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ON SOME EQUIVALENT AND

NON-EQUIVALENT NOTIONS

OF HOMOGENEITY

KATHRYN F. PORTER

Abstract. We discuss various types of homogeneity and their
relationships. Included are homogeneity, local homogeneity,
strong local homogeneity, uniform local homogeneity, even ho-
mogeneity, and micro-homogeneity. In addition, the relation
of Effros’ Theorem to these different types of homogeneity is
presented.

1. Introduction

Many variations of homogeneity have been defined since Wac law
Sierpinski formally introduced homogeneity to the world of topol-
ogy around 1920. A topological space X is homogeneous provided
that for any two points p, q ∈ X there exists a homeomorphism h

on X such that h(p) = q.
The purpose of this paper is to look at various types of homo-

geneity and their connections. The paper is divided into several
sections. In section 2, we discuss homogeneity and two different
types of local homogeneity and their relationships with each other.
Section 3 focuses on even homogeneity and Effros’ Theorem, while
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section 4 is a discussion of some new results involving local ho-
mogeneity and even homogeneity. In the last section, connections
between uniform local homogeneity, micro-homogeneity, and even
homogeneity are highlighted. We assume throughout this paper
that (X,T ) is a topological space with more than one point. We
denote the set of all homeomorphisms on X by H(X).

2. Local homogeneity

Although there are several definitions of local homogeneity, we
will be using the definition that Ali Ahmad Fora [7] gave in 2000:
(X,T ) is locally homogeneous (LH) provided that for any p ∈ X

there exists an open set O containing p such that for each q ∈ O

there is an h ∈ H(X) with h(p) = q.
The following definition of strong local homogeneity was devel-

oped by Lester R. Ford, Jr. [8] in 1954. A topological space (X,T )
is strongly locally homogeneous (SLH) provided for any p ∈ X and
any U ∈ T containing p there exists an open set O with p ∈ O ⊆ U

such that if q ∈ O there is an h ∈ H(X) with h(p) = q and
h|X\O = e|X\O where e is the identity map.

The proofs of the following two theorems can be easily seen from
the definitions of homogeneity, local homogeneity, and strong local
homogeneity.

Theorem 2.1 ([7]). If X is homogeneous, then X is locally homo-
geneous.

Note that the converse of Theorem 2.1 is false as shown by the
following example.

Example 2.2. Let X = (0, 1) ∪ {2} with the subspace topology
inherited from the usual topology on the reals. Then X is not
homogeneous but is locally homogeneous.

Theorem 2.3 ([7]). If X is SLH, then X is LH.

The space X above in Example 2.2 is SLH so that it also fol-
lows that strong local homogeneity does not imply homogeneity.
Consider this next example which illustrates that the converse of
Theorem 2.3 is not true, as well as shows that strong local homo-
geneity does not follow from homogeneity.
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Example 2.4 ([8]). Let X be the product of the unit circle S1

with the Cantor set C where the topologies on S1 and C are the
usual topologies inherited from R2 and R, respectively. Then X is
homogeneous and hence LH, but not SLH.

Although we have seen that strong local homogeneity does not
imply homogeneity and that homogeneity does not imply strong
local homogeneity, by adding in connectedness, Peter Fletcher [6]
arrived at the following theorem whose converse is also shown to
be false by Example 2.4.

Theorem 2.5 ([6]). Let X be SLH and connected then X is ho-
mogeneous.

3. Even homogeneity

A space (X,T ) is evenly homogeneous w.r.t. (H(X), T∗) [11]
(EH w.r.t. T∗) provided that for all O ∈ T∗ containing the identity
e there exists an open cover V such that if x, y ∈ V ∈ V, there is
an h ∈ O such that h(x) = y. Let us recall several results about
even homogeneity.

