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BANACH DOMAINS: COMPUTATIONAL MODELS
OF BANACH SPACES

PAWE L WASZKIEWICZ

Abstract. This paper initiates research on Banach domains
which are domain-theoretic models of Banach spaces.

1. Introduction

This paper is thought as an introduction to the study of domain
models of Banach spaces. Domains are certain complete partial or-
ders with an intrinsic notion of approximation, and domain theory
is a vast subject arising from considerations in Theoretical Com-
puter Science, which links tightly with Topology: it studies struc-
tures of “classical” mathematics, like topological, metric, vector
spaces, via properties of suitably constructed partial orders.

We say that a space (X, τ) is modelled by a continuous poset
(P, σ), where σ is the Scott topology on P , when X is homeo-
morphic to the subset of maximal elements of P in the subspace
Scott topology: (X, τ) ∼= (max(P ), σ |max(P )). One then can reason
about properties of the modelled topology in terms of the proper-
ties of the Scott topology of the underlying domain. Pioneering
works of Lacombe [19], Martin-Löf [28], Scott [30], Weihrauch and
Schreiber [33], and Kamimura and Tang [16] on modelling spaces
have led the way to a variety of applications including: real number
computation [11], integration [13], [3], [7] and differential calculus
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[10], geometry [9], dynamical systems, fractals and measure theory
[4], [5], and basic quantum mechanics [2]. Most of the applications
are surveyed in [6].

What kind of topologies admit models? Lawson [21], [20] proved,
among other things, that Polish spaces do. An explicit construction
of such a domain was given by Edalat and Heckmann in [8]. The
formal ball model, as it is called, has been later adapted to the
special case of Banach spaces in [12] and used to introduce the
notion of partial metric to domain theory [15].

In a series of papers [22], [23], [26] following [24] Martin proposed
various techniques for studying models of topologies, including the
notion of measurement. He generalized Lawson’s result by showing
that spaces modelled by ω-continuous dcpos are regular iff they are
Polish [27]. Moreover, outside the metrizable case, Reed and Mar-
tin characterized developable spaces as the ones modelled by con-
tinuous dcpos with measurement. Recently, Martin also observed
a fundamental connection between order completeness of continu-
ous domains and the Choquet-completeness of topological spaces
[25] (the main result is that the maximal elements of a domain are
Choquet complete). The role of completeness due to Choquet in
domain theory is still not well-understood though.

Motivated by considerations from the area of injective spaces,
people became concerned with finding bounded complete models.
Bounded complete domains have an especially pleasing property
that every continuous mapping between modelled spaces extends
to a Scott continuous function between the models; moreover, such
an extension can be defined in a canonical way. Recently, Kopper-
man, Künzi and Waszkiewicz characterized all topologies that have
bounded complete models [17]. Combining their results with work
of Künzi [18] resulted in a construction of such a model for any
complete metric space.

In this paper we focus on models of Banach spaces. In fact,
Sünderhauf in a conference paper [31] isolated certain properties
of the formal ball model of a Banach space and presented them in
the axiomatic way. In effect, he ended up with a poset equipped
with addition and scalar multiplication and called it a Banach do-
main. In this paper we explain the rudiments of Banach domains,
discuss their axiomatics, examine generalized distances associated
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with them, study in great detail the Banach domain of convex com-
pacta of the n-dimensional Euclidean space and make first steps
towards the domain-theoretic account of duality theory for Banach
spaces.

We are assuming familiarity with basics of domain theory to the
extent present in the first four chapters of [1]. In particular, the no-
tion of a continuous dcpo and the Scott topology play a major role
in this paper. We will also speak about Matthews’ partial metrics:
For the definitions, examples and basic properties of (weak) partial
metrics we direct the reader to [29] and [15]. We occasionally men-
tion measurements in the sense of Keye Martin ([24], [32]) since
their theory offers elegant and efficient tools for studying partial
metrics and other distances on domains.

2. Basics of Banach domains

The poset of nonempty, closed intervals of the real line under the
reverse inclusion is denoted by IR. The following definition is given
by Philipp Sünderhauf in [31].

Definition 2.1. A Banach domain (D,v, +, ·,0) is a continuous
dcpo (D,v), called also a (continuous) domain, together with addi-
tion +: D×D → D and scalar multiplication · : IR×D → D, which
are both Scott-continuous, and a constant 0 ∈ D. The operations
are governed by the axioms (B1)-(B8) below:

(B1) x + (y + z) = (x + y) + z
(B2) x + y = y + x
(B3) x + 0 = x
(B4) a(bx) = (ab)x
(B5) 0x = 0
(B6) nx = x + ... + x︸ ︷︷ ︸

n times

(B7) ax + bx v (a + b)x
(B8) ax + ay v a(x + y)

for all n ∈ ω \ {0}, for all a, b ∈ IR and x, y, z ∈ D.

(We write −y for (−1)y and x − y for x + (−1)y. Intervals of zero
length are identified with real numbers. Furthermore, we assume
that ⊥ + x = x + ⊥ = ⊥ and a⊥ = ⊥a = ⊥ whenever the least
element ⊥ exists in the domain.)
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In this paper we have sometimes found it useful to require some
additional properties of the algebraic operations, namely:

(B9)
d

i∈I axi = a
d

i∈I xi

(B10)
d

i∈I(xi + y) v
d

i∈I xi + y

for all y ∈ D, {xi} ⊆ D, a ∈ IR, whenever the infima exist.
Axioms (B9) and (B10) prove especially useful when the Banach

domain is in addition bounded complete (see Theorem 4.8 below).
The axioms presented above capture only the basic intended

properties of models of Banach spaces. The example of the formal
ball model suggests that the inequalities in (B7) and (B8) cannot,
in general, be improved to equality. On the other hand, the exam-
ples suggest that we could require the equality in (B7) and (B8) to
hold in the case of multiplication by degenerated intervals (that is,
real numbers):
(B11) ax + bx = (a + b)x and ax + ay = a(x + y) for all a, b ∈ R,

x, y ∈ D.
Occasionally, we will require that addition and scalar multipli-

cation are strictly monotone:
(B12) If x v y and x + z = y + z for some z ∈ D, then x = y, for

all x, y ∈ D.
(B13) if x v y and cx = cy for some c ∈ IR, then x = y, for all

x, y ∈ D.
Note that IR with pointwise operations is a Banach domain.

Definition 2.2. An element x is invertible iff x − x = 0.

For c ∈ IR, the set of complements of c is defined as

c−1 def
= {z ∈ IR | zc v 1}.

Note that c−1 = ∅ iff c = 0.
Most of the properties of Banach domains stated below appear

in [31], where they are listed without proof.

Proposition 2.3. The following hold in any Banach domain D for
any x, y ∈ D and a, c ∈ IR:

(1) x − x v 0,
(2) a0 = 0,
(3) 0 is invertible,
(4) Every invertible element is maximal,
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(5) If cx = 0 and c 6= 0, then x = 0,
(6) If cx is invertible and c 6= 0, then x is invertible,
(7) If c and x are maximal, then cx is maximal,
(8) If c and x are invertible, then cx is invertible,
(9) Addition preserves invertibility,

(10) Addition preserves maximality iff every maximal element is
invertible.

Proof. (1) x − x = x + (−1)x v (1 − 1)x = 0x = 0. (2) a0 =
a(0x) = (a · 0)x = 0x = 0. (3) 0− 0 = 0 + (−1)0 = (by (2) above)
0 + 0 = 0.

