(X x X) (besides
UCy) and UC4)) can be considered:

UCs3) F € Jx implies F~! = {F7! . F € F} € Jx where
FL—{(a,9): (y,2) € F},

UCy) F € Jx and G € Jx imply F NG € Jx,

UC5) F € Jx and G € Jx imply FoG € Jx (whenever Fog exists,
ie. FoG ={(z,y): 3z € X with (z,2) € G and (z,y) € F} # ¢
for every F € F and every G € G), where F o G is the filter gen-
erated by the filter base {F oG : F € F,G € G}. A preuniform
convergence is called

a) a semiuniform convergence space provided that UC3) is fulfilled,
b) a semiuniform limit space provided that UC3) and UC}) are ful-
filled,

¢) a uniform limit space provided that UC3), UCy) and UCs) are
fulfilled,

d) a preuniform limit space provided that UCy) is fulfilled, and

e) a quasiuniform limit space provided that UCy) and UC5) are
fulfilled.

The corresponding full subconstructs of PUConv are denoted by
SUConv, SULim, ULim, PULim, and QULim respectively.
Furthermore, a preuniform convergence space (X, Jx) is called qua-
stuniform (resp. uniform) provided that there is a quasiuniformity
(resp. uniformity) V on X such that Jx = [V] :={F € F(X xX):
F D V}. The corresponding full subconstruct of PUConv is de-
noted by QUnif (resp. Unif). Obviously, QUnif (resp. Unif) is
concretely isomorphic to the usual construct of quasiuniform spaces
(and uniformly continuous maps) in the sense of [2] (resp. the usual
construct of uniform spaces [and uniformly continuous maps| in the
sense of A. Weil [7], where no separation axiom is assumed).

2) In contrast to the situation for PUConv the subconstructs
QUnif and Unif are neither cartesian closed nor extensional (cf.
[1] or [6; 3.1.9.@ and 3.2.7.@) |, where the same example for Unif
and QUnif can be used). Though in Unif products of quotients are
quotients (cf. [3]) the corresponding question for QUnif is open.
3) It is well-known that ULim is cartesian closed (cf. [4]), but its
‘non-symmetric’ analogue QULim is not cartesian closed (cf. [1;
1.5.3]). None of both constructs is extensional (cf. [1]).
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Proposition 1.4. SUConv is a bireflective and bicoreflective (full
and isomorphism-closed) subconstruct of PUConv. In particular,
for each (X, Jx) € |PUConv]|,
Ix : (X, T%) — (X, TIx) with Jg ={F € Ix : F+ € Ix}
is the bicoreflection of (X, Jx) w.r.t SUConv, and
1x: (X, jX) - (X, j)r() with
Ty =TIxU{FeF(X x X): F' € Jx}
is the bireflection of (X, Jx) w.r.t SUConv.

Definition 1.5. Let (X, Jx) be a preuniform convergence space.
Then (X, J%) (resp. (X, J%)) is called its bicoreflective (resp. bire-
flective) SUConv-modification.

Remark 1.6. 1) a) Since the bicoreflective SUConv-modification
of a preuniform limit space, a quasiuniform limit space or a quasi-
uniform space is a semiuniform limit space, a uniform limit space
or a uniform space respectively, we obtain the following;:

a) SULim is bicoreflective in PULim,

() ULim is bicoreflective in QULim, and

«) Unif is bicoreflective in QUnif (cf. [2; p.2] for this construction
of a uniform space from a quasiuniform space).

b) For each (X, Jx) € |[PUConv]|, let

(Ix)L={FeF(X xX):3 F,....,Fp, € Ix with (| F;€F}, and
i=1

(Tx)o={FeF(XxX):3F,... Fn€ Jx with Fro...0F,C F}.
Then

a) 1x : (X, TIx) — (X,(Jx)r) is the bireflection of (X, Jx) €
|PULim| w.r.t. SULim, and

B) 1x : (X, TIx) — (X, ((JIx)g)r) is the bireflection of (X, Jx) €
|QULim| w.r.t. |ULim]|.
Furthermore,
v) 1x : (X, [V]) — (X, [U]) is the bireflection of (X, [V]) € QUnif
w.r.t Unif, provided that & = {V € V: there is a sequence (V,,)neN
with V,, € V and V7! € V for each n € N, and V; = V, such that
V2., C V, for each n € N}.

