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A NEW SELECTION PRINCIPLE

BOAZ TSABAN

Abstract. Motivated by a recent result of Masami Sakai,
we define a new selection operator for covers of topological
spaces, inducing new selection hypotheses, and initiate a sys-
tematic study of the new hypotheses. Some intriguing prob-
lems remain open.

1. Subcovers with strong covering properties

We say that U is a cover of a set X if X 6∈ U and X =
⋃

U .

Definition 1. For a family A of covers of a set X, A∞ is the
family of all U such that there exist infinite sets Un ⊆ U , n ∈ N,
with {

⋂

Un : n ∈ N} ∈ A .

For topological spaces X, various special families of covers have
been extensively studied in the literature, in a framework called
selection principles; see the surveys [10], [4], and [13]. The main
types of covers are defined as follows. Let U be a cover of X. U is
an ω-cover of X if each finite F ⊆ X is contained in some U ∈ U .
U is a γ-cover of X if U is infinite and each x ∈ X belongs to all
but finitely many U ∈ U .

Let the boldfaced symbols O, Ω, Γ denote the families of all
covers, ω-covers, and γ-covers, respectively. Then

Γ ⊆ Ω ⊆ O.

Also, let O, Ω, Γ denote the corresponding families of open covers.
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320 B. TSABAN

For a space X and collections A ,B of covers of X, the following
property may or may not hold:

(

A

B

)

: Every member of A has a subset which is a member of B.

Masami Sakai [7] proved that for a Tychonoff space X, a local
property called the Pytkeev property holds in the function space

Cp(X) if and only if X satisfies
(

Ω̌
Ω∞

)

, where Ω̌ is a certain subclass

of Ω. It is open whether Ω̌ can be replaced by Ω [7]. Motivated by
this, Petr Simon and the present author proved that for Lindelöf
spaces X, Cp(X) satisfies the Pytkeev property if and only if X is

zero-dimensional and satisfies
(

CΩ

Ω∞

)

, where CΩ is the collection of

all clopen ω-covers of X [12]. This motivates the study of additional

properties of the form
(

A

B∞

)

.

Definition 2. A family B of open covers of X is surjectively

derefinable if {f(U) : U ∈ U} ∈ B for each U ∈ B and each
f : U → P (X) \ {X} such that for each U ∈ U f(U) is open and
contains U . A similar definition applies to families of Borel covers,
clopen covers, etc.

Example 3. O, Ω, and Γ are surjectively derefinable. For the
latter we must explain why a (surjective) derefinement of a γ-cover
is infinite, and this follows from the fact that it is an ω-cover.

Lemma 4. Assume that B is a surjectively derefinable family of

covers of X. Then
(

A

B∞

)

⇒

(

A

B

)

.

Proof: Assume that U ∈ A . By the assumption, there are in-
finite U1,U2, . . . ⊆ U such that V = {

⋂

Un : n ∈ N} ∈ B. For
each n, choose f(

⋂

Un) ∈ Un. As B is surjectively derefinable,
W = {f(

⋂

Un) : n ∈ N} ∈ B. Clearly, W ⊆ U . �

The converse need not hold. For example,
(

CΩ

Ω

)

always holds,

whereas
(

CΩ

Ω∞

)

need not, as explained above. More examples will
follow in the sequel.

Proposition 5. Every space satisfies
( Γ
Γ∞

)

.

Proof: Assume that U ∈ Γ. We may assume that U is countable
(since an infinite subset of a γ-cover is again a γ-cover). Enumerate
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U = {Un : n ∈ N} bijectively, and take Un = {Uk : k ≥ n} for each
n. Then {

⋂

Un : n ∈ N} ∈ Γ. �
(Ω
Γ

)

is the classical γ-property [2].

Corollary 6.
(Ω
Γ

)

=
( Ω
Γ∞

)

.