(4) Assume that x is invertible and x v y. Then y−y v 0 = x−x
by the assumption and (1). On the other hand, by monotonicity
of −, x − x v y − y. Thus 0 = x − x = y − y, which proves that
y is invertible. Now, by monotonicity of − again, y − x v y − y,
which yields y − x v 0. By monotonicity of + applied to this last
inequality, we have y = y+0 = y+(x−x) = (y−x)+x v 0+x = x.
That is, y v x, which together with the assumption x v y gives
x = y. We have proved that x is maximal.

(5) x = 1x w (zc)x for any z ∈ c−1 by monotonicity of the scalar
multiplication. But now, (zc)x = z(cx) = z0 = 0. We have shown
that x w 0. However, 0 is invertible, and hence maximal. Thus,
x = 0.

(6) We have c(x − x) w cx − cx = 0. But 0 is invertible, hence
maximal, which gives c(x − x) = 0. By (5) above, x − x = 0.
Therefore x is invertible.

(7) Let cx v z for some z ∈ D and c, x maximal. If c = 0,
we are done. Otherwise, by monotonicity of scalar multiplication,
x = 1

cc v
1
c z. Hence x = 1

cz and so cx = z, as required.
(8) Let c, x be invertible. We have 0 = x − x = c1

cx − c1
cy v

1
c (cx − cx). Hence 0 = 1

c (cx − cx) and consequently, 0 = c0 =
cx − cx. This shows that cx is invertible.

(9) Suppose x, y invertible. Then (x+y)−(x+y) w x+y−x−y =
(x − x) + (y − y) = 0. Hence (x + y)− (x + y) = 0 by maximality
of 0.

(10) Suppose that addition preserves maximality. Let x be maxi-
mal. Then −x is maximal by (7). By assumption, x−x is maximal.
However, x − x v 0 and so x − x = 0. Conversely, suppose that
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every maximal element is invertible. Let x, y be maximal and sup-
pose that x + y v z. Then y v z − x and hence y = z − x by
maximality of y. But then y + x = z − x + x = z, as required. �

We will now describe a canonical example of a Banach domain
from [31].

Example 2.4. Let (X, ||·||) be a Banach space. Then the collection
of closed balls

C(x, r) = {y ∈ X | ||x− y|| ≤ r}

of radius r ≥ 0 around the point x ∈ X forms a domain and, in
fact, is order isomorphic to the formal ball model of X (the latter
fact is proved in [8]). That is, the set

BX = {⊥} ∪ {C(x, r) | x ∈ X, r ≥ 0}

is a poset when ordered by ⊥ v A for all A ∈ BX and

C(x, y) v C(y, s) ⇐⇒ ||x − y|| ≤ r − s

(the ordering is readily seen to be the inverse inclusion of the balls).
The way-below relation is given by ⊥ � A for all A ∈ BX and

C(x, y) � C(y, s) ⇐⇒ ||x − y|| < r − s.

Now, addition +: BX × BX → BX is defined as expected:

C(x, r) + c(y, s) = C(x + y, r + s)

and ⊥ + A = A + ⊥ = ⊥ for all A ∈ BX . Scalar multiplication is
of type IR ×BX → BX and is defined by

[a − ε, a + ε] · C(x, r) = C(ax, ε||x||+ |a|r + εr),

where one should note that every interval can be given in terms of
its midpoint a and a radius ε as above. We also require
⊥ · A = A · ⊥ = ⊥ to make the definition complete. One can
readily check that the formal ball model with the operations pre-
sented above is a Banach domain. Moreover, axioms (B9) and
(B10) hold. However, this Banach domain is not bounded com-
plete in general. On the other hand, the algebraic operations are
the greatest Scott-continuous extensions of addition and scalar mul-
tiplication on points.
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3. Existence of models for Banach spaces

In this section we show that every Banach space can be mod-
elled by a Banach domain, namely, the domain of formal balls. We
demonstrate the converse as well: The subspace of invertible ele-
ments of any Banach domain is a Banach space with the norm and
metric induced by the intrinsic structure of the model. Both results
are due to Philipp Sünderhauf and appear without proof in [31]. In
order to understand the situation better, we propose a longer route
towards the main results. On the way we define symmetric elements
and thoroughly analyze their structure. The symmetrics prove to
be a major tool in defining partial norms, which, in turn, induce
generalized distance on Banach domains.

Definition 3.1. We say that an element b of a Banach domain is
symmetric1 if b = −b.

Every symmetric element is below zero (as b = −b implies 2b =
b + b = b− b v 0 and so b v 0). Every element of the form [−1, 1]x
for x ∈ D is symmetric: −[−1, 1]x = [−1, 1]x. Finally, for y ∈ D,
the difference y − y is symmetric as −(y− y) w −y + y = y− y and
y − y = (−1)(−1)(y − y) w (−1)(−y + y) = −(y − y).

Proposition 3.2. Let D be a Banach domain.
(1) x is symmetric iff cx is symmetric for any c ∈ R \ {0}.
(2) If x is symmetric, then x + x is symmetric.
(3) x is symmetric iff x − x = x + x.
(4) x is symmetric iff x v −x.
(5) Partially linear maps2 preserve symmetric elements.

Proof. (1) If x = −x, then cx = c(−x) = −(cx). Conversely,
if cx = −cx and c 6= 0, then x = 1

c cx = 1
c (−cx) = −x.

(2) Immediate by (1), since x + x = 2x. (3) If x is symmetric,
we have x + x = x + (−x) = x − x. Conversely, suppose that x
is not symmetric. Then using (1) this is equivalent to say that
2x = x + x is not symmetric. But x + x = x − x and the latter
element is known to be symmetric, a contradiction. For the non-
trivial direction in (4), suppose x v −x. Multiplying the inequality

1We could also use the term: “difference element of b” which would agree
with terminology of convex analysis in the case when b is a convex body.

2See Definition 4.1.
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by (−1) gives −x v −(−x) = x, as required. For (5), let u be
partially linear and x symmetric. Then u(x) = u(−x) v −u(x)
and so u(x) is symmetric by (4). �

Let x be any element of a Banach domain D. A symmetrization
of x is the biggest symmetric element below x denoted by S(x).
When does the symmetrization exist for every element of the do-
main? Surely, if the domain is bounded complete, then the set of
symmetric elements of x is nonempty (the bottom belongs to it,
and the element [−1, 1]x as well), bounded by x, and thus have a
supremum S(x).

Proposition 3.3. If the scalar multiplication preserves binary in-
fima formed in IR, then every element has a symmetrization given
by S(x) = [−1, 1]x.

Proof. Under the assumption about infima, for every symmetric
element y we have y = (−1)y u 1y = [−1, 1]y. Hence if z v x
and z is symmetric, z = [−1, 1]z v [−1, 1]x, which proves that
[−1, 1]x = S(x). �

In the rest of the section we will assume that we deal with Banach
domains where every element has a symmetrization.

What is the structure of the set of symmetric elements S(D) of
D? In the case of the interval domain, they form a chain with
supremum 0 and infimum ⊥. (In any case 0 and ⊥ are the biggest
and the smallest in S(D).) Presently, we do not know much about
the relative order in S(D).

Observation 3.4. In any Banach domain D, the subset S(D)\{0}
has a supremum 0. In addition, if 0 is not compact and x � 0 for
every symmetric element x, then S(D) \ {0} is directed.

