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ON ω-BOUNDEDNESS OF THE VIETORIS
HYPERSPACE

LÁSZLÓ ZSILINSZKY

Abstract. It is shown that the Vietoris hyperspace of a lo-
cally compact, ω-bounded space is ω-bounded; furthermore,
a Tychonoff, ω-bounded, non-normal, non-locally compact
space with an ω-bounded hyperspace is constructed.

1. Introduction

For a Hausdorff space X, let CL(X) denote the collection of
nonempty closed subsets of X (the so-called hyperspace of X). The
Vietoris topology τV on CL(X) has subbase elements of the form

U+ = {A ∈ CL(X) : A ⊂ U} and U− = {A ∈ CL(X) : A∩U 6= ∅},
where U runs through the nonempty open subsets of X; thus, a
typical base element of τV is

〈U0, . . . , Un〉 = (
⋃

i≤n

Ui)+ ∩
⋂

i≤n

U−
i ,

with U0, . . . , Un ⊆ X open, n ∈ ω.
The Vietoris hyperspace has been thoroughly studied, and some

of the results belong to stock theorems of general topology ([6],
[7], [8]). In particular, for our immediate purposes, note that
(CL(X), τV ) is Hausdorff iff X is regular, and (CL(X), τV ) is com-
pact iff X is compact [8].

In an attempt to shed more light on countable compactness of
the Vietoris topology, a stronger property, ω-boundedness, was also
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investigated in the hyperspace setting. Recall that a Hausdorff
space is ω-bounded, provided every countable subset is contained in
a compact subset [9].

The following theorem was first proved by James Keesling [5,
Theorem 5]; for other proofs see [2, Corollary 2.2] and [4, Theorem
5.3].

Theorem 1.1. (CL(X), τV ) is ω-bounded, if X is normal and ω-
bounded.

In [5], Keesling also asked if the assumption of normality in the
previous theorem can be reduced. Partially answering this, L’. Holá
and H. P. Künzi showed that the Tychonoff plank (ω1 + 1)× (ω1 +
1)\{(ω1, ω1)} is a non-normal, ω-bounded space with an ω-bounded
hyperspace [4, Example 5.1].

The purpose of this paper is to generalize Keesling’s theorem,
as well as the above example and, as a byproduct, obtain a Ty-
chonoff, ω-bounded, non-normal, non-locally compact space with
an ω-bounded hyperspace. In this respect, it would be interesting
to find a Tychonoff ω-bounded space with a non-ω-bounded hyper-
space. Note that this cannot be done using the techniques of Jiling
Cao, Tsugunori Nogura, and A. H. Tomita [1] for constructing non-
countably compact hyperspaces, as the Vietoris hyperspace of an
ω-bounded space is always countably compact [4, propositions 3.4
and 3.7].

2. Main results

In what follows, S is the closure of S ⊆ X in X. Also, if we refer
to topological properties without specifying the underlying space,
it is always in X.

Theorem 2.1. (CL(X), τV ) is ω-bounded, if X is locally compact
and ω-bounded.

Proof: Assume that X is not compact, and let αX = X ∪ {∞}
be the Alexandroff one-point compactification of X. Let

A = {An : n ∈ ω}
be a sequence of elements of the hyperspace (CL(X), τV ), and de-
note by K the CL(X)-closure of A . Note that if B is compact,
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then B ∈ CL(αX), and if B ∈ CL(X) is not compact, then B∪{∞}
is the αX-closure of B. Consequently,

αA := {An : An is compact} ∪
∪ {An ∪ {∞} : An is not compact} ⊆ CL(αX).

If αK is the CL(αX)-closure of αA , then

(?) αK = {A ∈ K : A is compact} ∪
∪ {A ∪ {∞} : A ∈ K , A is not compact} :

⊇ If A ∈ K is compact, then A ∈ CL(αX). By local compactness
of X, a typical CL(αX)-neighborhood of A is of the form U =
〈U0, . . . , Uk〉, where

⋃
i≤k Ui is compact. Then U is also CL(X)-

open, and if An ∈ U , then An is compact. It follows that An ∈
αA ∩U and A ∈ αK .

