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AN m-DIMENSIONAL
HEREDITARILY INDECOMPOSABLE CONTINUUM
WITH EXACTLY n CONTINUOUS MAPPINGS
ONTO ITSELF

ELZBIETA POL

ABSTRACT. We show that for every n € N and m € NU{oo},
there exists a hereditarily indecomposable m-dimensional con-
tinuum X which has exactly n continuous surjections onto
itself (each one being a homeomorphism).

Moreover, we construct a family of cardinality 2%° of con-
tinua of this type such that no two different continua from
this family are comparable either by continuous mappings or
by embeddings.

1. INTRODUCTION

Our terminology follows [5] and [8]. We assume that all our
spaces are separable metrizable. By dimension, we mean the cov-
ering dimension dim and by a continuum, we mean a compact con-
nected space. A continuum X is hereditarily indecomposable, ab-
breviated HI, if for any two intersecting subcontinua K, L of X,
either K C Lor L C K.

The first HI continuum, now called the pseudo-arc, was con-
structed by Bronistaw Knaster [7]. The pseudo-arc, which will
be denoted by P, is an HI one-dimensional chainable continuum
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(unique, up to a homeomorphism), and every non-trivial subcon-
tinuum of P is homeomorphic to P. (For more information and
references concerning the pseudo-arc see [12].)

The first examples of HI continua of dimension m, where m =
2,3,...,00, were constructed by R. H. Bing [3].

We say that two continua are comparable by continuous mappings
(by embeddings, respectively) if there exists a continuous mapping
(an embedding, respectively) of one of those continua onto (into,
respectively) the other. By a Cook continuum, we understand a
non-trivial continuum X such that no two different nondegenerate
subcontinua of X are comparable by continuous mappings. The
first example of a hereditarily indecomposable Cook continuum was
constructed in [4]. In the same paper, H. Cook constructed for
every n € N = {1,2,...}, a continuum H,, which has exactly n
continuous mappings onto itself, each one being a homeomorphism.
The continuum H,, is decomposable and admits an atomic mapping
onto a simple closed curve. Applying the ideas from [17], [19], and
[10], we will prove the following theorem.

Theorem 1.1. For each n € N and m € NU {oco}, there exists a
hereditarily indecomposable continuum X, of dimension m which
has exactly n continuous mappings onto itself, each one being a
homeomorphism. Moreover, X,,, admits an atomic mapping onto
the pseudo-arc P and the group of autohomeomorphisms of Xnm
onto Xnm s the cyclic group of order n.

In the special cases when m = 1 or n = 1, these results were
obtained in [19]. Any l-dimensional HI Cook continuum satisfies
the condition of Theorem 1.1 for m =n = 1.

Moreover, we will prove the following theorem.

Theorem 1.2. For every n € N and m € N U {oo}, there exists
a family {Xpm(s) : s € S}, where S is a set of cardinality 2% of
topologically different HI m-dimensional continua such that every
Xnm(s) has exactly n continuous surjections onto itself and admits
an atomic mapping ps onto the pseudo-arc P. Moreover,

(i) if s # t, then there is no continuous mapping of Xpm(s)
onto Xpm(t);
(ii) if s # t, then Xpm(s) does not embed into X, (t).
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Our construction is a modification of the ones given in [17] and
[19] and applies a method of condensation of singularities. As be-
fore, we exploit an HI Cook continuum and we use a theorem of
Wayne Lewis stating that for each n € N there exists an embed-
ding of the pseudo-arc P in the plane such that the restriction r of
a period n rotation of the plane around (0,0) to P is a homeomor-
phism of P onto P of period n [11]. To raise the dimension of the
space obtained in [19], we construct our space in such a way that it
contains a certain m-dimensional continuum Y;. The new idea in
the proof lies in Lemma 2.2 below. Roughly speaking, this lemma
states that one can “replace” one point of a given continuum X by
a special continuum in such a way that the resulting space can be
mapped onto any given Waraszkiewicz spiral. In this way, we can
“improve” a given continuum X so that a given continuum Y7 does
not map onto the whole X.

2. PRELIMINARIES

A continuum Y is a common model for a family of continua W, if
every member of W is a continuous image of Y (we do not assume
that Y € W).

By the ray, we will understand a space homeomorphic to the half-
line [0, +00). In [22], Z. Waraszkiewicz constructed a family W of
planar continua without a common model. By a Waraszkiewicz
spiral, we mean a member of this family. Every Waraszkiewicz
spiral W is a compactification of the ray L with the remainder S
homeomorphic to the circle. We have

(1) for every continuum A there exists a Waraszkiewicz spiral
W such that A cannot be mapped onto W.