Proof. It is clear that 0 is an upper bound for S(D)\{0}. Let z � 0
for some z ∈ D. Since 0 = 0z, then by Scott-continuity of the scalar
multiplication, there exists ε > 0 such that z � [−ε, ε]z v 0z = 0.
But [−ε, ε]z = ε[−1, 1]z is symmetric. In effect we have shown
that the ideal ↓↓0 is contained in the ideal ↓(S(D) \ {0}) and since
0 =

⊔↑↓↓0, the first claim follows.
Now, assume that x � 0 for every symmetric element x ∈ D.

If x1, x2 are symmetric and different than 0, then by interpola-
tion, there exists x3 with x1, x2 � x3 � 0. We can assume that
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x3 is different than 0, since the latter is not compact. Therefore,
x1, x2 v S(x3) v x3, and so the second claim in now proved. �

Observation 3.5. The mapping S : D → D, whenever well-defined,
is monotone and idempotent.

Problem 3.6. Find a sufficient and necessary condition for S(x) =
[−1, 1]x.

Observation 3.7. If the symmetrization is given as a multiplica-
tion by [−1, 1], then sum of symmetric elements is symmetric.

Proof. For, if w, z are symmetric, then w+z = [−1, 1]w+[−1, 1]z v
S(w + z). Since S(w + z) v w + z always holds, we have w + z =
S(w + z), which was needed. �

Here we have a chance to “see symmetric elements in action”:
they are used to define an important part of the intrinsic structure
of any Banach domain – a partial norm.

Definition 3.8. Let D be a Banach domain and let b � 0 be
any fixed3 symmetric element of D \ {⊥}. Define a partial norm
|| · || : D → IR to be given by:

||x|| =
⊔

↑{[−s, s] | s > 0, [−s, s]b v x}, x ∈ D \ {⊥}

and
||⊥|| = ⊥.

The partial norm is well-defined: Let x be any element of D\{⊥}.
Since b � 0 = 0x, Scott-continuity of the scalar multiplication gives
a real number, say 1/s, such that b � [−(1/s), 1/s]x v (1/s)x.
Therefore, [−s, s]b v sb v x and thus we have shown that the set
{[−s, s] | [−s, s]b v x} is always nonempty.

The mapping r : IR → [0,∞]op defined as r[a, b] = b and r⊥ = ∞
satisfies r(x + y) = rx + ry. It is not monotone and does not
satisfy r(cx) = c(rx) for c ∈ R. However, its restriction to the
set of all symmetric elements r : S(IR) → [0,∞]op is monotone,
commutes with the multiplication by reals and in fact, is an order
isomorphism between S(IR) and [0,∞]op. By the abuse of language

3Any other choice of b′ � 0, b′ 6= b, gives a different partial norm. However,
no property of partial norms in the sequel depends on the choice of generator
b, and we have found it convenient to speak about the partial norm on D.
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the triple composition scale ◦ r ◦ || · || of type D → [0, 1]op, where

scale(t)
def
= t/(1 + t) for t ∈ [0,∞) and scale(∞) = 1, will be again

called a partial norm and denoted by || · ||. It is clearly given by
||x|| = inf{s ∈ (0, 1] | sb v x} for any x ∈ D.

Clearly, by definition, the partial norm is monotone. The follow-
ing elementary observation proves to be very useful in proofs:

Proposition 3.9. For every x ∈ D, we have ||x|| = ||[−1, 1](x)||.

Proof. We have [−s, s]b v [−1, 1][−s, s]b v [−1, 1]x for every
element [−s, s]b below x. Thus ||x|| v ||[−1, 1]x||. On the other
hand, monotonicity of the partial norm gives ||[−1, 1]x|| v ||x||,
since [−1, 1]x v x. �

We will now justify the name “partial norm” by showing that
our map satisfies some properties analogous to those of a norm.
However, there are some (unexpected?) troubles with the triangle
inequality which, as we know, always holds for norms in vector
spaces but not necessarily in our generalized setup. Therefore, we
can state with confidence only the following:

Proposition 3.10. The partial norm satisfies:
1. ||x|| = 0 iff x = 0.
2. ||cx|| = |c| · ||x||, where c ∈ R.
3. ||x|| = ⊥ iff x = ⊥.

Proof. (1) For the nontrivial direction, suppose that ||x|| = 0.
This means that [−s, s]b v x for every s > 0. Hence 0 = 0b =
(
⊔↑

s>0[−s, s])b =
⊔↑

s>0([−s, s]b) v x. Therefore, x = 0 by max-
imality of zero. For (2), note that || − x|| = ||x|| since [−s, s]b is
symmetric for any s > 0. Suppose that c > 0. We have

{[−s, s] | sb v cx} = {[−s, s] | (s/c)b v x}
= {[−cz, cz] | zb v x}
= {c[−z, z] | zb v x}.

Therefore,
⊔

↑{[−s, s] | sb v cx} =
⊔

↑{c[−z, z] | zb v x} = c(
⊔

↑{[−z, z] | zb v x}),

which proves that ||cx|| = c||x||. Now, note that 0||x|| = 0 = ||0|| =
||0x|| and for c < 0 we have ||cx|| = || − (−c)x|| = ||(−c)x|| =
(−c)||x||. We can thus conclude that ||cx|| = |c| · ||x|| for any
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real number c. For (3), if x = ⊥, then by definition, ||x|| = ⊥.
Conversely, if x 6= ⊥, then there exists ∞ > s > 0 such that
[−s, s]b v x. Therefore, ||x|| w [−s, s] A ⊥, as required. �

Nevertheless, the triangle inequality holds when we restrict to a
subspace of invertible elements:

Proposition 3.11. A partial norm on a Banach domain D is a
norm when restricted to inv(D). Moreover, any two partial norms
give equivalent norms when restricted to inv(D).

Proof. Since invertible elements are closed under addition and mul-
tiplication, the partial norm restricted to inv(D) satisfies conditions
(1) and (2) in Proposition 3.10. On the other hand, the equality
(a + b)x = ax + bx holds for any a, b ∈ R and x ∈ inv(D) and it is
easy to see that it implies that the partial norm satisfies the trian-
gle inequality, when restricted to inv(D). Finally, the restriction of
the partial norm never takes the value ∞, since ||x|| = ∞ iff x = ⊥.
The second part is easy. �

Theorem 3.12 (Sünderhauf). If D is a Banach domain, then
(inv(D), || · ||) is a Banach space. Conversely, every Banach space
arises as (inv(D), || · ||) for some Banach domain.

Proof. (outline) Let D be a Banach domain. By Proposition 3.11,
inv(D) is a normed space. The norm topology and the Scott topol-
ogy coincide on inv(D). Completeness of this space is proved in
[31]. Conversely, if (X, || · ||) is a Banach space, then the formal
ball model, Example 2.4, is a Banach domain. The partial norm
||x|| def

= inf{s > 0 | sC(0, 1) v x} coincides with the original norm
when restricted to inv(D) = max(D). �

The example below demonstrates that sometimes we can expect
that the triangle inequality holds on the whole domain:

Example 3.13. Any partial norm || · || : IR → [0,∞]op satisfies

||x + y|| ≤ ||x||+ ||y||

for all x, y ∈ IR.
For example, if b = [−1, 1], then ||[a, a]|| = max{|a|, |a|}.
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Proof. Fix any b ∈ IR, which is symmetric around zero.
Let s1, s2 > 0 be such that s1b v x and s2a v y. However,
s1b+s2b = [s1b, s1b]+[s2b, s2b] = [(s1+s2)b, (s1+s2)b] = (s1+s2)b.
Therefore, (s1 + s2)b = s1b + s2b v x + y by monotonicity of addi-
tion. This yields ||x + y|| ≤ s1 + s2 and, consequently, ||x + y|| ≤
||x||+ ||y||. �

Before stating the necessary and sufficient condition for the satis-
faction of the triangle inequality for a partial norm, we would need
an important concept of a distance induced by a partial norm. In
the case of norms, this distance is, of course, a metric. However, in
the world of domains and T0 topologies, the induced distance fails
to satisfy the reflexivity axiom (that is, p(x, x) = 0) and so we will
have to deal with some generalization of the metric.

