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Abstract. This paper answers some of the questions posed
by A. V. Arhangel’skii and I Yu. Gordienko in [Relatively lo-
cally finite Hausdorff spaces, Questions and Answers in Gen-
eral Topology 12 (1994), no. 1, 15–25] concerning the rep-
resentation of certain spaces as images of relatively locally
finite Hausdorff spaces. In particular, it is shown that the
convergent sequence is the image of a relatively locally finite
Hausdorff space under a continuous open mapping. An ex-
ample of a relatively locally finite Hausdorff space which is
not Baire is also constructed.

1. Introduction

Topologists are always seeking connections between arbitrary
spaces and nicer spaces. For example, every Tychonoff space can
be densely embedded in a Hausdorff compactification and every
Hausdorff space is the perfect, continuous, irreducible image of an
extremally disconnected space. To this end, A. V. Arhangel’skii and
I. Yu. Gordienko [1] introduce a generalization of discrete spaces,
called relatively locally finite spaces, and examine conditions under
which relatively locally finite Hausdorff spaces are discrete. They
also pose questions about which Hausdorff spaces are images or
preimages of relatively locally finite Hausdorff spaces. This paper
answers a few of these questions.
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Definition 1.1. (1) A set A in a topological space X is finitely
located if every closed in X subset of A is finite.

(2) A Hausdorff space X is relatively locally finite at x if x has a
finitely located neighborhood in X.

(3) A Hausdorff space X is relatively locally finite if it is relatively
locally finite at each of its points.

Clearly, every discrete Hausdorff space is relatively locally finite.
In fact, in regular Hausdorff spaces, the properties relatively locally
finite and discrete are equivalent. In nonregular spaces, however,
the properties are not equivalent. This leads to some interesting
comparisons between properties of discrete spaces and those of non-
regular relatively locally finite Hausdorff spaces. For example, while
every image of a discrete space under a closed continuous map is
discrete, Arhangel’skii and Gordienko describe a relatively locally
finite Hausdorff space and a closed continuous mapping from this
space onto the convergent sequence space, which is not relatively
locally finite. Because every image of a discrete space under an
open continuous map is also discrete, Arhangel’skii and Gordienko
posed the following set of questions: Is it true that every Hausdorff
space Y can be represented as an image of a relatively locally finite
Hausdorff space X under an open continuous mapping? Is this true
at least for Tychonoff spaces Y , or for metrizable spaces Y ? What
if Y is the simplest infinite compactum, that is, the convergent se-
quence? [1]

We first answer the first two questions in the negative. Then,
a relatively locally finite Hausdorff space and a continuous open
surjective mapping from this space to the convergent sequence are
constructed, demonstrating that the last question can be answered
in the affirmative.

2. Images of relatively locally finite Hausdorff spaces

Recall that a space is feebly compact if every locally finite family
of pairwise disjoint open subsets is finite. (See [3].) A space is locally
feebly compact if every point has a feebly compact neighborhood.

The following is Corollary 5 in [1].

Proposition 2.1. Every relatively locally finite Hausdorff space is
locally feebly compact.
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Proposition 2.2. Continuous open images of relatively locally fi-
nite Hausdorff spaces are locally feebly compact.

Proof: Let X be a relatively locally finite Hausdorff space and
f : X → Y be a continuous open mapping onto a Hausdorff space
Y . Let q ∈ X and p = f(q) ∈ Y .

By Proposition 2.1, q has an open neighborhood U such that
q ∈ U ⊂ V and V is feebly compact. f(U) is an open neighborhood
of p in Y and f(U) ⊂ f(V ), which is a feebly compact subspace
of Y , since continuous images of feebly compact spaces are feebly
compact. Thus, Y is locally feebly compact. ¤

We can now answer the first two questions of Arhangel’skii and
Gordienko.

Example 2.3. Q is a space which is metrizable (and thus Ty-
chonoff and Hausdorff) but not locally feebly compact, so it is not
the continuous open image of any relatively locally finite Hausdorff
space.