Theorem 3.1 ([11]). Let Λ be an index set of arbitrary cardinal-
ity. For all α ∈ Λ, let Xα be a topological space, and let Gα be a
transitive subgroup of H(Xα). For each α ∈ Λ, let Tα be a topology
for Gα such that Xα is evenly homogeneous w.r.t. (Gα, Tα). Set

X =
∏

α∈Λ

Xα and G =
∏

α∈Λ

Gα. Let T and TP be the product topolo-

gies on X and G, respectively. Then X is evenly homogeneous
w.r.t. (G,TP ).

Theorem 3.2 ([11]). If X is EH w.r.t. (H(X), T∗) and Tt 6= T ′ ⊆
T∗, then X is EH w.r.t. (H(X), T ′), where Tt is the trivial topology
on H(X).

In 1965, algebraist Edward G. Effros [5] published a paper in-
volving homogeneous spaces. This paper has been extensively used
in the study of continuum theory after Gerald S. Ungar [13] and
Charles L. Hagopian [9] discovered its importance to topology. The
next theorem uses the ǫ-push property which evolved from Effros’
Theorem. Theorem 3.4 is the widely used corollary of Effros’ The-
orem which was proven in 1983 by David P. Bellamy.
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Theorem 3.3 ([9]). Let (X, ρ) be a non-degenerate, homogeneous,
metric continuum. Let ǫ > 0 be given and let x ∈ X. Then there
exists an open set, O, in X such that x ∈ O and if y, z ∈ O, there
exists h ∈ H(X) with h(y) = z and ρ(v, h(v)) < ǫ for all v ∈ X.

Theorem 3.4 ([2]). Let (X,T ) be a non-degenerate, compact, ho-
mogeneous, metric space. Then for all x ∈ X, the evaluation map,
Ex : H(X) → X defined by Ex(f) = f(x), is an open map when
H(X) is given the compact-open topology.

Kathryn F. Porter, in 1988, used even homogeneity to general-
ize Effros’ Theorem to include non-metrizable spaces, and in the
process, gave the following definition. A topology T for H(X)
is RMC provided that the map mg : H(X) → H(X) defined by
mg(h) = h ◦ g is continuous for all g ∈ H(X). Porter’s generaliza-
tion is stated in Theorem 3.5 below.

Theorem 3.5 ([11]). Let (X,T ) be a non-degenerate topological
space which is homogeneous. Let T∗ be an RMC topology for H(X).
If X is EH w.r.t. (H(X), T∗), then for each x ∈ X, the evaluation
map, Ex : H(X) → X defined by Ex(f) = f(x), is an open map.

Since the compact-open topology is RMC and X is EH w.r.t. Tco

when X is compact, homogeneous, and metrizable, Theorem 3.4 is
actually a corollary of Theorem 3.5.

4. Local homogeneity and even homogeneity

The following new theorem shows that local homogeneity is equiv-
alent to the weakest form of even homogeneity.

Theorem 4.1. X is LH iff X is EH w.r.t. Tt.

Proof: (⇒) Assume X is LH. H(X) is the only open set in Tt

containing e. For each x ∈ X, there is, by LH, an open set Ox

containing x such that if y ∈ Ox, there exists h ∈ H(X) such that
h(x) = y. Set V = {Ox|x ∈ X}; then V is the open cover needed
for EH.

(⇐) Assume X is EH w.r.t. Tt. Let p ∈ X. H(X) contains e so
there is an open cover V such that if x, y ∈ V ∈ V, there exists an
h ∈ H(X) with h(x) = y. Since there is a V ∈ V with p ∈ V , X is
LH. �
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The next theorem is a new result which connects strong local
homogeneity to even homogeneity w.r.t. the closed-open topology.

Theorem 4.2. If X is SLH, then X is EH w.r.t. Tclo.