Definition 3.14. A distance induced by a partial norm on a
Banach domain D is the mapping p : D×D → IR given by p(x, y) =
||x− y|| for all x, y ∈ D.

Lemma 3.15. In the interval domain, the following cancellation
law holds: whenever x, y, z ∈ IR , then

x + y v z + y ⇒ x v z.

Proof. Assume that x + y = [x + y, x + y] v [z + y, z + y] = z + y.
This is equivalent to x + y ≤ z + y and z + y ≤ x + y. This is in
turn the same as x ≤ z and z ≤ x, which means that x v z. �

The following theorem justifies the claim that weak partial met-
rics are of major importance in the theory of modelling metric
spaces.

Theorem 3.16. The following are equivalent for a Banach domain
D equipped with a partial norm || · ||.

(1) The equality ||r + a|| = ||r|| + ||a|| holds for any element
r ∈ D and any symmetric element a ∈ D;

(2) The partial norm satisfies the triangle inequality and the
distance induced by the norm satisfies the sharp triangle
inequality (in effect, it is a weak partial pseudometric when
considered as a map of type D × D → [0,∞)).
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Proof. (1)⇒(2): Let x, y, z be arbitrary. Since [−1, 1](x + y) w
[−1, 1]x + [−1, 1]y, by monotonicity of the partial norm and the
assumption we have:

||[−1, 1](x+ y)|| w ||[−1, 1]x+ [−1, 1]y|| = ||[−1, 1]x||+ ||[−1, 1]y||.

This is the desired triangle inequality of the norm. We will imme-
diately apply it:

p(x, y) + p(z, z) = ||x − y|| + ||z − z||
= ||x − y + z − z||
= ||(x− z) + (z − y)||
w ||x − z|| + ||z − y||
= p(x, z) + p(z, y).

For (2)⇒(1), by the triangle inequality, we have ||r+a|| w ||r||+||a||.
On the other hand, p(r, 0)+p(a, a) w p(r, a)+p(a,0) translates into
||r||+||a−a|| w ||r−a||+||a||. Note that since a is symmetric, r−a =
r + a and the inequality above is thus equivalent to ||r||+ 2||a|| w
||r+a||+||a||. The cancellation law implies that ||r||+||a|| w ||r+a||.
Finally, antisymmetry of the order yields ||r + a|| = ||r||+ ||a||, as
required. �

Example 3.17. The interval domain and the formal ball model
for any Banach space are examples of Banach domains where the
sharp triangle inequality holds. In the case of the interval domain,
p(x, y) = max{||x−y||, ||x−x||, ||y−y||} is in fact a partial metric for
the Scott topology (given also by p(x, y) = max{x, y}−min{x, y})

and thus µ(x)
def
= ||x − x|| = length(x) is a weakly modular mea-

surement on IR.
In the case of the formal ball model, BX the assumptions of

the preceding proposition hold as well. The distance mapping
p(C(x, r), C(y, s)) = ||C(x, r) − C(y, s)|| is a weak partial metric
compatible with the Scott topology, given explicitly by

p(C(x, r), C(y, s)) = d(x, y) + r + s,

where d is the metric of the Banach space X . The self-distance
map, assigning to each ball its radius, is a Lebesgue measurement
on the entire domain.
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In contrast, the partial norm on the domain KRn (introduced in
Section 5) does not induce a partial metric as the condition (1) of
Theorem 3.16 is violated in general.

For the rest of this section, we assume that the distance induced
by the partial norm is a weak partial metric denoted by p. Recall
that the symmetrization of p is a pseudometric d : D×D → [0,∞)
given by

d(x, y) = 2p(x, y)−p(x, x)−p(y, y) = 2||x−y||− ||x−x||− ||y−y||.

Proposition 3.18. Assume that the specialization order of p is
compatible with the order on D. Then for all x, y ∈ D we have

(d(x, y) = 0 ∧ ||x− x|| = ||y − y||) ⇒ x = y.

Proof. This is a property of the pseudometric associated with the
weak partial pseudometric. �

Proposition 3.19. Let D be a Banach domain with (B11). For
any x, y, z, w ∈ D we have:

(1) d(x + y, z + w) = d(x − z, w − y).
(2) d(x, y) = 0, whenever x, y ∈ D are symmetric.

Proof. (1) We have
d(x + y, z + w) =
2||x + y − (z + w)|| − ||x + y − (x + y)|| − ||z + w − (z + w)|| =
2||x + y − z − w|| − ||x + y − x − y|| − ||z + w − z − w|| =
2||(x− z) − (w − y)|| − ||(x − x) − (y − y)|| − ||(z − z) − (w − w)|| =
2||(x− z) − (w − y)|| − ||x− x|| − ||y − y|| − ||z − z|| − ||w − w|| =
2||(x− z) − (w − y)|| − (||x − x||+ ||z − z||)− (||y − y|| + ||w − w||) =
2||(x− z) − (w − y)|| − ||(x − z) − (x − z)|| − ||(y − w) − (y − w)|| =
d(x− z, w − y).

For (2), we calculate d(x, y) = 2||x − y|| − ||x − x|| − ||y − y|| =
2||x + y|| − 2||x|| − 2||y|| = 0. �

We will now focus on the case when the partial norm induces a
weak partial metric compatible with the Scott topology on D. At
present it is unclear what is a sufficient condition for a weak par-
tial metric induced by the norm to be compatible with the Scott
topology. However, the assumption on the agreement of the par-
tial metric topology and the Scott topology puts some interesting
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restrictions on the structure of symmetric elements of the underly-
ing domain:

Proposition 3.20. If p is compatible with the Scott topology on
D, then the restriction of the partial norm to the set of symmetric
elements,

|| · || : S(D) → [0, 1]op

is an order embedding.

Proof. The proof depends on the characterization of the order in-
duced by the weak partial metric. Suppose that x, y ∈ S(D). We
have

x v y iff p(x, y) ≤ p(x, x)
iff ||x− y|| ≤ ||x − x||
iff ||x||+ ||y|| ≤ 2||x||
iff ||y|| ≤ ||x||.

Since the partial norm is monotone, the proof is now complete. �

Proposition 3.21. If p is compatible with the Scott topology on D,
then for every y ∈ D we have S(y) = [−1, 1]y.

Proof. For any symmetric x ∈ D we have x = [−1, 1]x, since ||x|| =
||[−1, 1]x|| and || · || is an embedding. Hence if y ∈ D is arbitrary,
then S(y) v y implies S(y) v [−1, 1]y v y and so S(y) = [−1, 1]y
since [−1, 1]y is a symmetric below y and S(y) is defined to be the
greatest such. �

It happens that under the agreement of topologies, the way-below
relation can be easily obtained from a partial metric in most cases:

Theorem 3.22 (way-below). Let D be a Banach domain with
(B12) and (B13). If p is compatible with the Scott topology on
D, then

(x � y ∧ x 6= y) ⇒ p(x, y) < p(x, x).