3. A relatively locally finite preimage of the
convergent sequence

While not every metrizable space can be represented as an image
of a relatively locally finite Hausdorff space under a continuous open
mapping, we will answer the last of the questions in the affirmative
by constructing a relatively locally finite Hausdorff space X and a
continuous open surjective function

f : X → {1/n : n ∈ N} ∪ {0}.
For each n ∈ ω, an open subspace Xn of X will be constructed

and the function f will be defined so that f(Xn) = {1/n} for n ≥ 1
and f(X0) = {0}.

ω∗ = βω \ ω is ω−resolvable, so we can find ω pairwise disjoint
dense subsets {Dn : n ≥ 1} of ω∗, each of cardinality c .

Index [Dn]ω = {Cγ
n : γ < c}.

Note that for each γ < c and n ≥ 1,
∣∣∣Cγ

n
ω∗∣∣∣ = 2c.

Thus, we can select sets

Eγ
1 ⊂ Cγ

1

ω∗ \
(⋃

{Dn : n ≥ 1} ∪
⋃
{Eβ

1 : β < γ}
)

such that |Eγ
1 | = c for each γ < c .
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For each n > 1, suppose sets Eγ
m have been defined for all γ < c

and for all m < n, and let

Eγ
n ⊂ Cγ

n
ω∗\

(⋃{Dm : m ≥ 1} ∪⋃{Eβ
m : β ∈ c,m < n} ∪⋃{Eβ

n : β < γ}
)

so that |Eγ
n| = c for each γ ∈ c.

For each n ≥ 1, define

Xn = Dn ∪
⋃
{Eγ

n : γ < c}.
By the construction, {Xn : n ≥ 1} is a pairwise disjoint family

of subsets of ω∗.
Let

X0 = ω∗ \
⋃
{Xn : n ≥ 1},

and define
X =

⋃
{Xn : n ∈ ω}.

Note that |X0| = 2c since |⋃{Xn : n ≥ 1}| = c .
The point set of X is the same as that of ω∗, but the topology τ

on X will be defined as follows:
The sets Xn, where n ≥ 1, are defined to be clopen in X, and

the sets Dn, where n ≥ 1, are defined to be open in Xn, and thus
in X. This implies that for all n ≥ 1,

⋃{Xm : m ≥ n} and⋃{Dm : m ≥ n} are open subspaces of X.
Furthermore, U ∈ τ(X) if

(1) p ∈ Xn∩U for some n ≥ 1 implies that there is a V ∈ τ(ω∗)
such that p ∈ V and V ∩Dn ⊆ U , and

(2) p ∈ X0 ∩ U implies that there is a V ∈ τ(ω∗) and an n ∈ ω
such that p ∈ V and V ∩ (

⋃{Dm : m ≥ n}) ⊆ U .

It is straightforward to verify that this defines a Hausdorff topol-
ogy on X that is strictly stronger than τ(ω∗). To prove that X is
relatively locally finite, we use the following lemma.

Lemma 3.1. (1) If A ⊂ Dm for some m ≥ 1, and p ∈ Xm \Dm,
then p ∈ A

X if and only if p ∈ A
Xm if and only if p ∈ A

ω∗.
(2) If p ∈ X0, A ⊂ ⋃{Dm : m ≥ 1} is infinite, and A ∩Dm is

finite for all m, then p ∈ A
X if and only if p ∈ A

ω∗.
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Proof: First, note that in both parts of the lemma, one direction
follows from the fact that the topology on X is stronger than the
topology on ω∗, so A

X ⊆ A
ω∗ for all A ⊆ X.

(1) Suppose A ⊂ Dm for some m ≥ 1, and p ∈ Xm \Dm.
Suppose p ∈ A

ω∗ . Let p ∈ U ∈ τ(X) (if and only if
p ∈ U ∩ Xm ∈ τ(Xm)). There is a V ∈ τ(ω∗) such that
p ∈ V and V ∩Dm ⊂ U (if and only if V ∩Dm ⊂ U ∩Xm).
We then have:

∅ 6= V ∩A = V ∩A ∩Dm ⊂ U ∩A.

Thus, p ∈ A
X .

(2) Suppose p ∈ X0, A ⊂ ⋃{Dm : m ≥ 1} is infinite, and
A ∩Dm is finite for all m ∈ ω.

Suppose p ∈ A
ω∗ . Let p ∈ U ∈ τ(X).

