Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

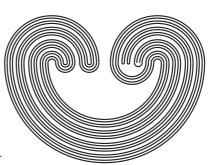
Department of Mathematics & Statistics

Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT o by Topology Proceedings. All rights reserved.



Pages 417-421

ON ω -BOUNDEDNESS OF THE VIETORIS HYPERSPACE

LÁSZLÓ ZSILINSZKY

ABSTRACT. It is shown that the Vietoris hyperspace of a locally compact, ω -bounded space is ω -bounded; furthermore, a Tychonoff, ω -bounded, non-normal, non-locally compact space with an ω -bounded hyperspace is constructed.

1. Introduction

For a Hausdorff space X, let CL(X) denote the collection of nonempty closed subsets of X (the so-called hyperspace of X). The Vietoris topology τ_V on CL(X) has subbase elements of the form

$$U^{+} = \{ A \in CL(X) : A \subset U \} \text{ and } U^{-} = \{ A \in CL(X) : A \cap U \neq \emptyset \},$$

where U runs through the nonempty open subsets of X; thus, a typical base element of τ_V is

$$\langle U_0, \dots, U_n \rangle = (\bigcup_{i \le n} U_i)^+ \cap \bigcap_{i \le n} U_i^-,$$

with $U_0, \ldots, U_n \subseteq X$ open, $n \in \omega$.

The Vietoris hyperspace has been thoroughly studied, and some of the results belong to stock theorems of general topology ([6], [7], [8]). In particular, for our immediate purposes, note that $(CL(X), \tau_V)$ is Hausdorff iff X is regular, and $(CL(X), \tau_V)$ is compact iff X is compact [8].

In an attempt to shed more light on countable compactness of the Vietoris topology, a stronger property, ω -boundedness, was also

²⁰⁰⁰ Mathematics Subject Classification. Primary 54B20; Secondary 54D20. Key words and phrases. ω -bounded space, Vietoris topology.

investigated in the hyperspace setting. Recall that a Hausdorff space is ω -bounded, provided every countable subset is contained in a compact subset [9].

The following theorem was first proved by James Keesling [5, Theorem 5]; for other proofs see [2, Corollary 2.2] and [4, Theorem 5.3].

Theorem 1.1. $(CL(X), \tau_V)$ is ω -bounded, if X is normal and ω -bounded.

In [5], Keesling also asked if the assumption of normality in the previous theorem can be reduced. Partially answering this, L. Holá and H. P. Künzi showed that the Tychonoff plank $(\omega_1 + 1) \times (\omega_1 + 1) \setminus \{(\omega_1, \omega_1)\}$ is a non-normal, ω -bounded space with an ω -bounded hyperspace [4, Example 5.1].

The purpose of this paper is to generalize Keesling's theorem, as well as the above example and, as a byproduct, obtain a Tychonoff, ω -bounded, non-normal, non-locally compact space with an ω -bounded hyperspace. In this respect, it would be interesting to find a Tychonoff ω -bounded space with a non- ω -bounded hyperspace. Note that this cannot be done using the techniques of Jiling Cao, Tsugunori Nogura, and A. H. Tomita [1] for constructing non-countably compact hyperspaces, as the Vietoris hyperspace of an ω -bounded space is always countably compact [4, propositions 3.4 and 3.7].

2. Main results

In what follows, \overline{S} is the closure of $S \subseteq X$ in X. Also, if we refer to topological properties without specifying the underlying space, it is always in X.

Theorem 2.1. $(CL(X), \tau_V)$ is ω -bounded, if X is locally compact and ω -bounded.

Proof: Assume that X is not compact, and let $\alpha X = X \cup \{\infty\}$ be the Alexandroff one-point compactification of X. Let

$$\mathscr{A} = \{A_n : n \in \omega\}$$

be a sequence of elements of the hyperspace $(CL(X), \tau_V)$, and denote by $\mathscr K$ the CL(X)-closure of $\mathscr A$. Note that if B is compact,

then $B \in CL(\alpha X)$, and if $B \in CL(X)$ is not compact, then $B \cup \{\infty\}$ is the αX -closure of B. Consequently,

$$\alpha \mathscr{A} := \{A_n : A_n \text{ is compact}\} \cup \cup \{A_n \cup \{\infty\} : A_n \text{ is not compact}\} \subseteq CL(\alpha X).$$

