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SPACES OF DENSELY CONTINUOUS FORMS

ĽUBICA HOLÁ

Abstract. When X is a locally compact space, the space
D

∗

k(X) of locally bounded densely continuous real-valued forms
on X (= minimal usco maps on X), under the topology of uni-
form convergence on compact sets, is a locally convex linear
topological space. (See R. A. McCoy, Spaces of semicontin-

uous forms, Topology Proc. 23 (1998), Summer, 249–275
(2000).) We give a partial answer to Question 3.1 in the
above referenced paper whether X must be locally compact
if addition is continuous on D

∗

k(X). In fact, we prove that if
X is a first countable regular space, the answer is positive.

1. Introduction

In what follows, let X be a Hausdorff topological space and R
be the space of real numbers with the usual metric.

We define the set of densely continuous real-valued functions on
X to be the set, DC(X), of all real-valued functions f on X such
that C(f), the set of points of continuity of f , is dense in X.

The set D(X) of densely continuous real-valued forms [8], [15] is
defined by

D(X) = {f ↾ C(f) : f ∈ DC(X)},

where f ↾ C(f) is the closure of the graph of f ↾ C(f) in X × R.
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The densely continuous forms from X to R are not, in general,
functions mapping X into R. They may be considered as multi-
functions (set-valued maps). For each x ∈ X and Φ ∈ D(X), define

Φ(x) = {t ∈ R : (x, t) ∈ Φ}.
If Φ ∈ D(X) and A ⊂ X, we say that Φ is bounded on A [15]

provided that the set Φ(A) = ∪{Φ(x) : x ∈ A} is a bounded subset
of R. Then Φ is locally bounded provided that each point of X has
a neighborhood on which Φ is bounded. Now define D∗(X) to be
the set of members of D(X) that are locally bounded.

The topology of D∗
k(X) can be defined using the Hausdorff met-

ric, H, on the space of nonempty compact subsets of R. This metric
is defined for nonempty compact subsets A and B of R by

H(A,B) = max{max{d(a,B) : a ∈ A},max{d(b,A) : b ∈ B}},

where d(s, T ) = inf{| s − t |: s, t ∈ T}.
Then for each Φ in D∗(X), compact set A in X, and real ǫ > 0,

define W (Φ, A, ǫ) to be the set of all Ψ in D∗(X) such that

sup{H(Φ(a),Ψ(a)) : a ∈ A} < ǫ.

The family of all W (Φ, A, ǫ) is a base for the topology of D∗
k(X)

[8].

The metrizability and complete metrizability of D∗
k(X) were stud-

ied in [9] and [15], and the cardinal function properties of D∗
k(X),

such as the cellularity, the density, the netweight, and the weight
of D∗

k(X), were studied in [11].
There is now enough rich literature concerning densely continu-

ous forms [8], [10], [12], [11], [13], [14], [16].

2. Minimal USCO maps and the space D∗(X)

Following Jens Peter Reus Christensen [1], we say that Φ is
USCO, if it is an upper semicontinuous set-valued map with nonempty
compact values.

A set-valued map Φ is said to be minimal USCO [2], [1] if it is a
minimal element in the family of all USCO set-valued maps (with
domain X and range Y ), that is, if it does not contain properly any
other USCO set-valued map from X to Y . By an easy application of
the Kuratowski-Zorn Principle, we can guarantee that every USCO
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set-valued map Φ from X to Y contains a minimal USCO set-valued
map from X to Y .

An important fact concerning the space D∗(X) is that every
element Φ from D∗(X) is a minimal USCO map, and if X is a
Baire space, the set D∗(X) coincides with the set of all minimal
USCO real-valued maps [9].

The following example shows that the condition of Baireness is
essential.

Example 2.1. Let X be the space of rational numbers with the
usual topology. Enumerate X by {qn : n ∈ ω} and define the set-
valued map Φ : X → R as Φ(x) = {Σn:qn<x1/2

n,Σn:qn≤x1/2n}.
Then Φ is a minimal USCO map which is not a densely continuous
form, since it is nowhere single-valued.

To prove that Φ is upper semicontinuous, let x ∈ X and ǫ > 0.
There is n0 ∈ ω such that Σn≥n0

1/2n < ǫ. Put δx = min{| qi − x |:
i ≤ n0, qi 6= x} and put Ox = (x − δx/2, x + δx/2). Then, for
every z ∈ Ox, we have Φ(z) ⊂ Sǫ[Φ(x)], where Sǫ[Φ(x)] = {s ∈
R : d(s,Φ(x)) < ǫ}. (Let z ∈ Ox, z < x. Then Σn:qn<x1/2n −
Σn:qn<z1/2

n = Σn:z≤qn<x1/2n < ǫ. Let z > x. Then Σn:qn≤z1/2
n −

Σn:qn≤x1/2n = Σx<qn≤z1/2
n < ǫ.)

To prove that Φ is minimal, suppose there is an USCO map Ψ
such that Ψ ⊂ Φ and there is qn such that Φ(qn) 6= Ψ(qn). Suppose
that Ψ(qn) = {Σi:qi<qn1/2i} (the other case is similar). The upper
semicontinuity of Ψ implies that there is a neighborhood O of qn

such that Ψ(z) ⊂ S1/2qn [Ψ(qn)] for every z ∈ O, a contradiction,

since for every z ∈ O, z > qn, we have Ψ(z) > Σi:qi≤qn1/2i.