Proof: By Proposition 5 and Lemma 4,
(

Ω

Γ

)

=

(

Ω

Γ

)

∩

(

Γ

Γ∞

)

=

(

Ω

Γ∞

)

,

the last equation being self-evident. �

What about the other properties?
(

O

O∞

)

never holds, since any
T1 space with more than one element has a finite open cover. Taking
the above results into account, only

( Ω
O∞

)

and
( Ω
Ω∞

)

are potentially

new. It turns out that even the formally weaker property
( Ω
O∞

)

is quite restrictive. According to Borel, a set X ⊆ R has strong

measure zero if for each sequence of positive reals {ǫn}n∈N, there
exists a cover {In}n∈N of X such that for each n, the diameter of
In is smaller than ǫn. It was established by Richard Laver that
consistently, all strong measure zero sets of reals are countable.
The following theorem of Miller is essentially proved in [12].

Theorem 7 (Miller, see [12]). If X ⊆ R and X satisfies
(

CΩ

O∞

)

,

then X has strong measure zero.

Proof: By standard arguments [15], we may assume that X ⊆
{0, 1}N. It suffices to prove that for each increasing sequence {kn}n∈N

of natural numbers, there are for each n elements sn
m ∈ {0, 1}kn ,

m ≤ n, such that X =
⋃

n([sn
1 ] ∪ · · · ∪ [sn

n]). (One can allow n

sets of diameter ǫn in the original definition of strong measure zero
by moving to an appropriate subsequence of the original sequence
{ǫn}n∈N.)

For each n, let

Un = {[s1] ∪ · · · ∪ [sn] : s1, . . . , sn ∈ {0, 1}kn},

and take U =
⋃

n Un. U is a clopen ω-cover of X. By
(

CΩ

O∞

)

, there

are infinite subsets V1,V2, . . . of U , such that {
⋂

Vn : n ∈ N} is a
cover of X. As each Vn is infinite and each Un is finite, we can find
m1 and V1 ∈ V1 ∩ Um1

, m2 > m1 and V2 ∈ V2 ∩ Um2
, etc. Then
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{Vn : n ∈ N} is a cover of X, and the sets Vn are as required in the
first paragraph of this proof. �

However, we have the following.

Conjecture 8. The Continuum Hypothesis implies

(1) there is a set of reals X satisfying
( Ω
Ω∞

)

but not
(Ω
Γ

)

, and

(2) there is a set of reals X satisfying
( Ω
O∞

)

but not
( Ω
Ω∞

)

.

Conjecture 8(1) implies, if true, a negative answer to Sakai’s
Question 4.7 in [8]. We will show that critical cardinalities (defined
below) cannot be used to prove the consistency of items (1) and (2)
of Conjecture 8.

X is an Ω-Lindelöf space if each open ω-cover of X contains a
countable ω-cover of X. For Tychonoff spaces this is equivalent to:
All finite powers of X are Lindelöf [2]. Separable zero-dimensional
metrizable spaces are homeomorphic to subsets of R and are thus
Ω-Lindelöf. Recall that a family F ⊆ [N]ℵ0 is centered if the inter-
section of each finite subset of F is infinite. F is free if

⋂

F = ∅.
A ⊆ N is a pseudo-intersection of F if A is infinite and for each
B ∈ F , A ⊆∗ B (that is, A \ B is finite). [N]ℵ0 inherits its topol-
ogy from P (N), whose topology is defined by identifying P (N) with
{0, 1}N.

Theorem 9. For Ω-Lindelöf spaces X, the following are equivalent:

(1) X satisfies
(

CΩ

O∞

)

;

(2) For each continuous free centered image F of X in [N]ℵ0 ,

F =
⋃

n Fn where each Fn has a pseudo-intersection.

Proof: (1 ⇒ 2) Assume that Ψ : X → [N]ℵ0 is continuous and
that its image F is free and centered. For each n, let Un = {x : n ∈
Ψ(x)}. U = {Un : n ∈ N} is a clopen ω-cover of X. Choose infinite
Un ⊆ U , n ∈ N, such that {

⋂

Un : n ∈ N} is a cover of X, and set
An = {m : Um ∈ Un}, and Fn = {I ∈ F : An ⊆ I}. For each I ∈ F ,
let x ∈ X be such that I = Ψ(x). Choose n such that x ∈

⋂

Un.
Then for each m ∈ An, x ∈ Um and therefore m ∈ Ψ(x) = I, that
is, I ∈ Fn.