2) Each of the constructs in the following list

PUConv D PULim D QULim D> QUnif

is a bireflective (full and isomorphism-closed) subconstruct of the
preceding ones (similar to [6; 2.3.2.3]).
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3) It has been proved by A. Behling [1] that PULim is a topological
universe. Since it is easily checked that quotients in PULim are
formed as in PUConv, and since PULim is bireflective in PU-
Conv and thus, products in PULim are formed as in PUConv,
we obtain that in PULim quotients are productive because PU-
Conv has this property. Hence, PULim is a strong topological
universe.

2. PRECONVERGENCE SPACES

Definition 2.1. 1) Let (X, Jx) € |PUConv|. A filter F on X

preconverges to x € X, denoted by (F,z) € ¢z, or F 7%, x, iff
Tx Fe JIx.

2) A preuniform convergence space (X, Jx) is called a precon-
vergence space provided that Jx = qux’ where qux = {G €
F(X x X): there is some (F,z) € q7, with G D & x F}, in other
words: a preconvergence space is a preuniform convergence space
which is ‘generated’ by its preconvergent filters.

3) a) A generalized convergence space is a pair (X, q), where X is a
set and ¢ C F(X) x X such that the following are satisfied:

C4) (z,x) € q for each z € X.

Cy) (F,x) € ¢ whenever (G,z) € gand G C F.

b) A map [ : (X,q) — (X', ¢) between generalized convergence
spaces is called continuous provided that (f(F), f(x)) € ¢ for each
(F,z) €q.

Corollary 2.2. If (X, Jx) is a preuniform convergence space, then
(X, q7y) is a generalized convergence space.

Proposition 2.3. For each generalized convergence space (X, q)
there is finest preuniform convergence space structure J, on X
which induces q, i.e. q7, = q, where q7, = {(F,z) € F(X) x X):
& x F e Ty}

Proof. Let J; = {G € F(X x X): there is some (F,x) € ¢ with
G D @ x F}. Obviously, (X, J,) is a preuniform convergence space.
Furthermore, g7, = ¢:

a) (F,z) € q implies (F,x) € q7, since & x F D & x F.

b) If (F,x) € qg, there is some (G,y) € ¢ such that & x F D ¢y x G
which implies z = y and F D G. Thus, (F,z) € q.
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If (X,Jx) € |PUConv]| such that g7, = ¢, then J;, C Jx: Let
G € J;. Hence, there is some (F,z) € ¢ = qg,, i.e. ©xF € Jx,
such that G D & x F. Consequently, G € Jx. O

Proposition 2.4. The construct PConv of preconvergence spaces
(and uniformly continuous maps) is bicoreflective in PUConv and
concretely isomorphic to the construct GConv of generalized con-
vergence spaces (and continuous maps).

Proof. A) 1x : (X, Jy,,) — (X,Jx) is the desired bicoreflec-
tion of (X, Jx) € |[PUConv| w.r.t PConv:
1. (X, T, Jx) is a preconvergence space since, by 2.3, ¢z, = ¢ Jaz

and consequently, Jogy = quqj .

2. 1x : (X, Ty, ) — (X, Tx) is uniformly continuous, i.e. Jy, C
Jx, which is easily checked.

3. If (YV,Jy) € |PConv| and f: (Y,Jy) — (X, Jx) is uniformly
continuous, then f : (Y, Jy) — (X, J, Jx) is uniformly continuous,
too:

Let G € Jy = quy. Thus, G D y x F with y x F € Jy, which

implies f x f(y x F) = f(y) x f(F) C f x f(G), and since, by
assumption, f x f(y x F) € Jx, it follows that f x f(G) € Tazy
B) The following are valid:

a) qg, = q for each generalized convergence space structure ¢ (cf.
2.3.).

b) Jaze = JIx for each preconvergence space structure Jx (cf.
2.1.2)).

