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SCOTT IS NATURAL BETWEEN FRAMES

CHRISTOPHER TOWNSEND

Abstract. Based on original work in [TV03], this paper
gives a representation theorem for the Scott continuous maps
between frames in terms of natural transformations between
functors indexed by frames. The result specializes to frame
homomorphisms, thereby giving a representation theorem for
all locale maps (i.e. continuous maps as defined in locale the-
ory).

1. Introduction

This work is a re-write of original material contained in [TV03].
The aim of this re-write is to express the results using the language
of frame theory with less emphasis on locale theory, and using less
of the detailed study of frame presentations as objects.

Recall that a frame is a complete lattice which satisfies the dis-
tributivity law

a ∧
∨
T =

∨
{a ∧ t | t ∈ T}

for any element a and subset T . A frame homomorphism preserves
arbitrary joins and finite meets, and so a category, Fr, of frames
is defined. A frame is usually denoted ΩX , where X is the corre-
sponding locale. This comes from the definition of the category of
locales:
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614 CHRISTOPHER TOWNSEND

Loc ≡ Frop,

that is, the category of locales is taken to be the dual of the cat-
egory of frames. The category of locales is often considered as
a good framework for constructive topology (see [J82]) and so a
frame homomorphism Ωf : ΩY → ΩX (i.e. corresponding to a lo-
cale map f : X → Y ) is considered, in the localic context, exactly
the data for a continuous map. The purpose of this paper is to
give a representation theorem for these maps in terms of natural
transformations.

A natural transformation is a map between functors (see [MacL71]
for basic categorical definitions). Therefore to represent maps be-
tween frames as natural transformations we must first clarify what
the functor is corresponding to any particular frame. Given a frame
ΩX we define a functor ΛΩX : Fr → Set by

ΛΩX(ΩY ) = ΩY +Fr ΩX

ΛΩX(Ωg : ΩY1 → ΩY2) = Ωg + 1ΩX

where +Fr denotes frame coproduct.
Directed complete partial orders (dcpos) are more general lattice

structures than frames. Dcpos are defined as posets having joins
for only directed subsets of elements. A dcpo homomorphism is
required to preserve all directed joins; it is also known as a Scott
continuous map. Our main theorem actually represents these more
general homomorphisms:

Theorem 1.1. For any two frames ΩX, ΩW there is a bijec-
tion between dcpo maps ΩX → ΩW and natural transformations
ΛΩX .→ ΛΩW .

The category of functors Fr → Set has finite products (they are
calculated componentwise), and so the notion of an internal dis-
tributive lattice makes sense in this category. It can be shown that
each ΛΩX is an internal distributive lattice in [Fr,Set] and since
a frame homomorphism is exactly a dcpo homomorphism which is
also a distributive lattice homomorphism, the following corollary,
specializing the bijection of the theorem, seems reasonable.
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Corollary 1.2. There is a bijection between frame homomorphisms
Ωf : ΩX → ΩW and internal distributive lattice homomorphism
ΛΩX .→ ΛΩX .

The aim of this paper is to prove this theorem and corollary,
thereby proving a representation theorem for dcpo homomorphisms
between frames in terms of natural transformations and further
showing that this representation specializes to frame homomor-
phisms (i.e. to locale maps).

The main results are then re-stated in terms of locales and finally
a section has been included showing the implications of carrying
out the main results relative to an arbitrary topos. It is shown that
provided the topos is locally small, an external description of the
set of internal dcpo homomorphisms is available.

1.1. Applications. The broad application of this representation
result is that it enables a new view to be taken of the notion of
continuity. The infinitary aspects of continuity (directed joins) are
taken care of by the ‘higher order’ structure contained in the def-
inition of natural transformation, leaving only the finitary aspects
to manipulate. The cost is that the finitary manipulations are now
in the much larger category [Fr,Set], but this category is relatively
well behaved.

Specifically the result has application to the theory of power
locales (which, very broadly speaking, is the localic study of hyper-
spaces). In [TV03] the result is used to show that the general points
of the upper, lower and double power locales can all be described
in terms of natural transformations. In particular it is shown that
whereas the localic function space SX will only exist as a locale if X
is locally compact, with this representation theorem, we have that
SSX

exists as a locale for every X . This is proved here as Corollary
5.6.

In [T04] the results are applied to the problem of axiomatizing
the category of locales. By axiomatizing that natural transforma-
tions are related to continuous maps in the way that dcpo homo-
morphism are known to be related to locale maps, some properties
of the category of locales can be proved axiomatically. For example,
pullback stability of proper and open maps can be shown.
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2. Dcpo Presentations

To get started with dcpo maps, a clear first step is to show that
dcpo presentations present. By a dcpo presentation we shall mean
a poset P (of generators) and a set of equations

λ(r) =
∨↑

{l | lπr}

indexed by r ∈ R. So λ : R→ P and π ⊆ P×R is such that {l | lπr}
is a directed subset of P for every r ∈ R. By ‘presenting’ we mean
that dcpo〈P qua poset | R〉 is well defined, i.e. there exists a
monotone map k : P → dcpo〈P qua poset | R〉 satisfying the
equations R such that for every monotone map h : P → A, with A a
dcpo and h satisfying R, there exists a unique dcpo homomorphism
f : dcpo〈P qua poset | R〉 → A such that f ◦ k = h.

That dcpo presentations present seems to be folklore. It is equiv-
alent to the fact that coequalizers of dcpos exist, and this has been
known at least since [M77]. We now give a proof that re-applies the
techniques of [JV91], where preframe presentations are proved to
present from the fact that frame presentations do. Here, we replace
preframes by dcpos and frames by suplattices.

The category of suplattices (Sup) has as objects complete lat-
tices and has as morphisms arbitrary join preserving maps. It was
extensively studied in [JT84]. For example suplattice coequalizers
exist: if M is a suplattice and R a subset of M × M , then the
set of R-coherent elements forms the quotient, where an m ∈M is
R-coherent iff for every aRb it is the case that a ≤ m iff b ≤ m.
The quotienting map is z : c 7−→ ∧{m | m R-coh., m ≥ c}, which
is left adjoint to the inclusion and so preserves arbitrary joins. To
prove this quotienting claim, note that if h : M → Q is a suplattice
homomorphism enjoying h(a) = h(b) for every aRb then h∗h(c)
is R-coherent for every c ∈ M where h∗ is the right adjoint to
h. It follows that the category of suplattices has coequalizers (take
R = {(f(n), g(n) | n ∈ N} for any f, g : N ⇒ M to be coequalized).

Lemma 2.1. If A is a dcpo, then the free suplattice over it is
provided by the set of Scott closed subsets.

Proof. Let us write F (A) for the set of Scott closed subsets of A
(that is, the lower closed subsets which are closed under directed
joins). Any intersection of Scott closed subsets is clearly Scott
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closed and so F (A) is a complete lattice. ↓: A → F (A) is Scott
continuous (preserves directed joins). Now for any B ∈ F (A),
B =

∨
{↓ b | b ∈ B} since the join always contains the set theo-

retic union. So, given any dcpo morphism φ : A → M with M a
suplattice, the assignment q(B) =

∨
M{φ(b) | b ∈ B} is therefore

necessary if φ is to factor as q ↓ with q a suplattice homomor-
phism. But r : M → F (A) given by r(m) = {b | φ(b) ≤ m}
provides a right adjoint to q so we know that q, so defined, is a
suplattice homomorphism. Therefore F (A) provides the correct
universal properties. �

Theorem 2.2. (dcpo presentations present) For any dcpo presen-
tation (P,R, λ, π), dcpo〈P (qua poset)| R〉 is well defined.