If $\alpha \mathcal{K}$ is the $CL(\alpha X)$ -closure of $\alpha \mathcal{A}$, then

$$(\star) \quad \alpha \mathcal{K} = \{A \in \mathcal{K} : A \text{ is compact}\} \cup \\ \cup \{A \cup \{\infty\} : A \in \mathcal{K}, A \text{ is not compact}\} :$$

 \supseteq If $A \in \mathcal{K}$ is compact, then $A \in CL(\alpha X)$. By local compactness of X, a typical $CL(\alpha X)$ -neighborhood of A is of the form $\mathscr{U} = \langle U_0, \dots, U_k \rangle$, where $\overline{\bigcup_{i \leq k} U_i}$ is compact. Then \mathscr{U} is also CL(X)-open, and if $A_n \in \mathscr{U}$, then A_n is compact. It follows that $A_n \in \alpha \mathscr{A} \cap \mathscr{U}$ and $A \in \alpha \mathscr{K}$.

If $A \in \mathcal{K}$ is not compact, then a typical $CL(\alpha X)$ -neighborhood of $A \cup \{\infty\}$ is of the form $\alpha \mathcal{U} = \langle U_0, U_1, \ldots, U_k \rangle$, where U_1, \ldots, U_k are open with compact closure, $\infty \in U_0$, and $\alpha X \setminus U_0$ is compact. Then $\mathcal{U} = \langle X \cap U_0, U_1, \ldots, U_k \rangle$ is a CL(X)-neighborhood of A. Let $A_n \in \mathcal{U} \cap \mathcal{A}$. If A_n is compact, then $A_n \in \alpha \mathcal{A} \cap \alpha \mathcal{U}$, if not, then $A_n \cup \{\infty\} \in \alpha \mathcal{A} \cap \alpha \mathcal{U}$; thus, $A \cup \{\infty\} \in \alpha \mathcal{K}$.

 \subseteq If $B \in \alpha \mathcal{K}$ is compact, then, as above, by local compactness the elements of $\alpha \mathcal{A}$ converging to B are compact and, consequently, $B \in \mathcal{K}$.

If $B \in \alpha \mathcal{H}$ is not compact, then $A = X \cap B$ is not compact; otherwise, take an open neighborhood U of A with compact closure. Construct two transfinite sequences, $\{U_{\nu} : \nu < \omega_1\}$ of αX -open sets and $\{B_{\nu} : \nu < \omega_1\} \subseteq \alpha \mathcal{A}$, respectively, such that for each $\nu < \omega_1$

- $B \subseteq U_{\nu}$,
- $(B_{\nu} \setminus U) \cap X \neq \emptyset$,
- $B_{\nu} \subseteq U_{\nu}$,
- $B_{\nu} \nsubseteq U_{\nu'}$ for all $\nu < \nu' < \omega_1$

as follows: put $U_0 = U \cup (\alpha X \setminus \overline{U})$ and choose some

$$B_0 \in \alpha \mathscr{A} \cap U_0^+ \cap (X \setminus \overline{U})^-.$$

Assuming that U_{ν} and B_{ν} have been constructed for all $\nu < \nu' < \omega_1$, choose $b_{\nu} \in (B_{\nu} \setminus U) \cap X$ for all $\nu < \nu'$ and a compact set K

containing $\{b_{\nu} : \nu < \nu'\}$. Put

$$U_{\nu'} = U \cup (\alpha X \setminus (\overline{U} \cup K)),$$

and choose some

$$B_{\nu'} \in \alpha \mathscr{A} \cap U_{\nu'}^+ \cap (X \setminus \overline{U})^-.$$

This yields a contradiction, since the B_{ν} 's are distinct and $\alpha \mathscr{A}$ is countable.

Also, $A \in \mathcal{K}$, since if $\mathcal{U} = \langle U_0, \dots, U_k \rangle$ is a CL(X)-neighborhood of A and $U = \bigcup_{i \leq k} U_i$, then $\alpha \mathcal{U} = (U \cup \{\infty\})^+ \cap \bigcap_{i \leq k} U_i^-$ is a $CL(\alpha X)$ -neighborhood of B, and $A_n \cup \{\infty\} \in \alpha \mathcal{U} \cap \alpha \mathcal{A}$ implies $A_n \in \mathcal{U} \cap \mathcal{A}$. It means that $B = A \cup \{\infty\}$, and (\star) follows.