3. Main result

It was proved in [15] that if X is a Baire space, the set D(X)

does have a natural vector space structure defined by f ↾ C(f) +

g ↾ C(g) = (f + g) ↾ C(f + g) and af ↾ C(f) = af ↾ C(af) for

f ↾ C(f), g ↾ C(g) ∈ D(X) and a ∈ R.
The above claim works even more generally for Volterra spaces.
A topological space X is Volterra [5] if, for each pair f, g : X → R

of functions such that C(f) and C(g) are both dense in X, the set
C(f) ∩ C(g) is dense in X. It was proved in [6] that X is Volterra
if and only if, for each pair A,B of dense Gδ-subsets of X, the set
A ∩ B is dense.
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Of course, every Baire space is Volterra and there are Volterra
spaces which are not of second category, hence not Baire [7]. It was
proved in [4] that every metrizable Volterra space is Baire.

It is very easy to verify that the following propositions hold.

Proposition 3.1. Let X be a topological space. The following are
equivalent.

(1) X is Volterra;
(2) DC(X) is a vector space (with the natural definitions of

operations).

Proposition 3.2. Let X be a topological space. The following are
equivalent.

(1) X is Volterra;
(2) D(X) (D∗(X)) is a vector space with the above defined op-

erations.

In fact, it is the addition in DC(X) (D(X),D∗(X), respectively)
which forces X to be a Volterra space.

The following Theorem was proved in [15].

Theorem 3.3 ([15]). If X is locally compact, D∗
k(X) is a locally

convex linear topological space.

In connection with the above theorem, R. A. McCoy asked in his
paper [15] the following question.

Question 3.4 ([15]). For any space X, if addition is continuous on
D∗

k(X), must X be locally compact?

We give a partial answer to this question. In fact, we prove that
if X is a first countable regular space, the answer is positive.

Theorem 3.5. Let X be a first countable regular space. The fol-
lowing are equivalent.

(1) X is locally compact;
(2) addition is continuous on D∗

k(X).

Proof: (1) ⇒ (2) By Theorem 3.3.

(2) ⇒ (1) Of course, X must be a Volterra space. Suppose X
is not locally compact. Let x0 ∈ X fail to have a local base of
compact sets. There are sequences {Vn}, {Fn}, {On} of subsets of
X such that
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(a) {Vn} is a base of neighborhoods of x0, Vn ⊂ Vn−1 for every
n ∈ ω;

(b) {Fn} is a sequence of closed noncompact sets such that
x0 /∈ Fn for every n ∈ ω and Fn ⊂ Vn−1 for every n ∈ ω;

(c) {On} is a sequence of open sets such that Fn ⊂ On for every
n ∈ ω, On ⊂ Vn−1, and Vn ∩ On = ∅ for every n ∈ ω.

Let I ⊂ ω be the set of all even numbers ( I = {2n : n ∈ ω}).
Put U = ∪n∈IOn and S = ∪n∈ω\IOn. Then, of course, S ∩ U = ∅

and x0 ∈ S ∩ U .
Define f, g ∈ DC(X) as

f(x) = 1 if x ∈ U and f(x) = −1 if x ∈ X \ U ;

g(x) = −1 if x ∈ U and g(x) = 1 if x ∈ X \ U.

Then U ∪ (X \ U) ⊂ C(f) ∩ C(g); i.e., f, g ∈ DC(X) and also

f + g ∈ DC(X). Put F = f ↾ C(f) and G = g ↾ C(g). Since X
is a Volterra space, we can well define the addition of F + G and
F + G = f0, where f0 is the zero function on X.

Let A be a compact set and ǫ > 0. We show that there is
H ∈ D∗(X) such that H ∈ W (G,A, ǫ) and F +H /∈ W (f0, {x0}, 1);
i.e., the addition is not continuous on D∗

k(X).
For every n ∈ I, there is yn ∈ Fn \ A since Fn is a noncompact

set. There is an open set O(yn) such that yn ∈ O(yn), O(yn) ⊂ On,

O(yn) ∩ A = ∅, and On \ O(yn) 6= ∅.

It is easy to verify that ∪n∈IO(yn) = {x0} ∪ ∪n∈IO(yn).
Define the function h as h(x) = 1 for x ∈ ∪n∈IO(yn), and h(x) =

g(x), otherwise. Then, of course, h ∈ DC(X). Put H = h ↾ C(h).
Then H ∈ W (G,A, ǫ), since for every x ∈ A, we have H(x) = G(x).
However, F + H /∈ W (f0, {x0}, 1) since 2 ∈ (F + H)(x0). �
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[9] Ľ. Holá, Spaces of densely continuous forms, USCO and minimal USCO

maps, Set-Valued Anal. 11 (2003), no. 2, 133–151.
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[13] D. Holý and P. Vadovič, Densely continuous forms, pointwise topology and

cardinal functions. To appear in Czechoslovak Mathematical Journal.
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