Proof. First note that the problem reduces to a proof of the exis-
tence of dcpo coequalizers since the ideal completion (i.e. the set
of lower closed directed subsets) of any poset is the free dcpo on
that poset (the universal map is a 7−→ ↓ a). We are reduced to
finding the coequalizer of

idl(R) ⇒ idl(P )
where idl( ) denotes the ideal completion and the arrows are de-
termined by the equations of the presentation (and R is taken as a
discrete poset, so idl(R) ∼= R).

To find the dcpo coequalizer of f, g : A ⇒ B, the first step is
to take the suplattice coequalizer of Ff, Fg, giving a suplattice
homomorphism h′ : F (B) → C ′. Here F is the free construction as
in the proof of the lemma. We therefore get a dcpo homomorphism
h′◦ ↓: B → C ′. Next take the image factorization in dcpo to get
i ◦ h : B � C ↪→ C ′. (The category of dcpos does have image
factorizations: just take the intersection of all subdcpos containing
the set theoretic image of the homomorphism to be factorized.)
h is the required dcpo coequalizer of f and g. If k : B → D

composes equally with f and g, then F (k) factors via C ′ as k′ ◦ h′
(say). Set C0 = {c′ ∈ C ′ | ∃d ∈ D, k′(c′) =↓ d}. C0 is a subdcpo
of C ′ since k′ and ↓ are dcpo homomorphisms. But h′◦ ↓: B → C ′

factors via C0 (k′h′ ↓= F (k) ↓=↓ k) and so C ⊆ C0 by definition
of image factorization. But k′ restricts to a map from C0 to D
by construction, and so there is a dcpo homomorphism C → D as
required, since for any b ∈ B, k′h′ ↓ b =↓ k(b).
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Uniqueness follows since h is a surjection (and so an epimor-
phism) in dcpo (as it is formed from image factorization). �

Our next aim is to give a dcpo presentation for certain suplattice
coequalizers. If we are given a dcpo presentation (L,R, λ, π) with
L a join semilattice then R is join stable if for every l′ ∈ L and
every equation

λ(r) =
∨↑

{l | lπr}
in R it is also the case that

λ(r)∨ l′ =
∨↑

{l ∨ l′ | lπr}

is in R. With this definition we have,

Theorem 2.3. let L be a join semilattice and R a join stable set
of directed equations on it. Then

Sup〈L (qua ∨ -SemiLat) | R〉 ∼= dcpo〈L (qua poset) | R〉.
Proof. The right-hand side is defined; let us denote it by A. Now
for any l ∈ L the join stability assumption on R enables us to define
a dcpo homomorphism φl : A→ A by

φl(l′) = l′ ∨ l.
Since l′ ≤ φl(l′) for any l′ ∈ L, we have that φl(a) is an upper bound
for a, for any a ∈ A (since from the universal characterization of
A it can be shown that every a ∈ A is the directed join of l ≤ a,
l ∈ L; consider the subdcpo of all elements of A for which this is
true).

Now for each a ∈ A define a dcpo homomorphism ψa : A → A
by

ψa(l) = φl(a).
To check this is well defined it must be verified that ψa( ) : L→ A
is monotone and satisfies R. But ψl( ) : L → A is monotone for
every l ∈ L and also satisfies R by the join stability assumption,
and so the same is true for ψa( ) : L → A since φl( ) preserves
directed joins and so ψa(l) is a directed join of ψl′(l) for any a.

Next, check that ψc(c) = c for any c ∈ A (since c =
∨↑{l ∈ L | l ≤ c}) and from this it follows that ψb(a) is the bi-
nary join of a and b in A. The bottom element of L, 0L has the
property that 0L ≤ l for every l ∈ L and so 0L ≤ a for every
a ∈ A. Therefore A is a join semilattice (and also a dcpo) and so
is a suplattice.
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To prove that A ∼= Sup〈L (qua ∨-SemiLat)| R〉 we must show
that every join semilattice homomorphism σ : L → M which sat-
isfies R must factor uniquely as a suplattice homomorphism via A
(whereM is an arbitrary suplattice). By definition ofA, σ : L→M
factors uniquely as a dcpo homomorphisms, σ : A → M say. To
prove that σ is a suplattice homomorphism it must be verified, for
example, that σ(ψb(a)) ≤ σ(a) ∨M σ(b) and this follows from the
construction of ψb and the fact that σ : L→M is a join semilattice
homomorphism. �

2.1. Dcpo presentations for Frame Coproduct. It is known
that frame coproduct (i.e. locale product) is the same thing as su-
plattice tensor (e.g. III, 2, of [JT84], but easily verified directly).
Since we know that suplattice tensor can be defined (as it can be
expressed as a coequalizer) it follows from the last theorem that we
can now show how to describe frame coproduct via a dcpo presen-
tation.

Proposition 2.4. Suppose ΩX and ΩY are frames then

ΩX +Fr ΩY ∼= dcpo〈ΩX ⊗∨Slat ΩY (qua poset) | R⊗
dcpo〉

where R⊗
dcpo consists of the equations

u ∨ (∨↑I ⊗ b) =
∨↑

{u ∨ (i⊗ b) | i ∈ I} and

u ∨ (a⊗ ∨↑J) =
∨↑

{u ∨ (a⊗ j) | j ∈ J}

taken over all (directed) I ⊆↑ ΩX, J ⊆↑ ΩY all (a, b) ∈ ΩX × ΩY
and all u ∈ ΩX ⊗∨SLat ΩY .

Proof. It has been observed that ΩX +Fr ΩY ∼= ΩX ⊗Sup ΩY .
Therefore by splitting the suplattice bilinearity into finite join semi-
lattice bilinearity and directed join (i.e. dcpo) bilinearity we have
the first line of

ΩX ⊗Sup ΩY ∼= Sup〈ΩX ⊗∨Slat ΩY (qua ∨ Slat)|

(∨↑I ⊗ b) =
∨↑

I
i⊗ b, (a⊗ ∨↑J) =

∨↑

J
a⊗ j〉

∼= Sup〈ΩX ⊗∨Slat ΩY (qua ∨ Slat)|R⊗
dcpo〉

where the second line follows since adding the u ∈ ΩX ⊗∨SLat

ΩY into the equations clearly has no effect on the suplattice being
presented. But by construction R⊗

dcpo is join stable and so this
result follows from the last theorem. �
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Given the join semilattice tensor used above it will be helpful to
have the following explicit description of it for use later. Here F
denotes the (Kuratowski) finite powerset construction and Pos is
the category of posets with monotone maps.

Proposition 2.5. Let C and D be two join semilattices. Then
their join semilattice tensor (C ⊗∨Slat D) is given by

Pos〈F(C ×D) (qua poset) |
{(∨k∈Kck,∨l∈Ldl)} ∪ I = {(ck, dl)|k ∈ K, l ∈ L} ∪ I〉,

where the equations are over all I ∈ F(C × D), K ∈ F(C) and
L ∈ F(D).