(2 ⇒ 1) Assume that U is a clopen ω-cover of X. Since X is
Ω-Lindelöf, we may assume that U is countable. Fix a bijective
enumeration U = {Un : n ∈ N}. As the sets Un are clopen, the
Marczewski function µ : X → P (N), defined by µ(x) = {n : x ∈
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Un}, is continuous. Since U is an ω-cover of X, the image F of
µ is a free centered subset of [N]ℵ0 [13]. Let F =

⋃

n Fn be as
in (2). For each n, let An be a pseudo-intersection of Fn. Take
Un,m = {Uk : m ≤ k ∈ An} ⊆ U . Then {

⋂

Un,m : m,n ∈ N} is a
cover of X. �

The minimal cardinality of a centered F ⊆ [N]ℵ0 such that there
is no partition F =

⋃

n Fn where each Fn has a pseudo-intersection
is equal to p [12].

The critical cardinality of a nontrivial family J of sets of reals is

non(J ) = min{|X| : X ⊆ R and X 6∈ J }.

Corollary 10. non(
( Ω
Ω∞

)

) = non(
( Ω
O∞

)

) = p.

Proof: non(
(Ω
Γ

)

) = p [1], and by the implications among the prop-

erties, p ≤ non(
(

Ω
Ω∞

)

) ≤ non(
(

Ω
O∞

)

) ≤ non(
(

CΩ

O∞

)

). By Theorem 9

and the above-mentioned result of [12], non(
(

CΩ

O∞

)

) ≤ p. �

Proposition 11. If all finite powers of X satisfy
( Ω
O∞

)

, then X

satisfies
(

Ω
Ω∞

)

.

Proof: If U is an open ω-cover of X, then for each k, Uk := {Uk :
U ∈ U} is an open ω-cover of Xk. Take infinite Vk,n ⊆ U such that

{
⋂

Vk
k,n : n ∈ N} is a cover of Xk. Then each k-element subset of

X is contained in some member of {
⋂

Vk,n : n ∈ N}, and therefore
{
⋂

Vk,n : n, k ∈ N} is an ω-cover of X. �

A subtle technical problem prevents us from using the methods
of [3] to obtain the converse implication.

Problem 12. Is the converse implication in Proposition 11 prov-
able?

Additional results concerning
( Ω
Ω∞

)

can be found in [8].

2. A new selection principle

Fix a topological space X, and let A and B each be a collection
of covers of X. The following selection principles, which X may
or may not satisfy, were introduced in [9] to generalize a variety of
classical properties, and were extensively studied in the literature
(see the surveys [10], [4], [13]).
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S1(A ,B): For each sequence {Un}n∈N of members of A , there
exist members Un ∈ Un, n ∈ N, such that {Un : n ∈
N} ∈ B.

Sfin(A ,B): For each sequence {Un}n∈N of members of A , there
exist finite subsets Fn ⊆ Un, n ∈ N, such that
⋃

n∈N
Fn ∈ B.

Ufin(A ,B): For each sequence {Un}n∈N of members of A which
do not contain a finite subcover, there exist finite
subsets Fn ⊆ Un, n ∈ N, such that {∪Fn : n ∈ N} ∈
B.

We introduce the following new selection principle, which is a
selective version of

(

A

B∞

)

.
⋂

∞
(A ,B): For each sequence {Un}n∈N of elements of A , there is

for each n an infinite set Vn ⊆ Un, such that {
⋂

Vn :
n ∈ N} ∈ B.

Note that if A contains a finite element, then
⋂

∞
(A ,B) automat-

ically fails.

Since the sequence {Un}n∈N is allowed to be constant, the fol-
lowing holds.

Lemma 13.
⋂

∞
(A ,B) ⇒

(

A

B∞

)

.

The following is easy to verify.

Proposition 14. Assume that B is a surjectively derefinable fam-

ily of covers of X. Then
⋂

∞
(A ,B) ⇒ S1(A ,B).

As
⋂

∞
(Γ,Γ) ⇒ S1(Γ,Γ), and S1(Γ,Γ) is rather restrictive (e.g.,

every set of reals satisfying it is perfectly meager), it follows that
⋂

∞
(Γ,Γ) is strictly stronger than

( Γ
Γ∞

)

.