c) If f: (X,q) — (X',¢') is a continuous map between gener-
alized convergence spaces, then f : (X,J,) — (X', Jy) is uni-
formly continuous: Let G € J,, i.e. there is some (F,z) € ¢
with G D & x F. By assumption, (f(F), f(z)) € ¢'. Further-

more, f x f(G) D f(x) x [(F), ie. fx f(G) € Ty.

d) If f:(X,Tx) — (Y, Jy) is a uniformly continuous map between
preuniform convergence spaces, then f : (X, q7,) — (Y,qz) is
continuous: Let (F,z) € qg,, i.e. © x F € Jx. By assumption,
[x f(@xF)=f(z) x f(F) € Ty, ie. (f(F), f(z))€qz -

It follows from a)-d) that PConv is concretely isomorphic to
GConv. 0
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Corollary 2.5. PConv is closed under formation of quotients
and coproducts (both formed in PUConv), and contains all dis-
crete PUConv-objects.

Remark 2.6. By 2.4 we need not distinguish between precon-
vergence spaces and generalized convergence spaces.

Definition 2.7. Let (X,Jx) € |[PUConv|. Then (X,qy,) is
called its underlying generalized convergence space.

Corollary 2.8. If (fi : (X,JIx) — (Xi,Ix,))ier is an initial
source in PUConv, then (f; : (X,q7¢) — (Xi,qgy,))icr is an
initial source in GConv.

Proposition 2.9. The underlying generalized convergence space of
a quasiuniform space (regarded as a preuniform convergence space)
s a topological space.

Proof. Let (X, [V]) € |PUConv| be quasiuniform. Then
L. (X, qp) is a pretopological space:
Let r e X, M={FeFX):F i, x}, and V(z) = (Y| M. Then

qpv

V(x) — x since & xV(x) D V (namely, for each F € M,z xF DV,
ie. if V € V thereis some Fr € F such that {x} x Fr C V, and con-
sequently W = | J{Fr : F € M} € V(z) such that {z} x W C V).
2. For each z € X, V(z) = {V(z) : V € V}, since the following are

equivalent:
qv)

(1)F — =z,

2)F o> {V(x):V eV}

[(1) = (2). Let V € V. By assumption, there is some F' € F such
that {z} x I C V. Hence, F' C V(z) which implies V (z) € F.

(2) = (1). Let V€ V. Then V(z) € F, and V D {z} x V(x), i.e.
VeixFl]

3. It is well-known that there is a unique topology on X such that
for each z € X, {V(x) : V € V} is the neighborhood filter of z w.r.t.
this topology (cf. e.g. [2]).

1.-3. imply that (X, q[v]) is a topological space. O
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Remark 2.10. 1) 2.3 is similar to the well-known fact that for
each topology there is a finest quasiuniformity inducing this topol-
ogy.

2) 2.4 is similar to the fact that the construct FQUnif of fine quasi-
uniform spaces is bicoreflective in QUnif and concretely isomorphic
to the construct Top of topological spaces.

3) There is another possibility to introduce a generalized conver-
gence structure in a preuniform convergence space (X, Jx):

F € F(X) converges to x, denoted by (F,x) € Gy gy o (FN&) x
(FNni) € Jx. Since (FNz)x (FNik)=(FxF)N(txF)N
(Fxa)N(zxz) C & xF,weobtain, that each convergent filter in
a preuniform convergence space preconverges. On the other hand,
a preconvergent filter in a preuniform convergence space need not
be convergent as the following countererample shows:

Let R; be the usual topological space of real numbers, and let
(R, JqR) be its corresponding preconvergence space, i.e. F € JqR iff
there is some z € R such that F D & x U(x), where U(z) denotes
the neighborhood filter of x in R;. Then the preconvergent filters
in (R, Jg ) are exactly the convergent filters in Ry (cf. 2.3). In par-

ticular, the elementary filter F, of (%)neN is a preconvergent filter
in (R, qu), but it is not convergent in (R, qu) since F. # & for
each a € R. Note: A filter F on a preconvergence space (X, Jx)
converges to x € X iff F = @.