Proof. Let E be the poset presented above, with universal mono-
tone function γ : F(C × D) → E. Because of the join stability
of the relations, the binary join operation on F(C × D) (i.e. the
union) defines a binary operation ∨ on E, γ(U)∨γ(V ) = γ(U ∪V ).
This is binary join for E, and in fact E is a ∨-semilattice with γ
a homomorphism. The nullary join is γ(∅). (cf proof of Theorem
2.2.)

Now suppose θ : C ×D → F is bilinear for some join semilattice
F . The mapping U 7−→ ∨(c,d)∈Uθ(c, d) respects the relations that
define E, since

θ(∨k∈Kck,∨l∈Ldl) ∨ ∨(c,d)∈I θ(c, d)
= ∨k∈K ∨l∈L θ(ck, dl)∨ ∨(c,d)∈I θ(c, d)

The monotone map defined by this mapping clearly commutes
with the construction of join on E and so there is a (necessarily
unique) join semilattice from E to F extending θ. �

3. The lattice ΩWL

If L is a poset of generators for a frame ΩX , then to examine dcpo
maps ΩX → ΩW we are equivalently examining monotone maps
L→ ΩW which satisfy certain relations R. Certainly, for any ΩX ,
such L and R exist since L can be taken to be ΩX and R can be
taken to be the set idl(L) (forget the inclusion ordering on idl(L),
R is discrete as a poset). The rest of the data for this standard
presentation is then λ ≡ ∨↑ :R→L and π ≡ {(l, r) | l∈r} ⊆ L×R.
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Let us first examine the set of all monotone maps L → ΩW
which will be denoted ΩWL. In particular we will relate it to UL,
which is the set of upper closed subsets of L. UL is a frame since
it is closed with respect to all unions and intersections.

Lemma 3.1. (i) ΩWL is a suplattice,
(ii) for any l ∈ L and a ∈ ΩW the map ↑a l : L → ΩW given

by ↑a l(l′) = ∨{a | l ≤ l′} is monotone, i.e. ↑a l ∈ ΩWL. Here the
set {a | l ≤ l′} consists of the singleton {a} if l ≤ l′ and is empty
otherwise.

(iii) For every φ ∈ ΩWL

φ =
∨

{↑a l | a ≤ φ(l)}.

(iv) ΩWL ∼= UL⊗Sup ΩW .

Proof. (i) Join is calculated pointwise. So if φi ∈ ΩWL for some
i ∈ I an indexing set, [∨φi](l) = ∨{φi(l) | i ∈ I}.

(ii) If q1 ≤ q2 then {a | l ≤ q1} ⊆ {a | l ≤ q2} and so
∨{a | l ≤ q1} ≤ ∨{a | l ≤ q2}.

(iii) Since join in ΩWL is calculated pointwise we must verify,
for every l′ ∈ L, that

φ(l′) =
∨

{[↑a l](l′) | a ≤ φ(l)}.

But, [↑a l](l′) = ∨{a | l ≤ l′} and so if further a ≤ φ(l), then
[↑a l](l′) ≤ φ(l) showing that RHS≤LHS. To show LHS≤RHS, take
a = φ(l′) and l = l′ (then, certainly, a ≤ φ(l) and φ(l′) ≤ [↑a l](l′)).

(iv) Define a suplattice homomorphism Ψ : UL ⊗Sup ΩW →
ΩWL by Ψ(I ⊗ a) = ∨{↑a l | l ∈ I}. It is easy to see that this is
bilinear in each coordinate and so Ψ is well defined.

Define Φ : ΩWL → UL⊗Sup ΩW by

Φ(φ) =
∨

l∈L
↑ l⊗ φ(l).

Φ is a suplattice homomorphism by a routine verification given the
description in (i). Now since for every upper closed subset I ⊆ L
(i.e. for every element of UL), I = ∪{↑ l | l ∈ I} it follows that to
prove Φ and Ψ are bijections it is sufficient to show that Φ(↑a l) =
↑ l ⊗ a and Ψ(↑ l ⊗ a) = ↑a l both of which are immediate. �
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In other words monotone maps L→ ΩW are exactly the elements
of UL ⊗Sup ΩW . The next aim is to isolate which elements of
UL⊗SupΩW correspond to monotone maps satisfying the relations
R. Given a monotone function φ : L → ΩW , it satisfies R if and
only if its dcpo extension φ : idl(L) → ΩW composes equally with
the (dcpo) maps of the presentation

e1, e2 : idl(R) ⇒ idl(L).

This is the dcpo coequalizer form of a dcpo presentation for ΩX .
But it is widely known (e.g. [V93]) that these dcpo homomorphisms
(e.g. e1) correspond bijectively to frame homomorphisms UL →
UR since:

Lemma 3.2. For any posets L,R, (with L a join semilattice) there
is a bijection between dcpo homomorphisms h : idl(R) → idl(L)
and frame homomorphism Ωh : UL → UR. Ωh is related to h by
Ωh(↑ l) = {r | l ∈ h(↓ r)}.

Proof. For any meet semilattice the set of lower closed subsets of it
is well known to be the free frame on the meet semilattice, see II
Thm 1.2 in [J82]. The injection of generators is a 7−→↓ a.

Now idl(L) is equivalently the set of meet semilattice homomor-
phisms Lop → Ω, where Ω is the poset of truth values (so classically
Ω = {0 ≤ 1}) and Lop is the dual poset to L. To see this, given
an ideal I ⊆↑ L consider χI : Lop → Ω by χI(l) = 1 if and only if
l ∈ I .

But any dcpo homomorphism h : idl(R) → idl(L) is equivalent
to a monotone map h : R → idl(L) since idl(R) is the free dcpo
qua poset. By embedding idl(L) in ΩLop

and taking the exponential
transpose, h : R → idl(L) corresponds to h̃ : Lop → ΩR. Firstly
note that h̃(l) is monotone for every l ∈ L, and so h̃ : Lop → UR.
Secondly note that h̃ is a meet semilattice homomorphisms by our
description of idl(L) in terms of meet semilattice homomorphisms.
In reverse, any meet semilattice homomorphism Lop → UR gives
rise to a monotone map R→ idl(L).

Now any meet semilattice homomorphism Lop → UR extends
uniquely to a frame homomorphism from the frame of lower closed
subsets of Lop to UR. But the set of lower closed subsets of Lop is
the same as UL and so the proof is complete.

The formula given for Ωh is immediate from construction. �
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A monotone map φ : L → ΩW satisfies the equations of the
presentation iff φ ◦ e1 = φ ◦ e2 and so given this lemma our next
objective is to show that φ satisfies the equations if and only if
(Ωe1⊗1)(Φ(φ)) = (Ωe2⊗1)(Φ(φ)) where Φ : ΩWL

∼=→ UL⊗SupΩW
is as in the proof of Lemma 3.1 (iv) above. This would give an
account of dcpo maps purely in terms of a frame equalizer. Given
the description of Φ(φ) above, we have that

(Ωe1 ⊗ 1)(Φ(φ)) =
∨

l∈L
Ωe1(↑ l)⊗ φ(l)

But from the description of Ωe1 in terms of e1 just given, we have
that Ωe1(↑ l) = ∨{↑ r | l ∈ e1(↓ r)}. But l ∈ e1(↓ r) implies
↓ l ⊆ e1(↓ r) and hence that φ(l) = φ(↓ l) ≤ φ ◦ e1(↓ r). Therefore

∨
l∈L

Ωe1(↑ l)⊗ φ(l) ≤
∨

r∈R
↑ r ⊗ φ ◦ e1(↓ r).