The composant of a point z in a continuum X is the union of
all proper subcontinua of X containing x. If X is a non-degenerate
HI continuum, then X has 2% different composants, which are
pairwise disjoint and are connected F,-subsets of X, both dense
and a boundary set in X (see [8, §48, VI]).

A mapping f : X — Y between continua is confluent (weakly con-
fluent, respectively), if for each subcontinuum @ of Y each (some,
respectively) component of f~1(Q) is mapped by f onto Q. As
proved by Cook in [4], each mapping of a continuum onto an HI
continuum is confluent.
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A subcontinuum K of a continuum X is terminal if every sub-
continuum of X which intersects both K and its complement must
contain K. A continuous mapping from a continuum X onto Y is
atomic if every fiber of f is a terminal subcontinuum of X.

Lemma 2.1 ([1], cf. [14] and [20]). Let X and Y be two continua
and a € X. Then there exists a continuum M (X,Y,a) and an
atomic mapping p : M(X,Y,a) — X onto X such that p~'(a) is
homeomorphic to Y and p | p~ (X \{a}) : p71 (X \ {a}) — X\ {a}
1s @ homeomorphism.

Every continuum M (X,Y,a) with the properties described in
this lemma will be called a pseudosuspension of Y over X at the
point a (cf. [14, 1.13]) and the mapping p will be called a natural
projection from M(X,Y,a) onto X.

Since p~1(a) is a terminal continuum in M (X,Y,a), then (see
[13, Proposition 11])

(2) if X and Y are HI, then so is M(X,Y,a).
By the countable sum theorem (see [5], Theorem 1.5.3), we get
(3) dimM (X,Y,a) = max{dimX,dimY}.
The following lemma, which was suggested by the referee of [16]
(see Remark 5.2), was proved in detail in [10, Lemma 5.1].

Lemma 2.2. Let X be any continuum, let a be any point of X, and
let W =LUS be a Waraszkiewicz spiral, being a compactification
of the ray L with the remainder S homeomorphic to the circle. Let
Y be a continuum satisfying the following condition:

(4) There ezists a mapping f :' Y — W of Y onto W and a
sequence My C My C ... of subcontinua of Y contained in
f7Y(L) such that the union | Ji2, M; is dense in'Y.

Then there exists a pseudosuspension M(X,Y,a) which admits a
mapping f : M(X,Y,a) — W onto W.

Lemma 2.3. For every Waraszkiewicz spiral W there exists an
HI continuum Y of dimension < 2 which satisfies condition (4) of
Lemma 2.2. Moreover, Y can be chosen as a subcontinuum of any
given HI continuum Z with 2 < dimZ < oo.

Proof: Let Z be any given HI continuum of finite dimension > 2
and W be a Waraszkiewicz spiral. Let Z’ C Z be a 2-dimensional
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subcontinuum of Z. By a theorem of Mazurkiewicz [15], there exists
a weakly confluent mapping of Z’ onto the square I2. Since W C I?,
there exists a subcontinuum X C Z’ which is mapped by f onto
W. By Lemma 5.2 of [10], X contains a subcontinuum Y, which
satisfies (4). O

Lemma 2.4 ([4]). There exists a one-dimensional HI continuum
H such that for any two different non-degenerate subcontinua of H,
there is mo mapping from one onto the other.

Lemma 2.5 (see [4] and [21], cf. [19], Lemma 2.2). If f: P — H
18 a continuous mapping of the pseudo-arc into a Cook continuum
H, then f is a constant mapping.

Lemma 2.6 (see Lemma 5.1 of [9] and its proof). For any proper
subcontinuum M of a 1-dimensional HI Cook continuum H and for
everym =1,2,...,00, there exists an m-dimensional HI continuum
M,, such that every map from a subcontinuum of M into M,, is
constant.

3. PROOFS

Proof of Theorem 1.1: For every n € N, a 1-dimensional contin-
uum X,,; with the required properties was constructed in [17] and
[19]. We shall modify this construction in order to raise the dimen-
sion of such a space. Fixn € Nand m € {2,3,...,00}. Inductively,
let us define a sequence Y7,Y5,... of HI continua and a sequence
W1, Wo, ... of Waraszkiewicz spirals such that

(5) dimY; = m and dimY; <2 for [ = 2,3,.. ;

(6) condition (4) is satisfied for Y = Y; and W = W;_4, for
every [ =1,2,...;

(7) Y; cannot be mapped onto W; for 1 = 1,2, .. ..