4) a) There is no difference between preconvergence and convergence
in uniform limit spaces. (If (X, Jx) € |ULim| and & x F € Jx,
then (i x F) ' = Fxi € Jx and FxF = (& x F)o(Fx i) € Tx
which imply (FNz)x (FN&) = (FXF)N(EXF)N(F x)N(ExE) €
TIx)-

b) There is no difference between preconvergence and convergence in
Fil-determined preuniform convergence spaces, where a preuniform
convergence space (X, Jx) is called Fil-determined provided that
Jx ={F € F(X x X): there is some G € F(X) with G x G € Jx,
and F D G x G}. This is easily checked. Obviously, every Fil-
determined preuniform convergence space is a semiuniform conver-
gence space.

5) In order to prove 2.9 it is essential that preconvergence is not
defined via F x & (cf. “(1) = (2)” in part 2. of the proof of 2.9)
which would also lead to a generalized convergence structure.
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Proposition 2.11. PConv is closed under formation of subspaces
and finite products (both formed in PUConv).

Proof. 1) Let (Y, Jy) € |PConv|and (X, Jx) a subspace of (Y, Jy)
in PUConv, where X C Y. It suffices to prove that Jx C qux
since the inverse inclusion is always valid. Let H € Jx. Then
(i x i)(H) € Jy = Jq,, (where i : X — Y denotes the inclu-
sion map), i.e. i X i(H) D y x G for some (G,y) € qz,. This
implies H D (i x i)y x G) =i () xi " H(G) =y x i~ }(G), where
¥ x i Y(G) € Jx because (i x i)(§y x i 1(G)) Dy xG € Ty, ie.
He Jqy,-

2) Let ((Xy, Jx;))ier be a finite family of preconvergence spaces
and let (X, Jx) be their product in PUConv. In order to prove
Ix C Tqzp let H € Jx. Hence, p; X pi(H) € Jx, for each i €
where p; : X — X; denotes the i-th projection. By assumption,
for each i € I,p; x pi(H) D #; x F; with #; x F; € Jx,. If
J: I XixX; — [ Xix ][] X; denotes the canonical isomorphism,

icl iel el
then j([] & x F) = (24);e; < [I Fi € J(11(pi x pi)(H)) C H such

el i€l i€l
that (z;);c; < [T Fi € Tx (note: py x pi((2);e; x [ Fi) = @i x F; €
iel iel
JIx, for each i € I),ie. H € T, . O

Remark 2.12. PConv is not countably productive in PUConv
as the following erxample shows:

Let ((X;, Jx;))icr be a family of preconvergence spaces such that
|I| = Np and |X;| > 2 for all ¢ € I. For each i € I, choose
some G; € Jx,. If the product (X, Jx) of ((X;, Jx,))ier in PU-
Conv were a preconvergence space, there would exist x € X and
F € F(X) such that

(%) & x F C j(I[ Gi) (j as under 2.11)

el
and & x F € Jx (note: (p; xp;)(j([[ Gi) = Gi € Tx, foreach i€ I,
el
ie. j(I] Gi) € Ix). Let F € F. By (x), {z} x F D j([] M;) with
icl icl

M; € G; for each i € I, and M; = X; x X; for all but finitely many
i € I. Thus, for all but finitely many i € I,p; x p;[{z} x F|] =

{z:} x pi[F] D pi x pil§[[] Mi]] = M; = X; x X;. Consequently,
iel
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X; C {x;} for all but finitely many ¢ € I in contrast to the assump-
tion |X;| > 2 foralli e I.

Corollary 2.13. PConv is a strong topological universe.

Proof. Since PUConv is a topological universe, and PConv is
a bicoreflective subconstruct, it follows from 2.11 that PConv is a
topological universe, too (cf. [6; 3.1.7 and 3.2.5]). Furthermore, in
GConv products of quotients are quotients, and by 2.4, GConv
=~ PConyv. Thus, in PConv quotients are productive. U

Remark 2.14. The structure of continuous convergencein GConv
can be derived from the matural function space structure in PU-
Conv, called the uniformly continuous PUConv-structure, which
is defined similarly to the uniformly continuous SUConv-structure
(cf. [653.1.9.0)]):

Let (X, q) and (X’,q’) be generalized convergence spaces, and let
X = (X,J,) and X' = (X', J,) be the corresponding preconver-
gence spaces. Then the underlying generalized convergence space of
the natural function space X’ X in PUConv is the natural function
space in GConv, whose function space structure is the structure
of continuous convergence (cf. [6; 3.1.9.@) a)] for the definition).