In the other direction, since e1(↓ r) =
⋃↑{↓ l | l ∈ e1(↓ r)}

and φ is a dcpo homomorphism, it is true that φ ◦ e1(↓ r) =∨↑{φ(l) | l ∈ e1(↓ r)} and so
∨

r∈R
↑ r ⊗ φ ◦ e1(↓ r) =

∨
r∈R

{↑ r ⊗ φ(l) | l ∈ e1(↓ r)}

But l ∈ e1(↓ r) implies ↑ r ≤ Ωe1(↑ l) and so

(Ωe1 ⊗ 1)(Φ(φ)) =
∨

r∈R
↑ r⊗ φ ◦ e1(↓ r) = Φ(φ ◦ e1◦ ↓).

Hence (Ωe1⊗1)(Φ(φ)) = (Ωe2⊗1)(Φ(φ)) if and only if φ◦e1 = φ◦e2
since Φ is a bijection (and ↓ is universal). Therefore:

Theorem 3.3. Given a frame ΩX and a presentation of it as a
dcpo e1, e2 : idl(R) ⇒ idl(L) then for any frame ΩW there is a
bijection between the frame equalizer of

(Ωe1 ⊗ 1), (Ωe2 ⊗ 1) : UL⊗Sup ΩW ⇒ UR⊗Sup ΩW

and dcpo(ΩX,ΩW ).

In particular the identity map 1ΩX corresponds to an element
Φ(1ΩX) ∈ UL ⊗Sup ΩX since 1ΩX is the universal map from the
lattice L to ΩX (recall that we may take L = ΩX using the stan-
dard presentation). Φ(1ΩX) has the following important property.
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Lemma 3.4. For any pair of frames ΩY, ΩX, and any K ∈
ΩY ⊗SupΩX there exists a frame homomorphism ΩfK : UL→ ΩY
such that

K = (ΩfK ⊗ 1)(Φ(1ΩX)).

Proof. Defining Ωf is equivalent to defining a meet semilattice ho-
momorphism Lop → ΩY , and this can be done by

q : l 7−→
∨

{b ∈ ΩY | b⊗ l ≤ K}.

Note that q(l1 ∨L l2) ≥ q(l1)∧ΩY q(l2) since if b1, b2 ∈ ΩY have the
property bi ⊗ li ≤ K for i = 1, 2 then b1 ∧ b2 ⊗ (l1 ∨L l2) ≤ K. But

(ΩfK ⊗ 1)(Φ(1ΩX)) = (ΩfK ⊗ 1)
∨

l∈L
↑ l⊗ l

=
∨

{b⊗ l | b⊗ l ≤ K, l ∈ L}
= K

where the final line follows since L = ΩX and every K is a join of
suplattice generators. �

4. Dcpo maps as Natural Transformations

We are now in a position to prove the main result. Recall from
the introduction that for any frame ΩX we have the functors:

ΛΩX : Fr → Set
ΩY1 7−→ ΩY1 ⊗Sup ΩX
Ωf ↓ 7−→ ↓ Ωf ⊗ 1ΩX

ΩY2 7−→ ΩY1 ⊗Sup ΩX

Theorem 4.1. For any frames ΩX and ΩW there is a bijection be-
tween dcpo(ΩX,ΩW ) and the set of natural transformations from
ΛΩX to ΛΩW .

Proof. Assume ΩX is presented as a dcpo by L,R as in the previous
section, so 1ΩX : L→ ΩX is the universal map from generators (as
L = ΩX). Let α : ΛΩX .→ ΛΩW be a natural transformation,
then αUL(Φ(1ΩX)) ∈ UL ⊗Sup ΩW . But the universal map, 1ΩX ,
certainly satisfies the relations R and so (Ωe1 ⊗ 1ΩX)Φ(1ΩX) =
(Ωe1 ⊗ 1ΩX)Φ(1ΩX) by Theorem 3.3 and so

(Ωe1 ⊗ 1ΩW )αΩX(Φ(1ΩX)) = (Ωe1 ⊗ 1ΩW )αΩX(Φ(1ΩX))
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by naturality of α. Hence, also by Theorem 3.3 (in the opposite
direction), αΩX(Φ(1ΩX)) corresponds to a dcpo homomorphism,
which we denote qα.

In the other direction, given q : ΩX → ΩW , to define αq
ΩY :

ΩY ⊗Sup ΩX → ΩY ⊗Sup ΩW for every ΩY , it is sufficient by
Proposition 2.4 to define ΩY ⊗∨SLat ΩX → ΩY ⊗Sup ΩW which
satisfy the equation R⊗

dcpo. Consider, for any frame ΩY , the as-
signments qΩY given by

ΩY ⊗∨SLat ΩX → ΩY ⊗Sup ΩW

∨i∈Ibi ⊗ ai 7−→
∨

I ′∈FI

∧i∈I ′bi ⊗ q(∨i∈I ′ai)

where the join is taken over all the finite subsets of the (finite)
indexing set I . It must be checked that these are well defined poset
maps, and this is going to be done by appealing to the description
of join semilattice tensor as given in Proposition 2.5. Firstly note
that if we add a single element to an indexing set, i.e. J = I t {∗},
then FJ = FIqFI since every subset of J contains ∗ or it doesn’t.
It follows that for any pair (c, d) ∈ ΩY × ΩX

qΩY (c⊗ d ∨ [∨i∈Ibi ⊗ ai])

= qΩY (∨i∈Ibi ⊗ ai)∨
∨

I ′∈FI

[c∧ ∧i∈I ′bi] ⊗ qΩY (d∨ ∨i∈I ′ai) (a)

Take c = ∨Kck, d = ∨Ldl as in the statement of Proposition 2.5.
Then

qΩY ([∨K×Lck ⊗ dl] ∨ [∨i∈Ibi ⊗ ai])

=
∨

I ′∈FI

∨
J ′∈F(K×L)

χI ′,J ′ (b)

where χI ′ ,J ′ = [(∧(k,l)∈J ′ck)∧(∧i∈I ′bi)]⊗qΩY [(∨(k,l)∈J ′dl)∨(∨i∈I ′ai)]
and we must verify that (a)=(b) in order to establish that each qΩY

is a well defined monotone map. Firstly (a) ≤ (b) since by taking
J ′ = ∅ it is clear that qΩY (∨i∈Ibi ⊗ ai) ≤ (b) and then for any
k ∈ K, [ck ∧ (∧i∈I ′bi)] ⊗ qΩY [(∨l∈Ldl) ∨ (∨i∈I ′ai)] ≤(b) by taking
J ′ = {k} × L in (b).