Let Y7 be any HI m-dimensional continuum. By (1), there exists
a Waraszkiewicz spiral W7 such that Y] cannot be mapped onto
W1. Suppose now that Y7,Ys,....Y;_1 and Wy, Ws, ... , W;_{ are
already defined for some [ > 2. For Y}, we take a continuum Y of
dimension < 2 from Lemma 2.3, where we put W = W;_;. Thus,
Y} can be mapped onto W;_; and satisfies (4) for W = W;_;. Again
by condition (1), there exists a Waraszkiewicz spiral W; such that
Y; does not map onto W.
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By a theorem of Lewis [11], there exists a pseudo-arc P in the
Euclidean plane and a homeomorphism r : P — P onto P of period
n, which is the restriction of the rotation of the plane about the
point (0,0) through the angle 2. Note that (0,0) € P, since the
pseudo-arc P has the fixed point property (see [6]). Let Py =
{(x1,29) € P : x1 = Acosa and x5 = Asina  for some 0 < A\ <
o0 and 0 < a< %’T}, and Py = r¥(Py) for k=0,1,...,n — 1. Let
{b1,b2,...} be a countable dense subset of Py such that b; and b,
are in the same composant of P if and only if i = j.

There exists a composant C in P which does not contain any
b;. In C N Py, we choose a point ¢y, a sequence (Q; of continua
containing ¢y and converging to {co}, and a sequence ¢y, ¢y, ... of
points such that ¢; € Q; and ¢; # ¢; for 7 # j.

Now, let {aj,as,...} be a sequence such that ag_; = ¢ and
agy = b for 1 = 1,2,.... Put By = J{bi};2, Co = U{ai}2,, and
Ay = By U (.

Then

(8) the set By \ F, where F' is any finite subset of By, is dense
in P().
Let B = J}Z;7*(By), C = UpZy 7*(Cp), and A = BUC. Since
a homeomorphic image of a composant of P is a composant of P,
then

(9) every composant of P contains at most n points from B,

and

(10) C intersects at most n composants of P.

Finally, let K, Ko, ... be a sequence of disjoint non-degenerate
subcontinua of the hereditarily indecomposable Cook continuum H
from Lemma 2.4. Thus,

(11) for every j # i, every continuous mapping from a subcon-
tinuum of K into Kj; is constant.

Let us define an inverse sequence {L;, pé», {0}UN} in the following
way. Put Ly = P. Let Ly = M(P,Y1,a1) be a pseudosuspension
of an m-dimensional HI continuum Y; over P at a; = ¢; and let
pé be the natural projection. Suppose that L; and pz- are already
defined for j < i < s, where s € N. If s = 2] for [ > 1, then let
Ls= Loy = M(Ls—1, Ky, (pf)_l)_l(as)) be a pseudosuspension of a
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Cook continuum K; over Lg_; at (pg_l)_l(as) = (pg_l)_l(bl). If
s =21 — 1 for some [ > 2, then as = ¢;, and by (6), the conditions
of Lemma 2.2 are satisfied for W = W;_; and Y = Y}, so there
exists a pseudosuspension Ly = Loy = M(Ls_1,Y], (pg_l)_l(as))
of Yj over Ls_1 at (p5~')~!(as) which admits a mapping onto W;_;.
Now, let p?_; be the natural projection and p; = p;H o...opi_,;
for j < s. Let L be an inverse limit of this inverse sequence and
let ps : L — Lg be the projection. In particular, let p = pg be the
projection of the limit space onto Lo = P.

Let us note that for every s € N, Ly is the union of an open sub-
set homeomorphic to P\ |J;_y{ai}, of a copy of the m-dimensional
continuum Y7, and of finitely many copies of at most 2-dimensional
continua from the family {K7,Ys, K3,Y3,...}. Thus, by the count-
able sum theorem, dimL; = m for every s € N. By the theorem on
the dimension of the limit of an inverse sequence (see [5, Theorem
1.13.4 ]) and since L contains a topological copy of Y7, it follows
that

(12) the dimension of the limit space L is equal to m.

Since L9;_1 can be mapped onto W;_; for [ > 2, and L projects
onto Loj_1, then

(13) L can be mapped onto every Wy, for [ =1,2,....