Proof: Assume X is SLH. Let (C,O) be a subbasis element of
the closed-open topology on H(X) containing the identity e. Thus,
C ⊆ O. If x ∈ C, then x ∈ O so there exists an SLH open set, Ux

such that x ∈ Ux ⊆ O. If x ∈ X \ C, there exists an SLH open set
Vx such that x ∈ Vx ⊆ X\C. Let V = {Ux|x ∈ C}∪{Vx|x ∈ X\C}.
Then if p, q ∈ Ux for some x ∈ C, there exist h1, h2 ∈ H(X) with
h1(x) = p, h2(x) = q, and hi|X−Ux

= e|X−Ux
for i = 1, 2. So

h2 ◦ h−1
1 (p) = q and h2 ◦ h−1

1 ∈ (C,O). The same argument can be
used in the case that p, q ∈ Vx. Hence, X is EH w.r.t. Tclo. �

In 1979, R. A. McCoy [10] defined the open-cover topology for
function spaces: Let (X,T ) be a topological space and let Γ(X) be
the collection of all open covers of X. For each V ∈ Γ(X) and ev-
ery f ∈ H(X), we define the set V(f) = {g ∈ H(X)|∀x ∈ X,∃V ∈
V s. t. (f(x), g(x)) ∈ V × V }. The collection S = {V(f)|V ∈
Γ(X), and f ∈ H(X)} is a subbasis for a topology on H(X) called
the open-cover topology which is denoted by Toc. In this next theo-
rem, we establish a relationship between strong local homogeneity
and even homogeneity w.r.t. the open-cover topology.

Theorem 4.3. If X is SLH, then X is EH w.r.t. Toc.

Proof: Assume X is SLH. Let V ∈ Γ(X); then e ∈ V(e). Now
∀x ∈ X there is some Vx ∈ V such that x ∈ Vx. Since X is SLH,
for each x ∈ X, there is an SLH open neighborhood Ux of x such
that x ∈ Ux ⊆ Vx. Hence, U = {Ux|x ∈ X} is an open cover
of X. If p, q ∈ Ux for some x, there exists h1, h2 ∈ H(X) with
h1(x) = p, h2(x) = q, and h1|X\Ux

= e|X\Ux
= h2|X\Ux

. Then

h = h2 ◦ h−1
2 (p) = q and h|X\Ux

= e|X\Ux
. It is then easy to show

that h ∈ V(e). Therefore, X is EH w.r.t. Toc. �

Theorem 4.3 would be a corollary of Theorem 4.2 under the
condition that X is pseudocompact since then Toc ⊆ Tclo on H(X).

When we add some separation axiom restrictions to X, we arrive
at the new results below.

Theorem 4.4. If X is SLH and T1, then X is EH w.r.t. Tp where
Tp is the point-open topology.
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Proof: Assume X is SLH and T1. Then X is EH w.r.t. Tclo and
Tp ⊆ Tclo since points are closed; hence, by Theorem 3.2, X is EH
w.r.t. Tp. �

Theorem 4.5. If X is SLH and T2, then X is EH w.r.t. Tco where
Tco is the compact-open topology.

Proof: Let X be SLH and T2. Then every compact set in X is
closed so Tco ⊆ Tclo. Thus, by Theorem 3.2, X is EH w.r.t. Tco. �

Recall Example 2.4. The space X = S1 × C is not SLH, but
both C and S1 are SLH and T2, so both are EH w.r.t. Tco. Thus,
by Theorem 3.1, their product X with the product topology is EH
w.r.t. (H,TP ) where H = H(S1) × H(C) and TP is the product
topology on H. If Ts is the subspace topology on H inherited
from (H(X), Tco, then, as Porter has shown [11], Ts ⊆ TP on H.
Therefore, by Theorem 3.2, X is EH w.r.t. (H(X), Tco). Note that
in this example, X is compact; hence, Tco = Tclo = Toc on H(X) so
that Example 2.4 illustrates that the converse of each of theorems
4.2, 4.3, and 4.5 is false. This example also shows that the converse
of Theorem 4.4 is false since the point-open topology Tp ⊆ Tco so
X is EH w.r.t. (H(X), Tp).