The mapping

$$\varphi: \alpha \mathscr{K} \to \mathscr{K}$$
 defined via $\varphi(B) = B \cap X$

is bijective, by (\star) , and continuous, since if $\mathscr{U} = \langle U_0, \dots, U_k \rangle \cap \mathscr{K}$ and $U = \bigcup_{i < k} U_i$, then

$$\varphi^{-1}(\mathscr{U}) = \alpha \mathscr{K} \cap (U \cup \{\infty\})^+ \cap \bigcap_{i \le k} U_i^-$$

is open in $\alpha \mathcal{K}$.

In conclusion, φ is a continuous bijection from the compact $\alpha \mathcal{K}$ onto the Hausdorff \mathcal{K} ; thus, φ is a homeomorphism and \mathcal{K} is compact.

Theorem 2.2. If X is a topological sum of a locally compact and of a normal space, then the following are equivalent:

- (1) $(CL(X), \tau_V)$ is ω -bounded;
- (2) X is ω -bounded.

Proof: (1) \Rightarrow (2) X is a closed subspace of $(CL(X), \tau_V)$.

 $(2)\Rightarrow(1)$ Let $X=Y\oplus Z$, where Y is locally compact and Z is normal. Since X is ω -bounded, so is Y and Z and, by Theorem 1.1 and Theorem 2.1, CL(Y) and CL(Z) are ω -bounded. Moreover, $CL(Y)\times CL(Z)$ is ω -bounded, since ω -boundedness is productive. Finally, it suffices to observe that $CL(Y\oplus Z)$ is homeomorphic to $CL(Y)\oplus CL(Z)\oplus [CL(Y)\times CL(Z)]$.

Example 2.3. There exists a Tychonoff, ω -bounded, non-normal, non-locally compact space X, such that $(CL(X), \tau_V)$ is ω -bounded.

Proof: Let $Y = (\omega_1 + 1) \times (\omega_1 + 1) \setminus \{(\omega_1, \omega_1)\}$, which is an ω -bounded, locally compact, non-normal space. Let Z be a Σ -product in $\{0,1\}^I$ with z as base point and with I of size ω_1 . Then X is normal ([3], 4.5.12(b)) and ω -bounded (since countable subsets embed into 2^{ω}). Also, Z is not locally compact, since if

$$[z_0] = \{ f \in Z : z_0 \subset f \}$$

is a fixed neighborhood of z, where $z_0 = z \upharpoonright_{I_0}$, $I_0 \subset I$ finite, then $\{[z_i] : i \in I \setminus I_0\}$, with $z_i = z \upharpoonright_{I_0 \cup \{i\}}$, is an open cover of $[z_0]$ without a finite subcover.

Then, by Theorem 2.2, $X = Y \bigoplus Z$ is as required.

References

- [1] Jiling Cao, Tsugunori Nogura, and A. H. Tomita, *Countable compactness of hyperspaces and Ginsburg's questions*, Topology Appl. **144** (2004), no. 1-3, 133–145.
- [2] John Ginsburg, Some results on the countable compactness and pseudocompactness of hyperspaces, Canad. J. Math. 27 (1975), no. 6, 1392–1399.
- [3] Ryszard Engelking, *General Topology*. Translated from the Polish by the author. 2nd ed. Sigma Series in Pure Mathematics, 6. Berlin: Heldermann Verlag, 1989.
- [4] L. Holá and H. P. Künzi, Properties related to compactness in hyperspaces, Topology Proc. 23 (1998), Summer, 191–205. (2000)
- [5] James Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc. 24 (1970), 760–766.
- [6] Erwin Klein and Anthony C. Thompson, Theory of Correspondences. Canadian Mathematical Society Series of Monographs and Advances Texts. New York: John Wiley & Sons, Inc., 1984.
- [7] K. Kuratowski, Topology. Vol. I. New edition, revised and augmented. Translated from the French by J. Jaworowski. New York-London: Academic Press; Warsaw: PWN, 1966.
- [8] Ernest Michael, *Topologies on spaces of subsets*, Trans. Amer. Math. Soc. **71** (1951), 152–182.
- [9] Jerry E. Vaughan, Countably compact and sequentially compact spaces, in Handbook of Set-Theoretic Topology. Ed. Kenneth Kunen and Jerry E. Vaughan. Amsterdam: North-Holland, 1984. 569–602.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE; UNIVERSITY OF NORTH CAROLINA AT PEMBROKE; PEMBROKE, NC $28372~\mathrm{USA}$

E-mail address: laszlo@uncp.edu