To prove that (b)≤(a) note that for J ′ empty it needs to be
shown that qΩY (∨i∈Ibi ⊗ ai) ≤(a), which is trivial. On the other
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hand given (k′, l′) ∈ J ′ we have that

[(∧(k,l)∈J ′ck)∧ (∧i∈I ′bi)]⊗ qΩY [(∨(k,l)∈J ′dl) ∨ (∨i∈I ′ai)]
≤ [ck′ ∧ (∧i∈I ′bi)]⊗ qΩY [(∨(k,l)∈J ′dl) ∨ (∨i∈I ′ai)]
≤ [c ∧ (∧i∈I ′bi)] ⊗ qΩY (d ∨ ∨i∈I ′ai)

and so (a)=(b) and qΩY is well defined.
To show that further qΩY determines a map ΩY ⊗Sup ΩX →

ΩY ⊗Sup ΩW it must be verified that it satisfies the equations
R⊗

dcpo. Let u = ∨i∈Ibi ⊗ ai denote a typical element of ΩY ⊗∨SLat

ΩX , as used in the equations R⊗
dcpo of Proposition 2.4. Then,

repeating (a) above, we have that

qΩY (( ) ⊗ ( ) ∨ u)
= qΩY (∨i∈Ibi ⊗ ai) ∨

∨

I ′∈FI

[( ) ∧ ∧i∈I ′bi]⊗ q(( ) ∨ ∨i∈I ′ai)

which is easily seen to be dcpo bilinear since directed join commutes
with ⊗, finite join and finite meet. qΩY therefore determines a dcpo
homomorphism

α
q
ΩY : ΩY ⊗Sup ΩX → ΩY ⊗Sup ΩW

for every frame ΩY . Checking naturality of αq is easy since given
any Ωf : ΩY1 → ΩY2,

[Ωf ⊗ 1ΩW ]
∨

I ′∈FI

∧i∈I ′bi ⊗ q(∨i∈I ′ai)

=
∨

I ′∈FI

∧i∈I ′Ωf(bi) ⊗ q(∨i∈I ′ai)

= α
q
ΩY2

([Ωf ⊗ 1ΩX ] ∨i∈I bi ⊗ ai)

for any dcpo generator ∨i∈Ibi ⊗ ai of ΩY1 ⊗Sup ΩX . (Note that, of
course, the composite ΩX×ΩY ⊗→ ΩY ⊗∨SLatΩX → ΩY ⊗SupΩX ,
where the second map is the universal map given by the presenta-
tion R⊗

dcpo, is just the universal suplattice tensor map, and so we
have not overburdened notation by introducing two separate ten-
sors on elements.)

To complete the proof it must be checked that the construc-
tions are in bijection. This is eased considerably by the obser-
vation that for any α : ΛΩX .→ ΛΩW , α is uniquely determined
by αΩX(Φ(1ΩX)). This can be seen by applying Lemma 3.4 since
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this shows that for any frame ΩY and any K ∈ ΩY ⊗SupΩX we
have αΩY (K) = αΩY ([ΩfK ⊗ 1]Φ(1ΩX)) = [ΩfK ⊗ 1]αΩX(Φ(1ΩX)).
Therefore the class of natural transformations injects into the set of
dcpo maps dcpo(ΩX,ΩW ). Finally therefore, it must be checked
that given a dcpo map q : ΩX → ΩW that

α
q
UL(Φ(1ΩX)) = Φ(q)

where there is no need to distinguishing between the poset map
q : L → ΩW and the dcpo map q : ΩX → ΩW since the universal
map can be taken to be the identity. Now Φ(1ΩX) =

∨
l∈L ↑ l ⊗ l.

For every finite subset L′ of L we have that

αq
UL(∨l∈L′ ↑ l ⊗ l) =

∨

I ′∈FL′

∧l∈I ′ ↑ l⊗ q(∨l∈I ′l)

=
∨

I ′∈FL′

↑ ∨I ′ ⊗ q(∨I ′),

where the last line is by the definition of finite join. Therefore
α

q
UL(Φ(1ΩX)) =

∨
l∈L ↑ l⊗ q(l) = Φ(q). �

This is the main result. The dcpo homomorphisms can be rep-
resented as natural transformations, providing a new category in
which to establish results about them.

We did not use this, but it will be useful to observe for later on
that, αΩ = qα where Ω is the set of truth values (trivially a frame
since, for example, Ω = P ({∗}), i.e. the power set on the singleton
set). Now αΩ : Ω⊗Sup ΩX → Ω ⊗Sup ΩW , but Ω⊗Sup ΩX ∼= ΩX
since P ({∗}) is the free suplattice on {∗}, and so the statement
αΩ = qα is correctly typed (up to isomorphism). Now Φ(qα) =∨

l∈L ↑ l ⊗ qα(l), and by Lemma 3.4 for every a ∈ ΩX , there
exists Ωpa : UL → Ω (defined by Ωpa(↑ l) =

∨
{1 ∈ Ω | l ≤ a})

such that (Ωpa ⊗ 1)(Φ(1ΩX)) = 1 ⊗ a (i.e. the image of a under
Ω ⊗Sup ΩX ∼= ΩX). Hence by naturality

αΩ(a) =
∨

l∈L
Ωpa ↑ l⊗ qα(l)

= qα(a).

Using this we have that,

Lemma 4.2. the bijection of the theorem preserves function com-
position in both directions.
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Proof. Since it is a bijection, it is sufficient to verify that it pre-
serves function composition one way round only. It has just been
established that the bijection, one way round, is α 7−→ αΩ and
so this is immediate since natural transformation composition is
calculated componentwise. �

4.1. Distributive lattices internal to [Fr,Set]. The category
of functors [Fr,Set] (with morphisms all natural transformations)
is well behaved in that it has finite products. The nullary product
(i.e. the terminal object) is the functor that sends every frame to
{∗} and every morphisms to the identity morphism. Given two
functors F1, F2 : Fr → Set their binary product (F1 × F2) is given
by

[F1 × F2](ΩY ) = F1(ΩY ) ×Set F2(ΩY )
[F1 × F2](Ωf : ΩY1 → ΩY2) = F1(Ωf)× F1(Ωf).

It is easy to verify that this construction gives the correct universal
characteristic of a categorical product. In any category with finite
product the notion of an internal distributive lattice makes sense
since all the equations of such a theory can be written out as asser-
tions that certain diagrams commute, and the only constructions
involved in making these diagrams are finite products.

Proposition 4.3. For any frame ΩX, ΛΩX is an internal distribu-
tive lattice in [Fr,Set].

Proof. We define join only, leaving the further routine verifications
to the reader.

We need to define a natural transformation t : ΛΩX × ΛΩX .→
ΛΩX . For every ΩY define tΩY : ΩY ⊗Sup ΩX × ΩY ⊗Sup ΩX →
ΩY ⊗Sup ΩX to be the join operation on the suplattice ΩY ⊗Sup

ΩX . It is trivially natural since for any Ωf : ΩY1 → ΩY2, Ωf ⊗
1 : ΩY1 ⊗Sup ΩX → ΩY2 ⊗Sup ΩX is a join semilattice homo-
morphism. �

Given the simplicity of this construction the characterization of
those natural transformation that are internal meet or join semi-
lattice homomorphism is straightforward:
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Lemma 4.4. A natural transformation α : ΛΩX → ΛΩW is an
internal meet/join semilattice homomorphism iff αΩY : ΩY ⊗Sup

ΩX → ΩY ⊗SupΩW is a meet/join lattice homomorphism for every
ΩY .

Proof. This is immediate from construction given that a commuta-
tive square of natural transformations commutes if and only if they
commute when evaluated at each object. �

4.2. Frame homomorphisms as Natural Transformations.
We are now in a position to state a corollary to the main theorem,
showing now to represent frame homomorphisms in terms of natural
transformations.

Theorem 4.5. (a) There is a bijection between suplattice homo-
morphisms ΩX → ΩW and internal join semilattice homomor-
phisms ΛΩX .→ ΛΩW .

(b) There is a bijection between frame homomorphisms ΩX →
ΩW and internal distributive lattice homomorphisms ΛΩX .→ ΛΩW .