U ⊇ {p} ∪
(
V ∩

⋃
{Dm : m ≥ n}

)

for some V ∈ τ(ω∗) and n ≥ 1. V ∩ A is infinite, because
p ∈ A

ω∗ , so V ∩ A ∩Dm 6= ∅ for infinitely many m, and in
particular for infinitely many m ≥ n. Thus, U ∩A 6= ∅, and
p ∈ A

X . ¤
Theorem 3.2. X is relatively locally finite.

Proof: First, suppose p ∈ Xm for some m ≥ 1. An open set in
X containing p is U = V ∩ (Dm ∪ {p}) where p ∈ V ∈ τ(ω∗). Let
S ∈ [U ]ω. Without loss of generality, S ∈ [V ∩Dm]ω. So S = Cγ

m

for some γ, and by Lemma 3.1,

(Xm \Dm) ∩ S
X = (Xm \Dm) ∩ S

βω ⊇ Eγ
m,

so
∣∣∣(Xm \Dm) ∩ S

X
∣∣∣ ≥ c. Thus, S is not closed in X, and X is

relatively locally finite at p. (By Lemma 3.1, S is also not closed
in Xm; thus, Xm is relatively locally finite at p.)

Now suppose p ∈ X0. An open set in X containing p is

W = V ∩
(
{p} ∪

⋃
{Dm : m ≥ n}

)
,

where p ∈ V ∈ τ(ω∗). If S ∈ [W ]ω, then S\{p} ∈ [
⋃{Dn : n ≥ 1}]ω.

If S ∩Dm is infinite for some m ≥ 1, then S is not closed in X
by the preceding argument. Suppose otherwise. Then S ∩Dm 6= ∅
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for infinitely many m. S is an infinite subset of ω∗, so
∣∣∣Sω∗

∣∣∣ = 2c.
Since ∣∣∣

⋃
{Xm | m ≥ 1}

∣∣∣ = c ,

it follows that ∣∣∣X0 ∩ S
βω

∣∣∣ = 2c.

By Lemma 3.1, ∣∣∣X0 ∩ S
X

∣∣∣ = 2c,

and thus that S is not closed in X, so X is relatively locally finite
at p. ¤

Define a function f : X → Y = {1/n : n ∈ N} ∪ {0} by:

f(x) =

{
1/n, if x ∈ Xn, n ≥ 1;
0, if x ∈ X0.

Theorem 3.3. f : X → Y is a continuous open surjection.

Proof: By definition, f is onto.
Clearly, f is continuous at all points of Xn for n ≥ 1.
Let p ∈ X0. Tn = {0} ∪ {1/m : m ≥ n} is a basic open neigh-

borhood of f(p) = 0 in Y . X0 ∪
⋃{Xm : m ≥ n} is a basic open

neighborhood of p in X and f (X0 ∪
⋃{Xm : m ≥ n}) = Tn, so f

is continuous at p.
Let V be an open set in X. If V ∩X0 = ∅, then f(V ) ⊆ {1/n :

n ≥ 1}, so f(V ) is open in Y . On the other hand, suppose there is
a point p ∈ V ∩X0.

There is a set W ∈ τ(ω∗) and an n ∈ ω such that p ∈ W and

W ∩
⋃
{Dm : m ≥ n} ⊆ V.

Since the sets Dm are all dense in ω∗, W ∩ Dm 6= ∅ for all m. In
particular, V ∩Dm 6= ∅ for all m ≥ n. Hence,

f(V ) ⊃ {0} ∪ {1/m : m ≥ n},
and f(V ) is open in Y . ¤

Every topological space is the image of a discrete space (and thus
a relatively locally finite space) under a continuous mapping. How-
ever, no nondiscrete space is the image of a discrete space under
a closed continuous mapping or an open continuous mapping. In
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both cases, the situation differs for relatively locally finite Hausdorff
spaces: A space which is not locally feebly compact cannot be rep-
resented as the continuous open image of any relatively locally finite
space. This paper provides an example of a relatively locally finite
Hausdorff space whose open continuous image is the non-relatively
locally finite convergent sequence, and Arhangel’skii and Gordienko
provided the example of the Katětov extension of the countable dis-
crete space, which is a relatively locally finite Hausdorff space whose
closed continuous image is the convergent sequence. This raises the
question as to whether the convergent sequence is the closed and
open continuous image of some relatively locally finite Hausdorff
space. More generally, a characterization of those spaces which can
be represented as images of relatively locally finite Hausdorff spaces
under open (or closed) continuous mappings is needed.

