Topology Proceedings

http://topology.auburn.edu/tp/
Topology Proceedings
Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA
topolog@auburn.edu
0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A NOTE ON TRANSFINITE COHESIONS IN TOPOLOGICAL SPACES

LIANG-XUE PENG

ABSTRACT. An example is given to show that there is a T_1 -space of transfinite cohesion. It answers P. A. Cairns' question posed in 1994.

1. INTRODUCTION

P. A. Cairns introduced the concept of cohesion in [1] and proved that there is no regular space of transfinite cohesion. Finally, he raised an open problem: Is there any space of transfinite cohesion? In this note, we give an example of a T_1 -space of transfinite cohesion. Let N be the set of all natural numbers.

Definition 1.1 ([1]). For a topological space X, the cohesion of X, abbreviated cohX, is defined by transfinite recursion as follows: cohX = -1 if and only if $X = \emptyset$. For any ordinal α , $cohX \leq \alpha$ if for every nowhere dense subset $C \subset X$, $cohC < \alpha$. For a space X and an ordinal α , $cohX = \alpha$ if $cohX \leq \alpha$ and for every $\beta < \alpha$, it is not the case that $cohX \leq \beta$.

Definition 1.2 ([1]). A space X is said to be scattered if every subset F of X has an isolated point. Taking X^d and denoting the set of non-isolated points of X, we make the following definitions: $X^{(0)} = X, X^{(\alpha+1)} = (X^{(\alpha)})^d$ and $X^{(\lambda)} = \cap \{X^{(\alpha)} : \alpha < \lambda\}$ for a limit ordinal number λ . The scattered length of X, denoted by sl(X), is taken to be the smallest λ , such that $X^{(\lambda)} = \emptyset$.

Lemma 1.3 ([1]). For a scattered space X and $n \in \omega$, sl(X) = n if and only if cohX = n - 1.

351

Research supported by Beijing Natural Science Foundation 1062002.

L.-X. PENG

Example 1.4. To illustrate that there is a T_1 -space X of transfinite cohesion, let $X = N \times N$. For any $i \in N, j \in N$, we let $W_{ij} = \{W_{iq} \cup \{(i,j)\} : q \ge j+1\}$, where $W_{iq} = \{(m,n) : m \ge i+1, n \ge q\}, q \in N$. W_{ij} is a base of the point (i,j) in X.

Claim 1.5. Let $M \subset X$. If there is some $n \in N$, such that $max\{i : (i, j) \in M\} \le n$, then the set M is a scattered subset of X.

Proof: Let N_1 be any subset of M and let $m = max\{i : (i, j) \in N_1\}$; then $m \leq n$. Take a point $x \in N_1$, such that x = (m, j) for some j. Then $W \cap N_1 = \{x\}$ for any $W \in \mathcal{W}_{mj}$. So the point x is an isolated point of N_1 . Thus, M is a scattered subset of X. \Box

Claim 1.6. Let $n \in N$. If $M_n = \{(i, j) : i \leq n, j \in N\}$, then $cohM_n = n - 1$.

Proof: By Claim 1.5, we know that M_n is a scattered subset of X for $n \in N$. We may easily see that $M_n^d = M_{n-1}$, $M_0 = \emptyset$. So $M_n^{(n)} = \emptyset$. Thus, $sl(M_n) = n$. So we know that $cohM_n = n - 1$ by Lemma 1.3.

Claim 1.7. Let $M \subset X$. If there is some $n \in N$, such that $max\{j : (i, j) \in M\} \le n$, then cohM = 0.

Proof: For any $(i, j) \in M$, if we let $W \in W_{ij}$ and $W = W_{in+1}$, then $W \cap M = \{(i, j)\}$. So M is a discrete subset of X. Thus, cohM = 0.

Claim 1.8. Let $C \subset X$. If C is a nowhere dense subset of X, then there is some $i \in N$, such that $cohC \leq i$.

Proof: The set $C \,\subseteq X$, and C is a nowhere dense subset of X. So $\overline{C}^{\circ} = \emptyset$. Hence, $\overline{C} \neq X$. So we have some point $(i, j) \notin \overline{C}$. Thus, we have some $W_{iq} \in W_{ij}$, such that $C \cap W_{iq} = \emptyset$, where $q \geq j + 1$. Thus, any nowhere dense subset C has to be confined to an L shape; more specifically, C has to be a subset of $A = N \times \{1, 2, \ldots, q - 1\} \cup \{1, 2, \ldots, i\} \times N$ for some q and i. For any $(p, k) \in A$, if $p \geq i + 1$, then the point (p, k) is an isolated point of A. So $A^d \subset \{1, 2, \ldots, i\} \times N$. By Claim 1.5, we know that $\{1, 2, \ldots, i\} \times N$ is a scattered subset of X. Thus, A is a scattered set and $sl(A) \leq i + 1$. So $sl(C) \leq i + 1$ following from $C \subset A$. Thus, $cohC \leq i$ by Lemma 1.3. □

Claim 1.9. The cohesion of the space X is ω .

352

Proof: From the above discussion, we know that the cohesion of any nowhere dense subset of X is finite, and for each $n \in N$, there is a nowhere dense set M_{n+1} satisfying $cohM_{n+1} = n$. So $cohX = \omega$ by the definition of cohesion. We may easily know that the space X is a T_1 -space.

2. About cohesions of product spaces

Finally, we will say that, even if $cohX_s$ exists for each $s \in S$, cohX may not exist for $X = \prod X_s$.

Let $C_1 = \{0\}$, so $cohC_1 = 0$.

Let $C_2 = \{0\} \cup \{\frac{1}{n} : n \in N \text{ and } n \geq 2\}$. This gives a sequence of line converging down to point of C_1 . We know that $C_2^d = C_1$ and $cohC_2 = 1$.

Suppose we have defined C_n , $n \geq 2$. Next we define C_{n+1} . For each $x \in C_n \setminus C_{n-1}$, we can choose a sequence A_x of line, such that A_x converges to the point x and $A_x \cap C_n = \emptyset$. And also A_x and A_y have no common points for different x and y of $C_n \setminus C_{n-1}$.

We let $C_{n+1} = (\bigcup \{A_x : x \in C_n \setminus C_{n-1}\}) \cup C_n$. So we have $C_{n+1}^d = C_n$ and $cohC_{n+1} = n$.

Let $X = \prod_{n \in N} X_n$, where $X_n = C_n, n \in N$. We know that

$$X_1 \times \prod_{n \ge 2} X_n^d$$

is homeomorphic to X and is a nowhere dense closed set of X. So coh X doesn't exist.

Acknowledgment. The author would like to thank the referee for valuable suggestions which greatly improved the paper.

References

 P. A. Cairns, Cohesion in topological spaces, Topology Proc. 19 (1994), 37– 61.

College of Applied Science; Beijing University of Technology; Beijing 100022, China

E-mail address: pengliangxue@bjut.edu.cn