Proof. (a) Firstly if α : ΛΩX .→ ΛΩW is an internal join semilattice
homomorphism then by the last lemma αΩY is a join semilattice
homomorphism for every ΩY , but this covers the case ΩY = Ω,
and so αΩ is a join semilattice homomorphism. But by the com-
ments after the main theorem it is shown that αΩ = qα and so
the corresponding dcpo homomorphism is also a join semilattice
homomorphism, i.e. a suplattice homomorphism.

Conversely say q : ΩX → ΩW is a suplattice homomorphism,
then for any frame ΩY , the map αq

ΩY

ΩY ⊗Sup ΩX → ΩY ⊗Sup ΩW

∨i∈Ibi ⊗ ai 7−→
∨

I ′∈FI

∧i∈I ′bi ⊗ q(∨i∈I ′ai)

reduces to

∨i∈Ibi ⊗ ai 7−→ ∨i∈Ibi ⊗ q(ai)

which preserves finite joins. Since αq
ΩY preserves finite joins for

every ΩY this is sufficient by the last lemma to show that αq is an
internal join semilattice homomorphism.
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(b) Certainly if α : ΛΩX .→ ΛΩW is an internal distributive lattice
homomorphism then, again using the last lemma, αΩ is a distribu-
tive lattice homomorphism, and so qα = αΩ is a frame homomor-
phism.

In the other direction, if q : ΩX → ΩW is a frame homomor-
phism, then it is certainly a suplattice homomorphism and so, as
in (a) αq

ΩY = 1 ⊗ q. But suplattice tensor is frame coproduct and
so αq

ΩY is a frame homomorphism for each ΩY implying that αq is
an internal distributive lattice homomorphism as required. �

Thus the representation theorem for dcpo homomorphisms be-
tween frames specializes naturally to frame homomorphisms, and
so locale maps. This is therefore a representation theorem for a
well understood notion of continuity, i.e. continuity as defined by
locale theory.

4.3. Preframes. In this subsection we digress briefly to verify the
obvious missing part to the previous theorem:

Theorem 4.6. There is a bijection between preframe homomor-
phisms ΩX → ΩW and internal meet semilattice homomorphisms
ΛΩX .→ ΛΩW .

A preframe is a dcpo which is also a meet semilattice and enjoys
the distributivity property

a ∧
∨↑

T =
∨↑

{a ∧ t | t ∈ T}

for any directed subset T and element a. Preframe homomorphism
preserve directed joins and finite meets and so a category PFr is
defined. The theory of preframes lies between the theory of dcpos
and the theory of frames in much the same way that suplattice
theory does. See e.g. Ch. 3 of [T96] for a summary of the rela-
tionship between suplattices and preframes. The difference is that
the finitary data for preframes (finite meets) is dual to the finitary
data for suplattices (finite joins). Preframe presentations do present
([JV91]) and therefore a preframe tensor can be defined. To prove
that preframe presentations present, re-apply Lemma 2.1 and The-
orem 2.2, but with frames in the place of suplattices and preframes
in the place of dcpos. The constructions are identical with the free
frame qua preframe being again the set of Scott closed subsets, and
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preframe image factorization again being constructed as the inter-
section of all subpreframes containing a set-theoretic image. The
existence of frame coequalizers needed for the re-application is well
known, for example II 2.11 of [J82]. Just as the suplattice tensor
corresponds to frame coproduct so too does preframe tensor (once
the existence of a preframe tensor is established, that it defines
frame coproduct is a routine verification). a� b ∈ ΩX ⊗PFr ΩY is
notation for a typical generator of a preframe tensor and Ω is the
preframe tensor unit (so ΩX ⊗PFr Ω ∼= ΩX for any ΩX).

We can now prove the theorem.

Proof. If α : ΛΩX .→ ΛΩW is an internal meet semilattice homo-
morphism, then αΩ is a meet semilattice homomorphism and so qα

is a meet semilattice homomorphism and a dcpo homomorphism,
i.e. a preframe homomorphism.

Conversely, given q : ΩX → ΩW , a preframe homomorphism,
then define for any frame ΩY the map αq

ΩY by

ΩY ⊗PFr ΩX → ΩY ⊗PFr ΩW
∧i∈Ibi � ai 7−→ ∧i∈Ibi � q(ai),

i.e. αq
ΩY = 1ΩY ⊗ q where ⊗ is preframe tensor. This defines a

natural transformation αq : ΛΩX .→ ΛΩW since preframe tensor is
frame coproduct (if Ωf : ΩY1 → ΩY2, then [Ωf +Fr 1ΩX ](b� a) =
Ωf(b)�a). αq is an internal meet semilattice homomorphism since
every αq

ΩY is a meet semilattice homomorphism.
But, by the remarks after the proof of the main theorem, we have

that for any α, β : ΛΩX .→ ΛΩW , to prove that α = β it is sufficient
to prove that αΩ = βΩ. But αq

Ω = q = αq
Ω and so αq is an internal

meet semilattice homomorphism. �

5. Locale Theoretic interpretation

Our next aim is to restate the results in terms of locale theory,
as it is with this interpretation that we can see that the functors
ΛΩX can in fact be understood to correspond to function spaces in
a natural way.

The category of locales, Loc, is defined as the opposite of the
category of frames. It is used extensively to investigate topology
in a constructive context since, for example, a Tychonoff theorem is
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true of locales without an assumption of the axiom of choice (e.g.
[JV91]). Our notation has reflected locale theory since for every
frame ΩX there is a corresponding locale X and for every frame
homomorphism Ωf : ΩY → ΩX there is a corresponding locale
map f : X → Y . Locale maps f : X → Y are the localic models
for continuous maps between topological spaces.

The set of truth values Ω is the free suplattice on 1 = {∗}, and
from this fact it is clear that it is the initial frame, i.e. Ω = Ω1
where 1 is the terminal locale. Given a locale X the set of points of
X is the set of locale maps Loc(1, X) ≡ Fr(ΩX,Ω). The points of
a locale can be given a topology in an obvious way, and this defines
a functor pt : Loc → Top, to the category of topological spaces.
Given any locale X we refer to ΩX as the corresponding frame of
opens.

The purpose of this section is to restate our results for the cate-
gory of locales.

Definition 5.1. For any poset L define the locale Idl(L) by

ΩIdl(L) = UL.

The set of points of Idl(L) are exactly the frame homomorphism
UL → Ω, but Ω = U1 and so by 3.2, the points are exactly dcpo
homomorphisms 1 → idl(L), i.e. exactly the ideals of the poset
L. This is why the notation Idl(L) is used. By looking at the
poset 2 ={0 ≤ 1}, we define the Sierpiński locale S = Idl(2). The
Sierpiński locale therefore has Ω as its set of points, and so, clas-
sically, corresponds to a two point topological space. The opens
of the Sierpiński are the upward closed subsets of 2, and so, classi-
cally, ΩS =3, corresponding to the usual definition of the Sierpiński
topological space. (By ‘classically’ we mean under the assumption
Ω = 2.) The Sierpiński locale enjoys the following key property:

Proposition 5.2. For any locale X, Loc(X, S) ∼= ΩX.