3. COMPLETIONS

Definition 3.1. Let (X, Jx) be a preuniform convergence space.
1) A filter F on X is called a Cauchy filter (or more exactly a Jx-
Cauchy filter) provided that F x F € Jx.

2) (X, Jx) is called complete provided that each Jx-Cauchy filter
converges.

Remark 3.2. 1) If (X,Jx) € |PUConv|, then F € F(X) is
a Cauchy filter iff F is a Cauchy filter in (X, J%) (or equivalently,
a Cauchy filter in (X, J¥)).

2) Let (X, Jx) € |PUConv|, and F € F(X). Then F converges to
x € X iff F converges to x in (X, J§) (or equivalently, F converges
to x in (X, J%)).

3) It follows from 1) and 2) that (X, Jx) € |PUConv| is complete
iff (X, Jg) is complete (or equivalently, (X, J%) is complete).
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4) Obviously, preconvergence spaces and convergence spaces are
complete, where a convergence space is a preuniform convergence
space (X, Jx) such that Jx = {F € F(X x X) : there is some
(G, ) € gy, With F D G x G}.

Definition 3.3. Let (X,Jx) € |[PUConv|, and let (Y, Jy) be
a complete preuniform convergence space containing (X, Jx) as a
dense subspace (i.e. X = {y € Y there is some G € F(Y) converg-
ing to y such that A € G} =Y). If i : X — Y denotes the inclusion
map, then i : (X, Jx) — (Y, Jy) is called a completion of (X, Jx).
Occasionally, (Y, Jy) is already called a completion of (X, Jx).

Remark 3.4. If (X,~) is a filter space (i.e. v C F(X) such

that 19 & € ~ for each # € X, and 2° F € v whenever F contains

some G € 7), then an equivalence relation ~ on + is defined by

F ~ G < There are finitely many Fy,...,F, € v with Fy = F
and F,, = G such that sup{F;_1, F;} exists for each
ie{l,...,n}.

The equivalence class of F € v w.r.t. ~ is denoted by [F].

If (X, Jx) € |PUConv|, then (X, v7,) is a filter space, where 77,

is the set of all Jx-Cauchy filters.

Theorem 3.5. Let (X, Jx) be a preuniform convergence space.
PutY = X U{[F]: F € vg, does not converge}, and leti: X — Y
be the inclusion map. Define a PUConv-structure Jy on'Y by

F € Jy iff there is some G € By such that F D G,

where By = {i xi(G): G € Tx}U{(i(F)N[F]) x (i(F)N[F]) : F €
V75 does not converge}. Then i : (X,Tx) — (Y, Jy) (or shortly:
(Y, Jy)) is a completion of (X, Jx), called the simple completion.
The set of all Jy-Cauchy filters is generated by

{i(F):Ferg, converges} U{i(F)N[F|:F ey, does not converge}.
Proof. Similar to [6; 4.4.5]. O

Remark 3.6. 1) The simple completion preserves (and reflects)
the property ‘semiuniform convergence space’.

2) If R: PUConv — Unif denotes the bireflector, then
R((X,Tx)) = (X,[U]) is called the underlying uniform space of
(X,Jx) € |PUConv|, where U is the finest uniformity which is
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contained in each F € Jx, i.e. U = {V € V: there is sequence
(Va)neny with V,, € V and V! € V for each n € N, and V; = V,
such that V2, C V,, for each n € N}, where V = (] F. Now

FeTx
the Hausdorff completion of a separated uniform space is obtained

as the underlying uniform space of its simple completion (cf. [6;
4.4.21]).

Definition 3.7. A preuniform convergence space (X, Jx) is called
separated provided that each filter 7 on X converges to at most
one point x € X.