Theorem 15.
⋂

∞
(Γ,Γ) = S1(Γ,Γ).

Proof: Assume that X satisfies S1(Γ,Γ). We will prove that X

satisfies
⋂

∞
(Γ,Γ). The trick we use comes from the context of

local properties, which we learned from Marion Scheepers.
Assume that Un, n ∈ N, are open γ-covers of X. We may assume

that they are all countable and that the sets Un, n ∈ N, are pairwise
disjoint.
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Fix a surjection f : N → N such that for each n, f−1(n) is
infinite. For a countable bijectively enumerated set F = {Un : n ∈
N} and m ∈ N, define F(m) = {Un : n ≥ m}. Fix a bijective
enumeration for each of the covers Un, and apply S1(Γ,Γ) to the
sequence Uf(n)(n), n ∈ N, to obtain sets Un ∈ Uf(n)(n) such that
{Un : n ∈ N} is a γ-cover of X.

For each n, take Vn = {Um : f(m) = n} ⊆ Un. Each Um ∈ Vn

can belong to only finitely many Uf(k)(k) with f(k) = n and cannot
belong to any Uf(k)(k) with f(k) 6= n (because Un ∩ Uf(k) = ∅). In
particular, Vn is infinite.

V = {
⋂

Vn : n ∈ N} is a γ-cover of X: For each x ∈ X, x ∈ Um

for all large enough m, and as n → ∞, min f−1(n) → ∞ too. This
also shows that V is an ω-cover of X, and thus V is infinite. �

S1(Ω,Γ) =
(Ω
Γ

)

[2].

Corollary 16.
⋂

∞
(Ω,Γ) = S1(Ω,Γ).

Proof: By Theorem 15 and easy reasoning,
⋂

∞
(Ω,Γ) =

(

Ω
Γ

)

∩
⋂

∞
(Γ,Γ) =

(

Ω
Γ

)

∩ S1(Γ,Γ) = S1(Ω,Γ). �

Exactly the properties in Figure 1 remain to be explored.

⋂

∞
(Γ,Ω) //

⋂

∞
(Γ,O)

⋂

∞
(Ω,Ω)

OO

//

⋂

∞
(Ω,O)

OO

Figure 1. The surviving properties

Problem 17. Are any of the properties in Figure 1 equivalent to
a classical selection hypothesis?

Problem 18. Can any implication be added to Figure 1?

For
⋂

∞
(Ω,Ω) and

⋂

∞
(Ω,O), Problem 17 is closely related to

Conjecture 8, because these properties are sandwiched between
(

Ω
Γ

)

and
( Ω
O∞

)

.
For the remaining two properties, we have a partial answer for

Problem 17. Let BΓ denote the family of countable Borel γ-covers
of X.
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Theorem 19.

(1) S1(BΓ,O) =
⋂

∞
(BΓ,O).

(2) S1(BΓ,Ω) =
⋂

∞
(BΓ,Ω).

(3) S1(BΓ,O) ⇒
⋂

∞
(Γ,O) ⇒ S1(Γ,O).

(4) S1(BΓ,Ω) ⇒
⋂

∞
(Γ,Ω) ⇒ S1(Γ,Ω).

Proof: We only prove the implications which do not follow from
Proposition 14.

(1) Assume that X satisfies S1(BΓ,O) and Un, n ∈ N, are
countable Borel γ-covers of X. Enumerate bijectively, for each n,
Un = {Un

m : m ∈ N}. Define Ψ : X → N
N by

Ψ(x)(n) = min{m : (∀k ≥ m) x ∈ Un
k }.

Since Ψ is Borel and X satisfies S1(BΓ,O), Ψ[X] is not dominating
[11]. Let g ∈ N

N be a witness for that. Take Vn = {Un
m : m ≥ g(n)}.

For each x ∈ X, there are infinitely many n such that Ψ(x)(n) ≤
g(n), and therefore x ∈

⋂

Vn.
(2) is similar. Here Ψ[X] is not finitely dominating [11], and this

is what we need.
(3) and (4) follow from (1) and (2), respectively, because γ-covers

may be assumed to be countable. �

Corollary 20.