Proof. From the proof of Lemma 3.2, for any lattice L, frame homo-
morphisms UL→ ΩX are exactly meet semilattice homomorphism
Lop → ΩX since UL is the set of lower closed subsets of Lop. Here
L = 2 and so this result follows by verifying that ΩX is in bijection
with meet semilattice homomorphisms 2op → ΩX . �
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Therefore define
SX : Locop → Set

Y1 7−→ Loc(Y1 ×X, S)
f ↑ 7−→ ↓ Loc(f × 1X , 1S)
Y2 7−→ Loc(Y2 ×X, S)

where Loc(f × 1X , 1)(Y1 × X
a→ S) = Y2 × X

f×1X→ Y1 ×X
a→ S,

i.e. function composition, and so since locale product is the same
as frame coproduct, given the proposition we have that:

Theorem 5.3. For any locale X, ΛΩX is naturally isomorphic to
SX .

The notation SX is suggestive of an exponential, and so the next
task is to prove that the functor is indeed an internal exponential
in the functor category [Locop,Set].

Theorem 5.4. SX is the exponential Loc( , S)Loc( ,X) in
[Locop,Set], where for any locale X, Loc( , X) : Locop → Set,
takes Y to Loc(Y,X) and locale maps to function composition in
Set (i.e. Loc( , X) is the image of the Yoneda embedding).

Proof. It is well known from category theory (for example, use the
proof of A1.5.5 in [J02]) that in any functor category [Cop,Set]
with objects G,F the exponential GF is well defined if the class of
natural transformations,Nat[C( , A)×F,G], is a set for every object
A in C. By Yoneda’s lemma (i.e. the assertion Nat[C( , A), F ] ∼=
F (A) for any F,A) Nat[Loc( , Y ) × Loc( , X),Loc( , S)] is a set
since Loc( , Y ) × Loc( , X) ∼= Loc( , Y × X) and so SX exists.
Also by Yoneda’s lemma, note that if GF is defined then it must
be given by GF (A) = Nat[C( , A)× F,G]. �

Heading towards a statement of the main theorem in terms of
locale theory, a localic interpretation for dcpo homomorphisms is
useful. Given a locale X certainly ΩX is a dcpo, and so we can
define a new locale PX by

ΩPX = Fr〈ΩX qua dcpo〉
since we have already discussed that frame coequalizers exist and
so frame presentations are well defined. PX is known as the double
power locale on X and its study is advocated in [V93].
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(The study of power locales is broadly related to the topological
study of hyperspaces.) From this definition we have that for any
locale W

Loc(W,PX) ∼= dcpo(ΩX,ΩW )

and indeed from the uniqueness part of the universal definition of
presentation, it is clear that this bijection is natural in W .

Theorem 5.5. For any locale X there are bijections, both natural
in W ,

(i) between Loc(W,PX) and natural transformations SX .→ SW

and
(ii) between Loc(W,X) and internal distributive lattice homo-

morphisms SX .→ SW .

Proof. This is just a re-statement of the main theorem. Since the
bijection of the main theorem preserves composition (Lemma 4.2)
naturality is immediate. �

Now, for any locale X it is known that X is exponentiable if and
only if it is locally compact, and certainly it is not true that all
locales are locally compact. In fact VII 4.10 of [J82] shows that a
locale X is exponentiable if and only if SX exists as a locale (we
only have it as a functor). Remarkably, by embedding Loc into
the category [Locop,Set] (via X 7−→ Loc( , X)) we have that SSX

exists as a locale for every X .

Corollary 5.6. If X is a locale then the exponential SSX
exists in

[Locop,Set] and is naturally isomorphic to the functor Loc( ,PX).

Proof. For SSX
to exist we need only verify that the class of natural

transformations Loc( ,W ) × SX → Loc( , S) exists as a set. But
dcpo homomorphisms ΩX → ΩW have been characterized, natu-
rally in W , as the natural transformations SX .→ SW , i.e. exactly
the natural transformations Loc( ,W ) × SX → Loc( , S) by the
definition of the exponential SW in [Locop,Set]. Given this the
exponential SSX

is defined by

SSX
(W ) = Nat[Loc( ,W ) × SX ,Loc( , S)]

and so SSX
(W ) ∼= Loc(W,PX) naturally in W . �
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6. Topos Theoretic interpretation

Care has been taken to argue constructively throughout. No use
has been made of the excluded middle or any choice principals. In
the proof of the main theorem, we did argue by cases, but only in
a context (that of finite subsets of finite sets) where membership
is decidable (see e.g. D5.4 of [J02]). It was because the arguments
were constructive that Ω (the set of subsets of 1 = {∗}) was distin-
guished from 2 = {0≤1}, i.e. the poset of two elements found by
taking the coproduct of 1 and 1. Further, no use has been made
of a natural numbers object. It follows that the results are true
relative to any elementary topos E . In other words we could have
replaced Set with an arbitrary topos E in all the work above and
shown that dcpo homomorphisms are equivalent to natural trans-
formations between certain functors in [Locop

E ,E ].
We now look at the situation where E is a locally small topos. In

other words, for any objects B,A in E , E(B,A) is required to be a
set. There is then a functor γ∗ : E → Set given by γ∗(A) = E(1, A),
that is γ∗(A) is the set of points of A. Now for every topological
space X in Set, the topos of sheaves over X , denoted Sh(X) is
locally small. It is well known then that γ∗(ΩSh(X)) = ΩX , the
opens of X , where ΩSh(X) is the object of truth values in the topos
Sh(X). Internally to Sh(X) the object of truth values is always
discrete and compact Hausdorff as a topology since it is the power
set of {∗}; but ΩX is the set of opens of an arbitrary topological
space. Thus there is a significant difference between the external
structure of objects (i.e. the structure of γ∗(A)) and their internal
structure. Consult [J02] for background on toposes. In contrast to
Proposition 5.2,

Proposition 6.1. For any locale X in a locally small topos E,
LocE(X, S) ∼=γ∗(ΩEX) where S is the Sierpiński locale in E.

Proof. Proposition 5.2 carried out internally in E proves that ΩEX∼=
FX,S where FX,S is the object of frame homomorphism from ΩES
to ΩEX internal to E . Such an object can be constructed ex-
plicitly in any topos, e.g. as a subobject of ΩEX

ΩES. Therefore
γ∗ΩEX ∼= γ∗F

X,S but γ∗FX,S ∼= LocE(X, S) by construction of
FX,S. �
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What we now show is that given such γ∗ : E → Set, the external
set dcpoE(ΩEX,ΩEW ) is also equivalent to a set of natural trans-
formations, now in [Locop

E ,Set], for any internal frames ΩEX and
ΩEW of E .

To define the relevant functors note that given any F : Locop
E →

E , there is a functor γ∗ ◦ F : Locop
E → Set, and for any natural

transformation α : F .→ G between such functors there is a natural
transformation γ∗α : γ∗F

.→ γ∗G defined by (γ∗α)Y = γ∗(αY ).

Lemma 6.2. For any locale X in LocE

LocE( , S)LocE( ,X) ∼= γ∗ΛΩEX

in [Locop
E ,Set].

Proof. For any frame ΩEY in FrE , γ∗ΛΩEX(ΩEY ) = γ∗(ΩEY +Fr

ΩEX) = LocE(Y ×X, S). But LocE( ×X, S) ∼=LocE( , S)LocE( ,X)

just as in Theorem 5.4 above. �

Given this, for any such X we shall now use SX to denote the
functor LocE( , S)LocE( ,X) : Locop

E → Set and ΛΩEX for the object
of [Locop

E ,E ]. We can now state our final theorem, which is a re-
formulation of the main result, but giving a description of the set
of internal dcpo homomorphisms in a topos in terms of an external
collection of natural transformations.