Since the projection p§- : L; — Lj is a composition of finitely
many atomic mappings, then it is atomic (see [13, (1.4)]). Hence,
p is atomic (see [2, Theorem II]).

Let us note also that by (8) and from the definition of topology
of the inverse limit,

(14) for every finite subset F of By, every open subset of p~!(Pp)
contains some set p~*(b), where b € By \ F.

We can assume additionally that L C P x I°°, where I = [0, 1],
and that p is the restriction of the projection of P x I*° onto P.
Moreover, we can assume that p~1(y) = (y,(0,0,...)) for every
yeP \ B.

Indeed, assume that L C I and for z,y € R? let p(z,y) =
min(pe(x,y), 1), where p, is the Euclidean metric in the plane. If
f(x) = (p(z), p(p(x), R\ Py)-x) for = € L, then f is continuous and
one-to-one; hence, it is a homeomorphism of L onto f(L) C P x 1.
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Thus, we can replace L by f(L) and p by the restriction of the
projection of P x I°*° onto P.

From the construction, it follows that for I € N, p~!(ag_;) is
homeomorphic to the continuum Y;, p~!(ag) is homeomorphic to
the Cook continuum Kj, and p | p~1(P\Ap) : p~1(P\Ag) — (P\A4y)
is a homeomorphism.

Let 7(y,t) = (r(y),t) for (y,t) € P x I*°. Let Py be the closure
of Pyin P. For k = 0,1,...,n—1, let P, = 7(p~(P)) and

Note that X, admits a continuous mapping g onto L, being
the identity on Py, such that g | UZ;% Py is the restriction of the
projection of P x I°° onto P. Thus, by (13),

(15) X, can be mapped onto W, for every [ = 1,2,....

Let p : X,,,, — P be the restriction of the projection of P x
[*° onto the first axis. The mapping 7 = 7 | Xy, is a period n
homeomorphism of X, onto X,,,,, such that

(16) po7* =rkop for every k =0,1,...,n—1,
and

(17) p(z) = p(z) for z € Py.

As in [17], we check that p is atomic (cf. [17, Lemma 2.7]).

Note that

(18) p|p~H(P\ A): p~Y(P\ A) — P\ A is a homeomorphism.

Moreover, for k € {0,1,...,n — 1}, we have that

(19) if = r*(a;) = r*(c1), then p~!(x) is a copy of the m-
dimensional HI continuum Y7;

(20) if z = r¥(ag_1) = r¥(c;) for some [ > 2, then the set V¥ =
P 1(z) is a copy of the HI continuum Y; with dimY; < 2;
and
(21) if x = r¥(ag) = 7*(b;) for some [ > 1, then K} = p~!(z) is
a copy of the HI Cook continuum Kj.
From (14), it follows that

(22) if F is a finite subset of B, and z(b) € p~1(b) for b € B\ F,
then the set {x(b) : b € B\ F} is dense in X,.
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Since X, is the union of n closed subspaces which embed into
L, then, by (12) and (19), dimX,,,,, = m.

The space X, is HI, since it is the preimage of an HI continuum
P under the atomic mapping p with HI fibers.

Since p is an atomic mapping, every composant of X,,,,, is equal
to p~1(L) for some composant L of P (see [20, Lemma 2.8]). By

(9),
(23) every composant of X, contains at most n copies of con-
tinua from the family K = {KF : 1 € N, k =0,1,...,n —
1} ={p~*(b): be B}.
Let f: X,un — Xynun be an arbitrary continuous mapping of X,
onto X,,,. We will show that f = #* for some k € {0,1,...,n—1}.
For every k and I, Ylk cannot be mapped onto W;, while X,
admits a mapping onto W; by (15), so f(Y}*) # Xyum,. Thus,

(24) for every k € {0,1,...,n—1}andl € N, f(Y}*) is contained
in one of the composants of X,,,.

Recall that @Q; is a sequence of continua in P containing ¢; con-
verging to cg, with diameters tending to 0. In every Lg, the sequence
of continua {(pB)~1(Q:)}2; converges to the point (p§)~1(cy), so
in the inverse limit space L, the sequence of continua {p~(Q;) )
converges to the point p_l(co).

It follows that for every k € {0,1,...,n—1}, the sequence of con-
tinua {51 (r*(Q;))}32, converges to the one-point set {p~(r*(co))},
so the sequence of continua {f(p~1(r*(Q;)))}2, converges to the
one-point set {f(p~(r*(cy)))}. Thus, for a fixed k, almost all con-
tinua f(p~1(r¥(Q;))), where i € N, are contained in the same com-
posant of X, and thus, almost all continua f (Ylk), where [ € N,
are contained in the same composant of X,,,,. From this and (24),
it follows that the union of all sets f(Ylk), for k=0,1,....,n—1
and [ = 0,1,..., is contained in finitely many composants of X,,,,.