(1) non(
⋂

∞
(Ω,Ω)) = non(

⋂

∞
(Ω,O)) = p.

(2) non(
⋂

∞
(Γ,Ω)) = non(

⋂

∞
(Γ,O)) = d.

Proof: (1) follows from corollaries 16 and 10 and the implications
among the properties, together with non(S1(Ω,Γ)) = p [1].

(2) follows from Theorem 19 and the fact that the critical cardi-
nalities of the Borel version of the classical principles are the same
as in their open version and are both d [3], [11]. �

There are some additional interesting connections between the
new and the classical selection principles.

Theorem 21 (Sakai [8]). Sfin(Ω,Ω) ∩
(

Ω
Ω∞

)

⇒ S1(Ω,Ω).

Proof: For completeness, we give a proof.
Clearly,

Sfin(Ω,Ω) ∩

(

Ω

Ω∞

)

= Sfin(Ω,Ω∞).
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It therefore suffices to show that Sfin(Ω,Ω∞) implies S1(Ω,Ω).
Indeed, assume that Un, n ∈ N, are open ω-covers of X. Choose
finite Fn ⊆ Un, n ∈ N, such that

⋃

n Fn ∈ Ω∞ for X.
Take infinite Vn ⊆

⋃

n Fn, n ∈ N, such that {
⋂

Vn : n ∈ N} is
an ω-cover of X. To each n, assign mn such that mn is increasing
with n and Vn ∩ Fmn

6= ∅, and choose any Umn
∈ Vn ∩ Fmn

. For
k 6∈ {mn : n ∈ N}, choose any Uk ∈ Uk. As {

⋂

Vn : n ∈ N} refines
{Un : n ∈ N}, {Un : n ∈ N} is an ω-cover of X. �

Corollary 22. Sfin(Ω,Ω∞) = S1(Ω,Ω∞).

Proof: By Sakai’s Theorem 21,

Sfin(Ω,Ω∞) =

Sfin(Ω,Ω) ∩
( Ω
Ω∞

)

= S1(Ω,Ω) ∩
( Ω
Ω∞

)

= S1(Ω,Ω∞). �

The following result is inspired by results from [17].

Theorem 23. For Lindelöf zero-dimensional spaces, Ufin(O,Γ) =
Ufin(O,O∞).

Proof: Note that Γ ⊆ O∞. We therefore prove that Ufin(O,O∞)
implies Ufin(O,Γ). Assume that X is Lindelöf zero-dimensional,
and satisfies Ufin(O,O∞). It suffices to prove that every continuous

image of X in N
N is bounded [6].

Assume that Y is a continuous image of X in N
N. We may

assume that all elements of Y are increasing functions. If there is
an infinite I ⊆ N such that {f ↾ I : f ∈ Y } is bounded, then Y is
bounded. We therefore assume that there is k such that for each
n ≥ k, {f(n) : f ∈ Y } is infinite.

For each n ≥ k, let Un = {Un
m : m ∈ N}, where Un

m = {f ∈ Y :
f(n) ≤ m} for each m. Un does not contain Y as an element. Thus,
there are finite sets Fn ⊆ Un, n ≥ k, such that V = {

⋃

Fn : n ∈
N} ∈ O∞. We may assume that each Fn is nonempty. For each n,
the sets Un

m are increasing with m, and therefore, there is g(n) ∈ N

such that
⋃

Fn = Un
g(n).

Let Vm, m ∈ N, be infinite subsets of V = {Un
g(n) : n ∈ N} such

that {
⋂

Vm : m ∈ N} is a cover of Y . For each m, let Im = {n ≥
k : Un

g(n) ∈ Vm}. Im is infinite, and {f ↾ Im : f ∈
⋂

Vm} is bounded

by g ↾ Im. Thus,
⋂

Vm is bounded. It follows that Y =
⋃

m

⋂

Vm

is bounded. �
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Theorem 23 can be contrasted with the fact that Ufin(O,Γ) 6=
Ufin(O,O) [16].
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