The converse holds if, in addition, S is strictly monotone.

Proof. Assume that p(x, y) < p(x, x). Then, there exists ε > 0 such
that

(3.1) p(x, y) < p(x, x)− ε.
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Let A be a directed subset of D with supremum z above y. In
particular,

(3.2) p(y, z) ≤ p(y, y).

Then the open ball Bp(z, ε) around z is Scott-open by assumption
and thus must contain some element a ∈ A. This implies that

(3.3) p(z, a) ≤ p(z, z) + ε.

Now,

p(x, a) ≤ p(x, y) + p(y, z) + p(z, a)− p(y, y)− p(z, z)
< p(x, y) + p(z, a)− p(z, z)
< p(x, x)− ε + p(z, a)− p(z, z)
< p(x, x)− ε + p(z, z)− p(z, z) + ε

= p(x, x).

Note that the above inequalities follow respectively from the sharp
triangle inequality, (3.2), (3.1) and (3.3). Hence x v a and this
proves that x � y.

Conversely, suppose that x � y and x 6= y. Hence x @ y.
By strictness of operations, x − x @ x − y. By assumption x −
x @ S(x − y) and since the norm is an order-embedding, p(x, x) =
||x− x|| > ||S(x− y)|| = ||x − y|| = p(x, y), as required. �

Corollary 3.23. Let D be as in Theorem 3.22. Then if for x, y ∈
D, d(x, y) = 0, then either x � y or y � x or x = y.

Proof. d(x, y) = 0 iff 2p(x, y) ≤ p(x, x) + p(y, y). Now, if p(x, x) <
p(y, y), then 2p(x, y) ≤ 2p(y, y), which implies y � x. Analogously,
if p(x, x) > p(y, y), then x � y. Finally, the condition p(x, x) =
p(y, y) together with d(x, y) = 0 is equivalent to x = y. �

4. Partially linear operators

Definition 4.1. A Scott-continuous mapping f : D → E between
Banach domains is partially linear if the following hold:

(4.1) f(0) = 0,

(4.2) f(ax) v af(x),
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(4.3) f(x + y) v f(x) + f(y),

for all x, y ∈ D and a ∈ IR.

Surprisingly, the scalar multiplication by non-degenerate real in-
tervals is not partially linear (though multiplication by real numbers
is):

Example 4.2. Multiplication b(·) : IR → IR for b ∈ IR is not
partially linear in general.

Proof. We have [−2,−1]([1, 2] + [−1, 1]) = [−6, 0] A [−6, 1] =
[−2,−1][1, 2] + [−2,−1][−1, 1], which demonstrates the claim. In
fact, any partially linear mapping of type [IR → IR] must be an
extension of the multiplication by a real number, i.e. of the form
c(·), where c ∈ R. �

Proposition 4.3. The poset of all partially linear functions be-
tween Banach domains D and E is a dcpo with respect to the point-
wise order. It is not a semilattice in general.

Proposition 4.4. If D, E are Banach domains, then [D → E]
is another, providing it is continuous. The addition and scalar
multiplication in [D → E] are defined as follows:

(f + g)(x)
def
= f(x) + g(x),

(af)(x)
def
= af(x).

In addition, the zero function 0 : D → E is defined as:

0(x)
def
= 0.

Unfortunately, if D, E are bounded complete models of non-
degenerate Banach spaces X, Y , respectively, then the Banach do-
main of Scott-continuous maps cannot be the model of continuous
mappings from X to Y . This fact (demonstrated below) seems not
to be a flaw of the existing definition of invertible elements nor
partially linear operators; it is rather a problem with the defini-
tion of the model itself. It happens very rarely that the domain
of Scott-continuous between models is itself a model of continuous
maps between spaces.
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Proposition 4.5. Let D, E be bounded complete Banach domains.
The only invertible partially linear mapping of [D → E] is the zero
function.

Proof. Assume that f − f = 0. In particular, this yields f(⊥) −
f(⊥) = 0; that is, f(⊥) is invertible (hence maximal) in E. Since
f(⊥) v f(x) holds for every x by monotonicity, we have f(⊥) =
f(x). Hence the mapping f is constant. However, for every x,
f(x) = f(⊥) = f(0) = 0, as required. �

On the other hand, for bounded complete Banach domains there
exists a close correspondence between linear operators on modelled
Banach spaces and partially linear operators between corresponding
models. First, we need two auxiliary lemmata:

Lemma 4.6. Suppose that A, B are Banach spaces modelled by
Banach domains D, E respectively. Let f : A → B be a linear map
and let a ∈ IR. Then f [aq] = a · f(q) holds for all q ∈ max(D).

Proof. We have u ∈ f [aq] iff there exists v ∈ aq with f(v) = u iff
there is z ∈ a such that f(zq) = u. Equivalently, zf(q) = u by
linearity, and hence u ∈ af(q). �
Lemma 4.7. Let f : D → E be a map between Banach domains
that satisfies properties (4.2) and (4.3) of Definition 4.1. Then it
satisfies property (4.1) iff it preserves invertible elements.

Proof. Let x be an invertible element of D. Then 0 = f(0) =
f(x − x) v f(x) − f(x). By maximality of zero, f(x) − f(x) = 0.
Therefore, f(x) is invertible.

Conversely, we have f(0) = f(0x) v 0f(x) = 0. However, 0
is invertible in D, and so by assumption f(0) is invertible, thus
maximal in E. Therefore, f(0) = 0. �

Theorem 4.8. Let A, B be Banach spaces modelled by Banach do-
mains D, E, respectively. Assume that D, E are bounded complete,
satisfy (B9), (B10), and that inv(D) = max(D), inv(E) = max(E).
Then:

(1) Every linear map f :A→B has the greatest Scott-continuous
extension to a partial linear mapping f̄ : D → E between
corresponding models.

(2) Every partially linear operator F : D → E restricts to a
linear operator between modelled Banach spaces.
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Proof. Let a ∈ IR and consider f̄ (ax) for some x ∈ D. Recall
that f̄(ax) =

⊔↑{
d

f [↑↑y ∩ max(D)] | y � ax}. Let w � f̄(ax).
This means that w v

d
f [↑↑y ∩ max(D)] for some y � ax, by

definition of the way-below relation. Consequently, w v f(p) for all
p � y. By Scott-continuity of the scalar multiplication, there exists
z � x such that az � y. Thus, for each q ∈ ↑↑z ∩ max(D) we have
aq w az � y. This yields aq � y and so f [aq] w w. By Lemma 4.6,
af(q) w w. However, this implies that w is a lower bound for all
elements af(q), where q ∈ ↑↑z ∩ max(D). Therefore,

d
af [↑↑z ∩

max(D)] w w. By (B9), a
d

f [↑↑z ∩ max(D)] w w. Consequently,
af̄(x) w w (recall that z � x). We have shown that w � f̄ (ax)
implies w v af̄(x). But since f̄(ax) is the directed supremum of all
elements way-below it, we must have f̄(ax) v af̄ (x), as required.