Thus, by (23), only finitely many continua from the family { K lk :
leN, k=0,1,...,n — 1} can intersect the image under f of the
union ({Y}f:1€N, k=0,1,...,n— 1} = p~}(C). It follows that

(25) there exists ly such that for I > Iy and every k, KF N
FH(C)) =0.
Let B' = {r¥(by) : 1 > Iy, k=0,1,...,n — 1}. We will show that
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(26) for every b € B’, there is a nontrivial subcontinuum @ of
pH(b) and t € {1,2,...,n — 1} such that f(7(x)) = z for
every x € Q.

Fix b € B’. Then $1(b) is equal to the Cook continuum K} for
some | > Iy and k € {1,2,...,n — 1}. Since X, is HI, then f is
confluent and thus, there exists a proper subcontinuum 7" of X,
such that f(T') = KF. Then T is disjoint with ~(C) by (25) and
is contained in some composant of X,,,. From this and (23), it
follows that either T is contained in p~1(V') for some &' € B, or T is
the union of a non-empty subset of 5~1(P\ A) and of finitely many
continua =1 (b(1)),...,p 1(b(r)), where b(i) € B. In the second
case, there exists 7 such that f(571(b(i))) is a nondegenerate sub-
continuum of 5~1(b). For otherwise, the set K\ U_, f(5 1 (b(4)))
would contain a non-degenerate subcontinuum, which is the image
of a subcontinuum 7" C p~1(P\ A) NT. However, by (18), each
non-degenerate subcontinuum 7" of X, contained in 5~1(P\ A)
is homeomorphic to P; therefore, by Lemma 2.5, 7" admits only
constant mappings into the Cook continuum Klk, which gives a
contradiction.

Therefore, in both cases, there exists b’ € B such that f(T' N
p~1(b')) is a nondegenerate subcontinuum of K. By (11), p~*(b')
must be equal to K} for some ¢, and, for Q = T Np~L(b), condition
(26) is satisfied, because @ and f(Q)) must be topological copies of
the same nondegenerate subcontinuum of the Cook continuum K;.
By choosing a point z(b) € p~1(b) N K, we get the result that

(27) for every b € B’, there is a point z(b) € p—1(b) such that
(7 (x(b))) = z(b) for some t € {1,2,...,n— 1}.
By (22), the set Y = {z(b) : b € B’} is dense in X,,y,.
The remaining part of the proof repeats the arguments from the
proof of Theorem 3.1 in [19]. First, let us note that

(28) for every x € Xy, there is t € {0,1,...,n — 1} such that

fi (@) = =.

Indeed, one can find a sequence {z(b;)}32,, where b; € B, con-
verging to z, such that for some ¢ € {0,1,...,n—1}, (7 (x(b;))) =
z(bj) for every j. Thus, f(7'(z(b;))) — f(7(z)), so f(F'(x)) = .

For every = # p '((0,0)), the set Y(z) = UZ;% #*(z) has n
elements and every point of Y (z) is the image of a point in Y (z);
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hence, f(Y(x)) = Y(z) and f | Y(z) — Y (x) is one-to-one. In
particular, for every x # p~1((0,0)), there exists k € {0,1,...,n —
1} such that f(z) = 7*(x).

For k € {0,1,...,n — 1}, let X(k) = {z € Xppm : f(x) = 7 (x)}.
It is easy to see that every X (k) is closed in X, and X (k)NX (1) =
{p=4(0,0))} for k # I, k,1 € {0,1,...,n — 1}. It follows that
every X (k) is a continuum. Indeed, if X (k) were the union of two
disjoint closed subsets F} and Fy with 571((0,0)) € Fy, then X,
would be the union of two sets I} and F> U, X (1), disjoint and
closed in X,;,. Since X,,, is hereditarily indecomposable, then
Xpm = X (k) for some k € {0,1,...,n — 1}, and thus, f = ¥ and
f is a homeomorphism.