Theorem 6.3. For any locale X in a locally small topos E there
are bijections (natural in locales W )

(a) between dcpoE(ΩEX,ΩEW ) and SX .→ SW , and
(b) between LocE(W,X) and internal distributive lattice homo-

morphisms SX .→ SW in [Locop
E ,Set].

Proof. (a) dcpoE(ΩEX,ΩEW ) ∼= E(1, EW,X) where the objectEW,X

is the frame equalizer defined in Theorem 3.3. But the results
above have shown EW,X ∼= Nat[ΛΩEX ,ΛΩEW ] naturally in W . So
it remains to check that E(1, Nat[ΛΩEX ,ΛΩEW ]) ∼= Nat[SX , SW ]
naturally in W .

Recall that Φ(1ΩEX) ∈ E(1,UL ⊗SupE ΩEX) satisfies ΩEe1 ⊗
1ΩEX ◦ Φ(1ΩEX) = ΩEe2 ⊗ 1ΩX ◦ Φ(1ΩEX) where e1, e2, L are as in
the standard presentation. Given α : SX .→ SW , by naturality of
such α it follows that

ΩEe1 ⊗ 1ΩEW ◦αIdl(L)(Φ(1ΩEX)) = ΩEe2 ⊗ 1ΩEW ◦αIdl(L)(Φ(1ΩEX))



SCOTT IS NATURAL 637

and so αIdl(L)(Φ(1ΩEX)) factors through the equalizer EW,X and so
corresponds to an α : ΛΩEX .→ ΛΩEW . Now by definition of γ∗ and
construction of α,

(γ∗α)Idl(L)(Φ(1ΩX)) = 1
Φ(1ΩX)→ UL⊗SupE ΩX αUL→ UL⊗SupE ΩW

= αIdl(L)(Φ(1ΩX))

and so by Lemma 3.4, γ∗α = α. The assignment α 7−→ α is there-
fore an injection.

Given any α : ΛΩEX .→ ΛΩEW , certainly γ∗α : SX .→ SW . But
(γ∗α)UL ◦ Φ(1ΩX) = (γ∗α)Idl(L)(Φ(1ΩX)) = αUL ◦ Φ(1ΩX). There-
fore (γ∗α) = α by Lemma 3.4 relative to E and so α 7−→ α is a
surjection.

Since γ∗(β ◦α) = γ∗(β)◦γ∗(α) by an easy calculation, naturality
is immediate.

(b) By construction γ∗ : E → Set clearly preserves finite prod-
ucts and therefore as an action from [Locop

E ,E ] to [Locop
E ,Set], γ∗

preserves finite products given their componentwise construction
in these functors categories. γ∗ therefore takes internal distribu-
tive lattices to internal distributive lattices and so SX = γ∗ΛΩEX

is an internal distributive lattice. For example the join natural
transformation t : SX × SX .→ SX is γ∗tΛΩEX

where tΛΩEX
:

ΛΩEX × ΛΩEX .→ ΛΩEX is the join on ΛΩEX .
To prove (b) it is sufficient to verify that under the bijection given

in (a), distributive lattice homomorphisms ΛΩEX .→ ΛΩEW corre-
spond to distributive lattice homomorphisms SX .→ SW . Clearly
γ∗α is a distributive lattice homomorphism if α is since, as we have
just indicated, γ∗ preserves products.

In the other direction we need to recall that for any frames ΩX,
ΩY and ΩZ,

ΩY ⊗Sup (ΩX × ΩZ) ∼= ΩY ⊗Sup ΩX × ΩY ⊗Sup ΩZ.

Localically (i.e. topologically) this is just the assertion that the
category of locales is distributive (i.e. Y ×(X+Z) ∼= Y ×X+Y ×Z).
It can be proved lattice theoretically by noting that ΩX × ΩZ is
suplattice coproduct and using bijections such as Sup(ΩY ⊗Sup

ΩX,ΩW ) ∼= Sup(ΩY, [ΩX,ΩW ]) where [ΩX,ΩW ] is the suplattice
of suplattice homomorphisms from ΩX to ΩW . This bijection is
natural in ΩY and so (taking ΩZ = ΩX) the conclusion needed for
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our proof is that

ΛΩEX × ΛΩEX ∼= ΛΩEX×ΩEX .

Therefore given an α : ΛΩEX .→ ΛΩEW it follows that to prove, for
example, that

ΛΩEX × ΛΩEX α×α→ ΛΩEW × ΛΩEW

tΛΩX ↓ ↓ tΛΩW

ΛΩEX α→ ΛΩEW

commutes it is sufficient to prove that it commutes when evaluated
at Φ(1ΩEX×ΩEX) at U(L × L) (where L × L = ΩEX × ΩEX , the
generators of ΩEX×ΩEX in the standard presentation). But if the
corresponding map γ∗α is a join semilattice homomorphism then
we know that the diagram commutes when evaluated at x : 1 →
ΩEY ⊗SupE (ΩEX × ΩEX) for every x and every ΩEY .

It follows that if α is a distributive lattice homomorphism then
so is α. �

7. Summary

This paper is meant as a write up of original ideas contained in
[TV03], here using frame theory to guide the proofs of results, and
then reinterpreting to give the localic content.

Given that dcpo presentations present (folklore, though here
shown constructively), one is able to view suplattices via dcpo
presentations. In particular frame coproduct (i.e. locale product)
which is known to be presented by suplattice tensor, can be de-
scribed as a free dcpo (subject to relations). Given this any dcpo
homomorphism between frames, ΩX → ΩW , can be extended to a
dcpo homomorphism ΩY +FrΩX → ΩY +FrΩW for any frame ΩY ,
and this extension is natural, in that it commutes with the frame
homomorphisms on the ΩY . In categorical language this defines a
natural transformation from the functor ( )+Fr ΩX to ( )+FrΩW .

By using a dcpo presentation for the frame ΩX , dcpo homomor-
phisms can be described as monotone maps which satisfy certain
relations. ‘Satisfaction’ means composing equally with two dcpo ho-
momorphism between ideal completions, but by a well known cor-
respondence (essentially the assertion from locale theory that alge-
braic dcpos are spatial) such dcpo homomorphisms are equivalently
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frame homomorphism between frames of upper closed subsets. Us-
ing this it can be shown that a dcpo homomorphism ΩX → ΩW
is exactly an element of the set UL+Fr ΩW that composes equally
with two frame homomorphism, where L is a lattice of generators
for ΩX and UL is the set of upward closed subsets of L. But
the identity map on ΩX provides a natural ‘identity element’ in
UL+Fr ΩX and so any natural transformation from ( ) +Fr ΩX to
( )+FrΩW gives rise to an element of UL+FrΩW by application at
UL. This element, by naturality, will compose equally with the two
frame homomorphism and so gives rise to a dcpo homomorphism.

These constructions are in bijection and so the dcpo homomor-
phisms can be represented by natural transformations. In fact the
functors ( )+FrΩX are internal distributive lattices in the category
of all functors from Fr to Set and this result specializes to show
that frame homomorphism are exactly internal distributive lattice
homomorphism. Since, via the localic account of topology, frame
homomorphisms correspond to continuous maps, this result gives a
representation theorem for a well known notion of continuity.
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