Now, we will show that f̄(x+y) v f̄(x)+f̄(y). Suppose that w �
f̄(x+y). Hence w v f(p) for all p � r, where r ∈ D is some element
with r � x+y. By Scott-continuity of addition, there are elements
x′ � x and y′ � y such that x′ + y′ � r. Hence, for all (q1, q2)∈
(↑↑x′ ∩ max(D)) × (↑↑y′ ∩ max(D)) we have q1 + q2 w x′ + y′ � r.
Consequently, q1+q2 � r and thus w v f(q1+q2). Since the map f
is linear at maximal elements, w v f(q1) + f(q2)
for all q1 ∈ ↑↑x′ ∩ max(D) and q2 ∈ ↑↑y′ ∩ max(D). By (B10),
w v

d
f [↑↑x′ ∩ max(D)] + f(q2) and w v

d
f [↑↑x′ ∩ max(D)] +d

f [↑↑y′ ∩ max(D)]. Consequently, w v
⊔↑

(x′,y′)�(x,y)(
d

f [↑↑x′ ∩
max(D)] +

d
f [↑↑y′ ∩ max(D)]). By Scott-continuity of addition,

w v f̄(x) + f̄(y). We conclude that f̄(x + y) =
⊔↑↓↓f̄(x + y) v

f̄(x) + f̄(y), as required.
Lastly, f̄(0) = f(0), since 0 is maximal. By linearity, f(0) = 0.

This yields f̄(0) = 0.
For the converse, we have to prove that any partially linear map

between Banach domains restricted to the space of maximal ele-
ments is linear. Firstly, note that by Lemma 4.7 partially linear
maps preserve invertible elements (which in our case coincide with
maximals).

Let f : A → B be a restriction of F to the maximal elements.
By the previous paragraph, f is well-defined. Let a ∈ IR and
x ∈ D be maximal. Then ax is maximal in D, because scalar mul-
tiplication preserves invertibility and maximals equal invertibles.
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Thus, f(ax) v aF (x) = af(x) by definition of F . But f(ax) is
maximal, and thus f(ax) = af(x). Next, if x, y maximal, then so
is x + y, since inv(D) = max(D) and addition preserves invertibil-
ity. Therefore, f(x+y) v F (x)+F (y) = f(x)+f(y). But f(x+y)
is maximal and we can conclude that f(x + y) = f(x) + f(y). We
have shown that the restriction of a partially linear map between
Banach domains is a linear map between Banach spaces. �

Theorem 4.9. Let D1, ..., Dk, E be Banach domains and assume
that the partial norm on E satisfies the triangle inequality. Let u
be a partially multilinear mapping from D1 × ...×Dk into E. Then
the following conditions are equivalent:

(1) There exists a number a > 0 such that for all (x1, ..., xk) ∈
D1 × ...× Dk we have

||u(x1, ..., xk)|| ≤ a · ||x1|| · ... · ||xn||;
(2) For all ε > 0, there exists δ > 0 such that if

||x1 − c1|| ≤ δ, ..., ||xk − ck|| ≤ δ,

then
||u(x1, ..., xk)− u(c1, ..., ck)|| ≤ ε.

Proof. We will give a proof for k = 2. (1)⇒(2): since

u(x1 − c1, x2) v u(x1, x2) − u(c1, x2)

and
u(c1, x2 − c2) v u(c1, x2) − u(c1, c2),

we have
u(x1−c1, x2)+u(c1, x2−c2) v u(x1, x2)−u(c1, c2)+u(c1, x2)−u(c1, x2).

Therefore,
||u(x1, x2) − u(c1, c2)|| ≤ ||u(x1, x2) − u(c1, c2) + u(c1, x2) − u(c1, x2)||

≤ ||u(x1 − c1, x2) + u(c1, x2 − c2)||
≤ a(||x1 − c1|| · ||x2||+ ||c1|| · ||x2 − c2||).

Now, for any δ ∈ (0, 1), suppose that ||xi − ci|| ≤ δ, for i = 1, 2.
Then,

||x2|| ≤ ||x2 + c2 − c2|| ≤ ||x2 − c2||+ ||c2|| ≤ ||c2||+ δ ≤ 1 + ||c2||.
Hence

||u(x1, x2)−u(c1, c2)|| ≤ a(δ(||c2||+1)+δ||c1||) = aδ(||c1||+||c2||+1).
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To prove the claim, having ε > 0, it is therefore enough to take
δ = ε/(a(||c1|| + ||c2||+ 1)).

Conversely, by assumption (for (c1, c2) = (0, 0)) we have that
there exists r > 0 such that if ||x1||, ||x2|| ≤ r, then ||u(x1, x2)|| ≤ 1.
Now, let (x1, x2) be arbitrary. Firstly, suppose that x1, x2 6= 0. If
z1 = rx1/||x1|| and z2 = rx2/||x2||, then ||z1|| = ||z2|| = r, and
hence ||u(z1, z2)|| ≤ 1. But u(z1, z2) v r2u(x1, x2)/||x1|| · ||x2|| and
therefore

r2||u(x1, x2)||/||x1|| · ||x2|| ≤ ||u(z1, z2)|| ≤ 1.

This yields ||u(x1, x2)|| ≤ a · ||x1|| · ||x2||, where a = r−2. If x1 =
x2 = 0, u(x1, x2) = 0 and the preceding inequality still holds. �

Since all partially linear maps are Scott-continuous, we expect
that in analogy with the Banach theorem, they must be bounded.

Corollary 4.10. Let D1, ..., Dk, E be Banach domains such that
the Scott topology is given by a partial metric induced by the norm.
Then every partially multilinear mapping u from D1 × ...×Dk into
E is bounded, i.e. there exists a number a > 0 such that for all
(x1, ..., xk) ∈ D1 × ...× Dk we have

||u(x1, ..., xk)|| ≤ a · ||x1|| · ... · ||xn||.
Proof. (k = 2) Since the Scott topology is given by a partial metric
induced by one of the equivalent norms, the continuity of u at (0, 0)
is characterized by the following condition:
∀ε > 0 ∃δ > 0 ∀x1 ∈ D1, x2 ∈ D2. (||x1||, ||x2|| ≤ δ ⇒ ||u(x1, x2)|| ≤ ε).

(Note that ||(0, 0)|| = ||u(0, 0)|| = 0). In particular, for ε = 1,

∃r > 0 ∀x1 ∈ D1, x2 ∈ D2. (||x1||, ||x2|| ≤ r ⇒ ||u(x1, x2)|| ≤ 1).

For the rest of the proof, we proceed like in (the proof of) Theo-
rem 4.9. �

5. The Banach domain of convex bodies

In this section we study another (apart from the formal ball
model) canonical example of a Banach domain: the domain of con-
vex compacta of the Euclidean space Rn. In contrast to the do-
main of formal balls, this domain is always bounded complete. On
the other hand, the partial norm does not induce a weak partial
metric! Let us start with necessary preparations: The collection
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KRn of all compact, convex, nonempty subsets of Rn ordered by
the inverse inclusion is a bounded complete ω-continuous dcpo.
The n-dimensional Euclidean space is homeomorphic to the subset
of maximal elements of KRn in the subspace Scott topology. Note
that the interval domain IR arises as KR1. One can readily see
that any finite product Rn1 × ...×Rnk is modelled by the bounded
complete domain KRn1 × ...×KRnk. Any metric ρ on Rn compat-
ible with the natural topology is a restriction of the corresponding
Hausdorff metric ρH on the compact convex sets.