This ends the proof that the set of all continuous mappings from
Xpm onto Xy, is equal to the set {#°,#,..., 7"~} and forms the
cyclic group of order n. O

Proof of Theorem 1.2: Let S be a set of cardinality 2%°, H be
the 1-dimensional HI Cook continuum (see Lemma 2.4), and K
be a proper non-degenerate subcontinuum of H. For every s €
S, let us choose a sequence {Kj(s), Ka2(s),...} of non-degenerate
subcontinua of K in such a way that K;(s) N K;(t) =0 if s # t or
i # j. Such a family {K;(s) : © € N,s € S} exists, because K has
2% composants which are pairwise disjoint. Thus,

(29) every mapping from a subcontinuum of K;(s) into K;(t) is
constant.

If, in the proof of Theorem 1.1, we replace in the construction of
Xpmthe sequence K, Ko, ... by the sequence {Ki(s), Ka(s),...},
then we obtain an HI continuum X,,,(s) with exactly n continu-
ous surjections onto itself, which admits an atomic mapping ps :
Xpm(s) — P onto P. As we will prove below, the family { X, (s) :
s € S} satisfies condition (i) of Theorem 1.2. In order to obtain
such a family also satisfying condition (ii), we assume additionally
that Y7 is a space M,, constructed in Lemma 2.6 for M = K, and
Y, for [ > 2is a space Y of dimension < 2 constructed in Lemma 2.3
for W = W,_1, which is contained in the 2-dimensional continuum
My from Lemma 2.6 (where we put M = K).

Thus,
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(30) every mapping from a subcontinuum of K into Y, for [ =
1,2,..., is constant.

Let us show condition (i). From the construction, it follows that
X,um(8) is the union of the set p; ! (P\ A) homeomorphic to a subset
of P, of continua from the family K(s) = {p;1(b) : b € B}, and
of continua from the family ) = {p;'(c) : ¢ € C}. Note that the
family KC(s) contains exactly n copies of every continuum K;(s), for
every ¢ € N, and the family ) contains n copies of every continuum
Y;, for [ € N.

Let f : Xpm(s) — Xum(t) be an arbitrary continuous surjec-
tion. Suppose that ¢ # s. Similar to the proof of Theorem 1.1,
one shows that the set f(|J)) intersects only finitely many com-
posants of X, (t), so it intersects only finitely many continua
from the family K(t). Hence, there exists p; '(b) € K(t), being
a copy of some K;(t), which is disjoint with f(lJ)). Since f is
confluent, there exists a nontrivial subcontinuum 7" of X, (s), dis-
joint with (JY = p71(C), such that f(T) = p;(b). Since T is
a proper subcontinuum of X,,,(s), it is contained in some com-
posant of X, (s). It follows that either T is contained in some
P35 L(b) for some ¥ € B, or T is the union of a non-empty subset of
P5 H(P\ A) and of finitely many continua p; (b(1)),...,p; L (b(r)),
where b(i) € B. In the second case, there exists i such that
f(:1(b(4))) is a nondegenerate subcontinuum of ;! (b). For oth-
erwise, the set p; '(b) \ Ui_; f(#5'(b(i))) would contain a non-
degenerate subcontinuum, which is the image of a subcontinuum
T' C p;5(P\ A) NT. However, each non-degenerate subcontin-
uum of X, (s) contained in 5 (P \ A) is homeomorphic to P;
therefore, by Lemma 2.5, it admits only constant mappings into
the Cook continuum p; ' (b), which gives a contradiction.

Therefore, in both cases, there exists ' € B such that f(T N
p71(V)) is a nondegenerate subcontinuum of p; '(b). But p;(0)
and p, L(b) are homeomorphic to two disjoint subcontinua of the
Cook continuum H, which yields a contradiction. Thus, s = t.

To prove (ii), suppose that s # ¢, and h : Xy (s) — Xpm(t) is
an embedding. Let Ki(s) be a copy of Ki(s) in Xy, (s). Then
h(K1(s)') is a copy of Ki(s) in X, (t), so it does not embed in
P H(P\ A) by Lemma 2.5. Thus, h(K(s)') intersects some p; *(a;).
By (29) and (30), h(Ki(s)’) is not contained in p; '(a;) for any
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i = 1,2,...; hence, p; *(a;) C h(K,(s)') for some i. However, if
i = 21, then p; *(a;) is a copy of K;(t), which gives a contradiction
by (29). If i = 21 — 1, then p; '(a;) is a copy of a continuum

Y.

Since h : K1(s)" — h(K1(s)') is a homeomorphism, then Z =

h=(p; *(as)) is a subcontinuum of K (s)’ such that h(Z) = p; *(a;),
which contradicts (30). This shows that s = t. O

(1]
2]
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