4. Relationship to Baire spaces

The following question was posed to the author by Dave Lutzer:
Are relatively locally finite Hausdorff spaces Baire spaces? Recall
that a space is Baire if the intersection of any countable family
of dense open sets is also dense. While the example described in
the previous section is indeed a Baire space, we also construct a
relatively locally finite Hausdorff space which is not Baire.

Theorem 4.1. X is a Baire space.

Proof: Let {Un : n ∈ N} be a countable family of dense open sets
in the relatively locally finite space X constructed in the previous
section. Each Un ⊇

⋃{Vn∩Dm : m ≥ 1}, where Vn is a dense open
set in ω∗ and {Dm : m ∈ N} are dense open sets in ω∗ as defined
earlier. Note that since ω∗ is a Baire space, ∩{Vn : n ∈ N} is dense
in ω∗.

To see that
⋂{Un : n ∈ N} is dense in X, let W ∈ τ(X). If

W ∩X0 6= ∅, then there exists a set O ∈ τ(ω∗) and an N ∈ N such
that O ∩⋃{Dm : m ≥ N} ⊂ W . Thus,

W ∩
⋂
{Un : n ∈ N} ⊇

⋃
{O ∩Dm ∩

⋂
Vn : m ≥ N}.

Each intersection in the union is nonempty because O ∩Dm is a
nonempty open set in ω∗.
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If W ∩XN 6= ∅ for some N > 0, then there exists a set O ∈ τ(ω∗)
such that O ∩DN ⊂ W . Thus,

W ∩
⋂
{Un : n ∈ N} ⊇ O ∩DN ∩

⋂
Vn 6= ∅. ¤

This shows that X is a Baire space, which motivates a search for
a relatively locally finite space which is not Baire.

Let I denote the usual unit interval and let EI be the absolute
of I. The absolute consists of the convergent ultrafilters on the
algebra of regular open sets of I [3]. We need two facts about EI.

Proposition 4.2. (1) EI is separable (with D denoting a separable
dense subset of EI).

(2) Every infinite closed subset of EI is uncountable.

Proof: (1) Let k : EI → I be the absolute map (see [3]) that is
perfect, irreducible, θ−continuous, and onto. Let Q be a countable,
dense subset of I and for each r ∈ Q, select a point dr ∈ k←(r),
and let D = {dr : r ∈ Q}. D is a countable subset of EI. To see
that D is dense, let U be a nonempty open subset of EI. Then
k#[U ] = {x ∈ I : k←(x) ⊆ U} is a nonempty open subset of I and
so contains a point r ∈ Q. Now dr ∈ k←(r) ⊆ U and U ∩D 6= ∅.

(2) EI is a compact, extremally disconnected space, so every
infinite closed subset has cardinality |βω|. (See [2, 6.2.G(b)].) ¤

Let Y denote EI with this topology: A subset U ⊆ EI is open
in Y if for each p ∈ U , there is an open set V ∈ τ(EI) such that
p ∈ V and V ∩D ⊆ U .

Theorem 4.3. Y is a relatively locally finite Hausdorff space which
is not Baire.

Proof: D is a countable dense open subset of Y . Since {D\{d} :
d ∈ D} is a countable family of dense, open sets whose intersection
is empty, Y is not Baire.

Let p ∈ Y and let U = {p} ∪ (V ∩ D), where V ∈ τ(EI), be a
basic open neighborhood of p in Y . Let C ⊂ U be closed in Y . By
an argument similar to the proof of Lemma 3.1, C ∩ D = F ∩ D
where F is closed in EI, so C \ {p} is closed in EI. Since C ⊂ D,
C is at most countable. By Proposition 4.2, infinite closed subsets
of EI are uncountable, so C must be finite. Thus, Y is relatively
locally finite. ¤
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