It is well-known that – categorically speaking – any bounded
complete domain D in its Scott topology is an injective space with
respect to dense subspace embedding in the ambient category of
topological T0 spaces. In the language of mortals this means that
every continuous map f :X→D extends to a continuous f̄ :Y →D
for any space Y containing X as a dense subspace. In fact, we
can always find the greatest such extension [14], which is explicitly
defined as:

f̄(y)
def
=

⊔
↑{

l
f(U ∩ X) | y ∈ U}, U ∈ ΩY.

In what follows, we will prove that the Minkowski operations
on the compact convex sets arise as greatest Scott-continuous ex-
tensions of the natural operations in Rn to the domain KRn. In
the sequel, we will make a frequent use of the following elementary
properties of convex sets:

Proposition 5.1. For any convex subsets x, y, {xi}i∈I of Rn, p, q ⊆
Rn, for any a, b, c, s, z ∈ R and u, u1, ..., uk ∈ Rn the following hold:

(1) (s + z)x = sx + zx,
(2) s(x + y) = sx + sy,
(3) su ∈ sx iff u ∈ x, providing that s 6= 0,
(4) z

⋂
i∈I xi =

⋂
i∈I(zxi),

(5) z
⋃

i∈I xi =
⋃

i∈I(zxi),
(6) For every k ∈ ω, s · conv(u1, ..., uk) = conv(su1, ..., suk),
(7) conv(sq) = s · conv(q),
(8) s(x ∪ y) = sx ∪ sy,
(9) conv(q ∪ p) = conv(conv(q)∪ conv(p)),

(10) If a ≤ b ≤ c, then bx ⊆ conv(ax ∪ cx),
(11)

⋃
i∈I xi + y =

⋃
i∈I(xi + y).
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Here, and in the sequel, we abbreviate any expression of the form
conv({u1, ..., uk}) to conv(u1, ..., uk).

To start with, note that any continuous function f : Rn → R
is trivially a map f : Rn → IR continuous from the Euclidean
topology on Rn to the Scott topology on IR. Now, since Rn ∼=
max(KRn), the extension f̄ : KRn → IR is given by:

f̄ (K) =
⋂

{f [L] | K ⊆ int(L)}, L ∈ KRn,

or, equivalently,

f̄(K) =
⋂

{f [(K)2−n] | n ∈ ω}.

Since f is continuous, we have

f [K] = [minx∈Kf(x), maxx∈Kf(x)] ∈ IR

for any K ∈ KRn (the map f attains extremal values on compacta).
This allows us to write the expression for f̄ more concisely as:

f̄(K) = f [K], K ∈ KRn.

In fact, the argument carries without major changes if one wishes
to consider any continuous function g : Rn1 × ...× Rnk → Rm.

ḡ(K) =
⋂

{conv(g[(K)2−n]) | n ∈ ω}

= conv(
⋂

{(g[(K)2−n]) | n ∈ ω})
= conv(g[K]).

In the sequel, if no ambiguity arises, we will drop the bar −.
Consider addition +: Rn × Rn → Rn. The extension is

K + L = conv({x + y | x ∈ K, y ∈ L}) = {x + y | x ∈ K, y ∈ L}.

This is the well-known Minkowski addition of compact convex sets
of type KRn×KRn → KRn. In a similar fashion, the scalar product
· : R×Rn → Rn extends to the operation of type IR×KRn → KRn

and a substraction K − L can be readily defined as K + (−1) · L.
The following theorem characterizes one of the (domain-theoretic)

bases of KRn and thus the way-below relation of the domain.

Proposition 5.2. Polyhedra are dense in the way-below relation
on KRn, n ∈ ω.
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Proof. Suppose y � x. Then there exists ε > 0 with x ⊆ (x)ε ⊆
int(y). Define C = cl((x) 2ε

3
\ (x) ε

3
). The set C is closed and

bounded, and hence compact. Thus any cover of C by a fam-
ily of cubes of diameter smaller than ε

6 has a finite subcover, say
{c1, ..., ck}. We define the interpolating polyhedron as

z
def
= conv({c1, ..., ck}).

Now, if r ∈ (x) ε
6
, then any straight line through r punctures the

cover {c1, ..., ck} in at least two points, say u, v on the opposite
sides of r. Hence there are cubes, say c, c′, such that u ∈ c, v ∈ c′.
Consequently,

r ∈ conv(u, v) ⊆ conv{c, c′} ⊆ z

and this proves that x ⊆ (x)ε/6 ⊆ z, that is, z � x. On the other
hand, by construction,

z ⊆ (x)ε/6 ⊆ (x)ε ⊆ int(y),

which gives y � z, as required. �

Proposition 5.3. The diameter measures (in the sense of
K. Martin [24]) the space of maximal elements of KRn, n ∈ ω.

Proof. The diameter is clearly Scott-continuous. Let x ∈ Rn. Sup-
pose that z � x for z ∈ KRn. We have to show that there is ε > 0
such that z � diam(x, ε) = {y | x ∈ y & diam(y) < ε}. Since
z � x, there exists δ > 0 such that (x)δ ⊆ z. Set ε = δ/3. Now,
if y ∈ diam(x, ε), then y ⊆ (x)2ε ⊂ (x)δ ⊆ z. This proves that
diameter is a measurement.

It is clear that if x ∈ Rn = max(KRn), then diam(x) = 0, which
means that x ∈ ker(diam). Conversely, if x ∈ KRn \Rn, then there
are a, b ∈ x with a 6= b. By convexity, conv(a, b) ⊆ x. Therefore,
0 < diam(conv(a, b)) ≤ diam(x). That is, x /∈ ker(diam). �

Proposition 5.4. For any n ∈ ω we have inv(KRn) = max(KRn).

Proof. Let x ∈ KRn be invertible. Then 0≤diam(x)≤diam(x − x)
= diam(0) = 0, which gives x ∈ ker(diam). The diameter is a
measurement and thus x ∈ max(KRn) follows. For the converse,
if x ∈ max(KRn), then x ∈ ker(diam) and so diam(x) = 0. This
means that x ∈ Rn and so x − x = 0. That is, x ∈ inv(KRn). �
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Definition 5.5. The (extended) scalar multiplication IR×KRn →
KRn is defined as:

[a, b]x = conv(
⋃

z∈[a,b]

zx),

where [a, b] ∈ IR and x ∈ KRn.

It coincides with the Minkowski scalar multiplication when re-
stricted to type R × KRn → KRn.

Lemma 5.6.
[a, b]x = conv(ax∪ bx).

Proof. Clearly, ax, bx ⊆
⋃

s∈[a,b] sx. Thus, conv(ax ∪ bx) ⊆ [a, b]x.
Conversely, if u ∈ [a, b]x, then by Carathéodory’s Theorem,

∃k ∃u1, ..., uk ∈
⋃

s∈[a,b]

sx. u ∈ conv(u1, ..., uk).

Equivalently,

∃k ∃v1, ..., vk ∈ x ∃s1, ..., sk ∈ [a, b]. u ∈ conv(s1v1, ..., skvk).

However, for each i = 1, ..., k, we have sivi ⊆ conv(avi, bvi) by
Proposition 5.1(10) and so

conv(s1v1, ..., skvk) ⊆ conv(av1, ..., avk, bv1, ..., bvk).