5. Uniform local homogeneity,

micro-homogeneity, and even homogeneity

In 1967, Ungar wrote a paper [13] relating strong local homo-
geneity to a new homogeneity property: A completely regular topo-
logical space (X,T ) is uniformly locally homogeneous w.r.t. to the
uniformity U (ULH w.r.t. U) provided T = TU (uniform top.) and
for each x ∈ X and U ∈ U , there exists an open neighborhood O

of x such that if y ∈ O, there exists g ∈ H(X) such that g(x) = y

and graph(g) ⊆ U .

Theorem 5.1 ([13]). If X is SLH and uniformizable, then X is
ULH.

Example 2.4 shows that the converse of Theorem 5.1 is false.
Both S1 and C are ULH and, as Ungar proved [13], their product
is ULH but not SLH.

Theorem 5.2 ([11]). Let (X,U) be a uniform space. Then X is
ULH w.r.t. U if and only if X is EH w.r.t. TU∗.
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Corollary 5.3 ([11]). If X is SLH and completely regular, then X

is EH w.r.t. TU∗.

Frederic D. Ancel [1], in 1987, defined a topological space (X,T )
to be micro-homogeneous w.r.t. (H(X), T∗) (MH w.r.t. T∗) pro-
vided that

(1) T∗ is an admissible topology for H(X); i.e., the evaluation
map, E : (H(X) × X) → X, E(h, x) = h(x) is jointly continuous;

(2) (H(X), T∗) is a topological group; i.e., the multiplication
map and inverse map on H(X) are continuous; and

(3) for all open neighborhoods O of the identity, e, each x ∈ X

has an open neighborhood U such that if y ∈ U , then there is an
h ∈ O such that h(x) = y.

We shall refer to the third property in the above definition as
Ancel’s Property.

Theorem 5.4. If X is EH w.r.t. T∗, then H(X) has Ancel’s
Property (AP).

Proof: Assume X is EH w.r.t. T∗. Let O be an open neighbor-
hood of e and let x ∈ X. By EH, there exists an open cover V such
that if p, q ∈ V ∈ V, there exists g ∈ O with g(p) = q. Now there

has to be some V̂ ∈ V with x ∈ V̂ . If y ∈ V̂ , then there exists
f ∈ O with f(x) = y. Therefore, H(X) has AP. �

To see that the converse of Theorem 5.4 is false, consider X = Z

with the cofinite topology. Then H(X) has AP, but X is not EH
w.r.t. Tco.

Theorem 5.5. If X is MH w.r.t. T∗, then X is EH w.r.t. T∗.

Proof: Assume X is MH w.r.t. T∗. Let O ∈ T∗ such that e ∈ O.
Since (H(X), T∗) is a topological group, there exists W = W−1 ∈
T∗ such that W ◦W ⊆ O. By AP, for each x ∈ X, there is an open
set Vx such that x ∈ Vx and if y ∈ Vx, then there exists j ∈ O such
that j(x) = y. Set V = {Vx|x ∈ X}. If p, q ∈ Vx for some x ∈ X,
there exists h1, h2 ∈ W such that h1(x) = p and h2(x) = q. Then
h = h2 ◦h−1

1 (p) = q and h ∈ W ◦W ⊆ O. Therefore, X is EH w.r.t.
T∗. �
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We can show that the converse of Theorem 5.5 is not true. To this
end, let X = Q with the subspace topology inherited from the reals
with the usual topology. Give H(Q) the compact-open topology.
Q is SLH and uniformizable and thus EH w.r.t. Tco. However,
(H(Q), Tco) is not an admissible topological group because Tco is
strictly coarser than Tclo on H(Q). So by Theorem 5.6 below, Q is
not MH w.r.t. Tco.

Theorem 5.6 ([4]). Any admissible group topology on H(Q) is
finer than the closed-open topology.
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