Extension lemma 3.8. Let (X, Jx) be a preuniform convergence
space, i : (X, Tx) — (Y, Jy) its simple completion, (X', Tx') a sep-
arated complete preuniform convergence space, and f : (X, Tx) —
(X', Tx1) a uniformly continuous map. Then there is a unique uni-
formly continuous map f : (Y, Jy) — (X', J%) such that foi= f.

Proof. Analogous to [6; 4.4.13]. O

Proposition 3.9. If (X, Jx) is a quasiuniform limit space, then
(X,v7y) is a Cauchy space.

Proof. Let F,G € ~7, such that sup{F,G} exists. Then (F x
Flo(GxG)=GxFeTx,and (GXG)o(FxF)=FxG e Jx.
Consequently (FNG) x (FNG)=(FxF)N(FxG)N((GxF)N
(G x G) € JIx since F x F,G x G € Jx by assumption. Hence,
FNGevg,. O

Corollary 3.10. Let (X, Jx) be a quasiuniform limit space and
F € vgy. Then the following are equivalent:

(1) F does not converge.

(2) [F] # [z] for each x € X.

Proof. cf. [6; 4.4.4]. O

Proposition 3.11. Let (X, Jx) be a separated quasiuniform limit
space. Thenj: X — {[z] : x € X} defined by j(x) =[] is bijective.
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Proof. Obviously, j is surjective. In order to prove that j is in-
jective, let [#] = [y]. Since (X,~7,) is a Cauchy space by 3.9,
Ny € vg7,. By the definition of convergence in (X, Jx), £ Ny
converges to z and y. By assumption, z = y. O

Convention 3.12. Let (X, Jx) be a separated quasiuniform limit
space, and let Y = {[F]: F € y7,}. Then Y' = {[z] : x € X} U
{[F]: F € vz, does not converge}. Since j: X — {[z] : x € X} is
bijective, X and {[#] : x € X} can be identified, i.e. Y =Y’ where
(Y, Jy) is the simple completion of (X, JTx).

Remark 3.13. 1) Let (X, V) be a quasiuniform space, and (X, )
its bicoreflective Unif-modification. Then the following are equiv-
alent:

(1) (X, Xy) is a Ty-space, where Xy = {O C X: for each z € O,
there is some V' € V such that V(z) C O}.

(2) (X, Xy) is a Ty-space, where Ay = {O C X: for each z € O,
there is some U € U such that U(z) C O}.

(3) (X,V) is separated (in the sense of 3.7).

2) P. Fletcher and W. F. Lindgren [2; 3.33] have constructed (in
their terminology) a Tp-bicompletion for each Ty-quasiuniform
space, i.e. in our terminology: a separated quasiuniform comple-
tion (X, V) for each separated quasiuniform space (X, V), in other
words: a separated complete quasiuniform space (X, V) containing
(X,V) (up to isomorphism) as a dense subspace, as follows:

Let X be the set of all minimal Cauchy filters on (X, V) (or equiv-
alently on (X,U)). For each V € V, let V = {(F,G) € X x X:
there are some F' € F and some G € G such that F' x G C V}.
Put V = ({V : V € V}), i.e. V is generated by {V : V € V}.
The embedding rx : (X, V) — (X, V) is defined by rx(z) = U(z)
(= neighborhood filter of = w.r.t. Ay [cf. 1)]). This completion is
unique up to isomorphism ([2; 3.34]).

3) If R PUConv — QUnif denotes the bireflector, then
Rq((X, TIx)) = (X, [V]) is called the underlying quasiuniform space
of (X,Jx) € |PUConv|. In particular, V is the finest quasi-
uniformity on X which is contained in each F € Jx, i.e. V =
{V € W: there is sequence (V,,)nen of elements of W such that

Vi=V,and V2, CV, for each n € N}, where W= () F.
FeTx
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Theorem 3.14. Let (X,[V]) be a separated quasiuniform space
(regarded as a preuniform convergence space). Then the underlying
quasiuniform space of its simple completion is the above mentioned
separated quasiuniform completion of (X, V) (up to isomorphism).