Now, by Proposition 5.1(9),

u ∈ conv(conv(av1, ..., avk) ∪ conv(bv1, ..., bvk))
= conv(a conv(v1, ..., vk) ∪ b conv(v1, ..., vk))
⊆ conv(ax ∪ bx). �

Lemma 5.7. The extended scalar multiplication of type IR×KRn→
KRn satisfies the following properties:

(1) 0x = 0,
(2) nx = x + ... + x︸ ︷︷ ︸

n times

,

(3) [a, b]([c, d]x) = ([a, b][c, d])x,
(4) [a, b]x + [c, d]x ⊇ ([a, b] + [c, d])x,
(5) [a, b]x + [a, b]y ⊇ [a, b](x + y),
(6) preserves directed suprema in KRn,
(7) preserves infima in KRn.
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Proof. For (1), 0x = {(0, ..., 0︸ ︷︷ ︸
n times

)} = {0}, which is identified with

0. Part (2) follows immediately from Proposition 5.1. For (3), by
Proposition 5.1(7),(8),(10):

[a, b]([c, d]x) = conv(a conv(cx ∪ dx)∪ b conv(cx∪ dx))
= conv(conv(acx ∪ adx)∪ conv(bcx∪ bdx))
= conv(acx∪ adx ∪ bcx∪ bdx)
= conv(min{ac, ad, bc, bd}x∪ max{ac, ad, bc, bd}x)
= [min{ac, ad, bc, bd},max{ac, ad, bc, bd}]x
= ([a, b][c, d])x.

For (4), ([a, b] + [c, d])x = conv((a + c)x ∪ (b + d)x), which by
Proposition 5.1(1) is conv((ax + cx) ∪ (bx + dx)). It is easy to see
that (ax + cx) ∪ (bx + dx) ⊆ (ax ∪ bx) + (cx ∪ dx), and therefore,
conv((ax+cx)∪ (bx+dx)) ⊆ conv((ax∪bx)+(cx∪dx)). However,
the latter set is the same as conv(ax ∪ bx) + conv(cx ∪ dx), which
is precisely [a, b]x + [c, d]x.

For (5),

[a, b](x+ y) = conv(
⋃

z∈[a,b]

z(x + y))

= conv(
⋃

z∈[a,b]

(zx + zy))

⊆ conv(
⋃

z∈[a,b]

zx +
⋃

s∈[a,b]

sy)

= conv(
⋃

z∈[a,b]

zx) + conv(
⋃

s∈[a,b]

sy)

= [a, b]x + [a, b]y.

Note that we have used Proposition 5.1(2) and distributivity of the
convex closure over the Minkowski addition.

For (6), extended scalar multiplication is clearly monotone in
KRn and so [a, b](

⊔↑D) w
⊔↑

d∈D([a, b]d) for any directed set D ⊆
KRn. For the converse, we have to show that

⋂

d∈D

([a, b]d)⊆ [a, b](
⋂

d∈D

d).
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Suppose u ∈
⋂

d∈D([a, b]d). Hence

∀d ∈ D ∃k, z1, ..., zk, u1 ∈ z1d, ..., uk ∈ zkd. u ∈ conv(u1, ..., uk).

However, u1 ∈ z1d for all d ∈ D and so

u1 ∈
⋂

d∈D

(z1d) = z1

⋂

d∈D

d ⊆
⋃

z∈[a,b]

z
⋂

d∈D

d,

and similarly for u2, ..., uk. Therefore,

u ∈ conv(u1, ..., uk) ⊆ conv(
⋃

z∈[a,b]

z
⋂

d∈D

d) = [a, b](
⋂

d∈D

d),

as required.
For (7), let xi, i ∈ I be any family of convex compacta in Rn.

We have to show that [a, b]
d

i∈I xi =
d

i∈I([a, b]xi), or, in another
words,

[a, b]conv(
⋃

i∈I

xi) = conv(
⋃

i∈I

[a, b]xi).

We have

[a, b]conv(
⋃

i∈I

xi) = conv(a · conv(
⋃

i∈I

xi) ∪ b · conv(
⋃

i∈I

xi))

= conv(conv(
⋃

i∈I

axi) ∪ conv(
⋃

i∈I

bxi))

= conv(
⋃

i∈I

axi ∪
⋃

i∈I

bxi)

= conv(
⋃

i∈I

(axi ∪ bxi))

= conv(
⋃

i∈I

[a, b]xi).

The equalities above are justified by Lemma 5.6, Proposition 5.1,
parts (5),(7),(9), and the definition. �

We have proved:

Theorem 5.8. For every n ∈ ω:
(1) the poset KRn is a bounded complete Banach domain with

(B9) when considered with Minkowski addition, extended
scalar multiplication and zero element 0 = (0, ..., 0︸ ︷︷ ︸

n

).
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(2) The Euclidean n-dimensional space coincides with invertible
elements of KRn.

(3) The diameter diam:KRn→ [0,∞)op measures max(KRn)=
inv(KRn).

(4) Polyhedra form a basis for KRn.

We conclude this section with an observation that the partial
norm for KRn does not satisfy the triangle inequality. Hence the
associated distance is not a weak partial metric. However, the
domain KRn admits a meaningful generalized distance, namely the
Hausdorff quasimetric between convex bodies:

qH(K, L)
def
= inf{ε > 0 | K ⊆ (L)ε}.

Proposition 5.9. The dual Hausdorff quasimetric q∗H : KRn ×
KRn → [0,∞) induces the Scott topology on KRn.

Proof. Assume that K ∈ ↑↑L for some K, L ∈ KRn. We want to
show that Bq∗H

(K, ε) ⊆ int(L) for some ε > 0. Since K ⊆ int(L),
there is ε > 0 with (K)ε ⊆ int(L). Hence if Z ∈ Bq∗H

(K, ε), then
inf{δ | Z ⊆ (K)δ} < ε, that is, Z ⊆ (K)ε ⊆ int(L).

Conversely, if Z ∈ Bq∗H
(K, ε) for some K and ε > 0, then there

are positive numbers ε1, ε2, ε3 with q∗H(K, Z) < ε3 < ε2 < ε1 < ε.
Hence Z ⊆ (K)ε3 ⊆ cl((K)ε2) ⊆ (K)ε1 ⊆ (K)ε. Setting L =
cl((K)ε2) yields Z ∈ int(L). That is, Z � L. Now, if R ∈ ↑↑L, then
R ⊆ int(L) ⊆ (K)ε1 , and so, inf{δ | R ⊆ (K)δ} ≤ ε1 < ε. This
means that q∗H(K, R) < ε, that is, R ∈ Bq∗H

(K, ε), as required. �

6. Conclusions and future work

We proposed Banach domains as computational models for
Banach spaces. The rudiments of the theory of Banach domains
have been given in [31]; here, we offer a much more thorough
(still incomplete, though) study of models of Banach spaces. We
discussed possible changes in axiomatics proposed in [31], defined
partially linear operators, showed that they are bounded (Corollary
4.10) and proved an important extension theorem (Theorem 4.8) for
bounded complete Banach domains. Moreover, we observed that
under certain precisely defined conditions (Theorem 3.16) a weak
partial metric can be defined from a partial norm in a canonical
way. We noted that whenever the partial metric topology agrees
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with the Scott topology, the approximation relation of the under-
lying domain can be characterized by the induced distance (Theo-
rem 3.22). Finally, we proposed a canonical Banach domain model
of the n-dimensional Euclidean space and thoroughly analyzed its
structure.

A future work will focus on Banach domains with the property
that partial norm induces the Scott topology via the associated
weak partial metric. Another separate task is to reflect duality
theory for Banach spaces in the world of Banach domains. Finally,
we conjecture that every Banach space has a bounded complete
model which is a Banach domain.
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