If A ∈ K is not compact, then a typical CL(αX)-neighborhood
of A∪{∞} is of the form αU = 〈U0, U1, . . . , Uk〉, where U1, . . . , Uk

are open with compact closure, ∞ ∈ U0, and αX \ U0 is compact.
Then U = 〈X ∩ U0, U1, . . . , Uk〉 is a CL(X)-neighborhood of A.
Let An ∈ U ∩A . If An is compact, then An ∈ αA ∩ αU , if not,
then An ∪ {∞} ∈ αA ∩ αU ; thus, A ∪ {∞} ∈ αK .

⊆ If B ∈ αK is compact, then, as above, by local compactness
the elements of αA converging to B are compact and, consequently,
B ∈ K .

If B ∈ αK is not compact, then A = X ∩ B is not compact;
otherwise, take an open neighborhood U of A with compact closure.
Construct two transfinite sequences, {Uν : ν < ω1} of αX-open sets
and {Bν : ν < ω1} ⊆ αA , respectively, such that for each ν < ω1

• B ⊆ Uν ,
• (Bν \ U) ∩X 6= ∅,
• Bν ⊆ Uν ,
• Bν * Uν′ for all ν < ν ′ < ω1

as follows: put U0 = U ∪ (αX \ U) and choose some

B0 ∈ αA ∩ U+
0 ∩ (X \ U)−.

Assuming that Uν and Bν have been constructed for all ν < ν ′ < ω1,
choose bν ∈ (Bν \ U) ∩ X for all ν < ν ′ and a compact set K
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containing {bν : ν < ν′}. Put

Uν′ = U ∪ (αX \ (U ∪K)),

and choose some

Bν′ ∈ αA ∩ U+
ν′ ∩ (X \ U)−.

This yields a contradiction, since the Bν ’s are distinct and αA is
countable.

Also, A ∈ K , since if U = 〈U0, . . . , Uk〉 is a CL(X)-neighborhood
of A and U =

⋃
i≤k Ui, then αU = (U ∪ {∞})+ ∩ ⋂

i≤k U−
i is a

CL(αX)-neighborhood of B, and An ∪ {∞} ∈ αU ∩ αA implies
An ∈ U ∩A . It means that B = A ∪ {∞}, and (?) follows.

The mapping

ϕ : αK → K defined via ϕ(B) = B ∩X

is bijective, by (?), and continuous, since if U = 〈U0, . . . , Uk〉 ∩K
and U =

⋃
i≤k Ui, then

ϕ−1(U ) = αK ∩ (U ∪ {∞})+ ∩
⋂

i≤k

U−
i

is open in αK .
In conclusion, ϕ is a continuous bijection from the compact αK

onto the Hausdorff K ; thus, ϕ is a homeomorphism and K is
compact. ¤

Theorem 2.2. If X is a topological sum of a locally compact and
of a normal space, then the following are equivalent:

(1) (CL(X), τV ) is ω-bounded;
(2) X is ω-bounded.

Proof: (1)⇒(2) X is a closed subspace of (CL(X), τV ).
(2)⇒(1) Let X = Y ⊕ Z, where Y is locally compact and Z is

normal. Since X is ω-bounded, so is Y and Z and, by Theorem 1.1
and Theorem 2.1, CL(Y ) and CL(Z) are ω-bounded. Moreover,
CL(Y )×CL(Z) is ω-bounded, since ω-boundedness is productive.
Finally, it suffices to observe that CL(Y ⊕ Z) is homeomorphic to
CL(Y )⊕ CL(Z)⊕ [CL(Y )× CL(Z)]. ¤

Example 2.3. There exists a Tychonoff, ω-bounded, non-normal,
non-locally compact space X, such that (CL(X), τV ) is ω-bounded.
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Proof: Let Y = (ω1 + 1) × (ω1 + 1) \ {(ω1, ω1)}, which is an
ω-bounded, locally compact, non-normal space. Let Z be a Σ-
product in {0, 1}I with z as base point and with I of size ω1. Then
X is normal ([3], 4.5.12(b)) and ω-bounded (since countable subsets
embed into 2ω). Also, Z is not locally compact, since if

[z0] = {f ∈ Z : z0 ⊂ f}
is a fixed neighborhood of z, where z0 = z ¹I0 , I0 ⊂ I finite, then
{[zi] : i ∈ I \I0}, with zi = z ¹I0∪{i}, is an open cover of [z0] without
a finite subcover.

Then, by Theorem 2.2, X = Y
⊕

Z is as required. ¤
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