Proof. Since (X, [V]) is separated, the underlying set of its simple
completion may be identified with
X* ={[F]: Fisa[V]-Cauchy filter}, and X with {[z] : z € X} (cf.
3.12). Each equivalence class [F] contains a minimal [V]-Cauchy fil-
ter, namely U(F) = ({U[F]| : U €U, F' € F}), which is independent
of the choice of the representative, where U (&) is the neighborhood
filter of x € X w.rt. Xy. If i : X — X* denotes the inclusion
map, and V* is the quasiuniformity on X* which is generated by
{V* . V € V}, where V* = {([F],[G]) € X* x X*: there are
My € U(F) and My € U(G) such that My x My C V' = {([F],[G]) €
X* x X*: there are W € U,F € F, and G € G such that
WIF]| x W[G] C V} for each V € V, then i : (X,V) — (X* V*) is
the above mentioned separated quasiuniform completion of (X, V).
Let i : (X,[V]) — (Y,Jy) be the simple completion of (X, [V]),
where Y = X* and let W = () F. Then W = (i x i)(V)N
FeTx*
N{G(F) N [F]) x (G(F) N [.7-"]) : F is a [V]-Cauchy filter} =
(@ x (V)N (HEUF) N UF)]) x @UF) O UF)) = Fis
a [V]-Cauchy filter}, and
(H)yv*Ccw:
By the extension lemma 3.8, there is a unique uniformly continuous
map h : (X* Jx*) — (X*, [V*]) such that the diagram

(X, V) —— (X%, V)
S

(X*v jX*)

>

commutes, where for each [V]-Cauchy filter F,i(F) converges to
R([F]) in (X* [V*]). On the other hand, i(F) converges to [F]
in (X* V*), ie. in (X* [V*]), and since (X* V*) is separated,
h([F]) = [F] for each [V]-Cauchy filter F, i.e. h = 1xx. Conse-
quently, Ty« C [V*], which implies V* C ({F : F € Tx=} = W.
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Furthermore,

(2) V*=WoWoW:

a) Let W € W. Then there is some V € V, and for each [F] =
[U(F)] € X*, there is a set Cpz € U(F) such that

(+) VU fUX (Crr UATFTY x (Cm ULIFTH) € W,

Let ([F],[G]) € V*. Then V € U(F) x U(G), which implies V' N
(Ci x Cig)) # ¢, i.e. there is some (7], [§]) € V N (C17 x Clg))-
Hence, it follows from (x)

([F]; [2]) € (Crr ULIFI}) x (Cpmy UL[F]}) € W,

([#],[y])) € V.C W, and

(191, 19]) € (Cigy U {[G]}) x (Cig U{[G]}) c W.

Hence, ([F],[G]) € W3, i.e. V* C W3. This proves W3 =WoWo
W C V*

b) Since V* is a quasiuniformity, V* = V* o V*. Thus, by (1),
V¥=V*oV*¥=V* o V¥oV*CWoWoW.

Now, let R be a quasiuniformity on Y = X* such that R C W.
Then R = RoRoR C WoWoW = V* and since by (1)
V* C W, V* is the finest quasiuniformity which is contained in W,
i.e. the finest quasiuniformity which is contained in each F € Jx=.
Thus, (X*, [V*]) is the underlying quasiuniform space of (X*, Jxx).

4. DIAGRAM OF RELATIONS BETWEEN VARIOUS SUBCONSTRUCTS
or PUConv

In the following diagram r (resp. c¢) stands for embedding as
a bireflective (resp. bicoreflective) subconstruct. Concerning the
constructs not mentioned before, see [6].

T, PUConv . ¢
SUConv "¢ B
T PConv%GConv
r ¢ : — Fil ¢ r.c
r.. PULim B
SULim- : COHVNKconVS Kconv
57_ L
: T B
. " +Lim
v QUle Limg..-
ULim- :T r} T
H TV
. QU'nif . PsTopg .-+~ PiTOp
Unif~" ¢ e 7, PrT
"o PrTopgs.- 1: P
"Iy Top

Tops -~
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(Note: Though |[KConvg|C |GConv|, we have |Conv|N|PConv|=
{discrete PUConv-objects}.)
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