Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON LEXICOGRAPHIC PRODUCTS OF TWO GO-SPACES WITH A GENERALIZED ORDERED TOPOLOGY

AI-JUN XU AND WEI-XUE SHI

ABSTRACT. In this paper, we investigate lexicographic products of two GO-spaces with a generalized ordered topology that we call a generalized ordered topological product of the two GO-spaces. We concentrate on the relationship of the properties, such as Lindelöfness, paracompactness, and perfectness, of the two GO-spaces and their generalized ordered topological product.

1. INTRODUCTION

Starting with two generalized ordered (GO) spaces X and Y, we introduced, in [7], a new topology on the lexicographic product set $X \times Y$. This new topology contains the usual open-interval topology of the lexicographic order and also reflects in a natural way the fact that X and Y carry a GO-topology, rather than just the open interval topology of their linear orderings. (Precise definitions appear in section 2.) This new topology on the lexicographic product is called a *generalized ordered topological product* (GOTP) of the GO-spaces X and Y and is denoted by GOTP(X * Y). In this paper, for GO-spaces X and Y, we show that the GOTP(X * Y) is

²⁰⁰⁰ Mathematics Subject Classification. 54F05, 54D20, 54B10, 54D15.

Key words and phrases. generalized ordered spaces, generalized ordered topological product, lexicographic order, Lindelöf, paracompact.

This work is supported by NSFC, project 10571081.

 $[\]textcircled{C}2007$ Topology Proceedings.

Lindelöf (or paracompact) if and only if X, Y are Lindelöf (or paracompact), provided that Y has two endpoints. We prove that the GOTP(X * Y) is a paracompact GO-space if and only if X, Y are paracompact GO-spaces, provided that X does not have neighbor points. Moreover, we investigate when the GOTP is metrizable, (or perfectly normal, or a p-space, or an M-space).

Let $X = (X, \tau, \leq)$ be a GO-space. If p and q are points of X such that p < q and $(p, q) = \emptyset$, then p and q are called *neighbor points* in X; p is the *left neighbor point* of q and q is the *right neighbor point* of p. Let

$$I_X = \{x \in X \mid x \text{ is an isolated point of } X\},$$

$$R_X = \{x \in X \mid [x, \to) \in \tau\},$$

$$L_X = \{x \in X \mid (\leftarrow, x] \in \tau\},$$

$$E_X = R_X \cup L_X,$$

$$N_X = \{x \in E_X - I_X \mid \exists y \in E_X - I_X$$
such that x, y are neighbor points in $X\}.$

For example, suppose $X = (-1,0] \cup \{1,2\} \cup [3,4)$ with the usual subspace topology from the real line. Then $\{0,1,2,3\} \subset E_X$, but none of these points belongs to N_X . If C is a convex subset of Xand $\xi = (A, B)$ is a (pseudo-)gap in X, then we say that C covers ξ if $C \cap A \neq \emptyset \neq C \cap B$. A subset A of X is said to be *left discrete* in X if for each $x \in X$, there exists a convex open neighborhood O(x)such that $O(x) \cap (A - \{x\}) \cap (\leftarrow, x] = \emptyset$. A subset A of X is said to be σ -*l*-*discrete* if $A = \cup \{A_n \mid n \in \mathbb{N}\}$ where for each $n \in \mathbb{N}$, A_n is *left discrete* in X and \mathbb{N} denotes the positive integers. σ -*r*-*discrete* is similarly defined. Define an equivalence relation \sim on X by

 $x \sim y \iff x = y \text{ or } x, y \in N_X \& x, y \text{ are neighbor points in } X.$

For a set V and a collection \mathcal{U} of sets, we will write $V \prec \mathcal{U}$ to mean that V is a subset of some member of \mathcal{U} .

For undefined terminology refer to [3], [4], [5], [6].

2. LINDELÖFNESS AND THE GOTP

In contrast to lexicographic products of two LOTS with the usual interval topology, we give a generalized ordered topology on lexicographic products of two GO-spaces.

Definition 2.1 ([4]). Let $(X, <_X)$, $(Y, <_Y)$ be linearly ordered sets. Then the lexicographic product X * Y is defined as the Cartesian product $X \times Y$ supplied with the lexicographic ordering \leq ; i.e., if $a = \langle x_1, y_1 \rangle$ and $b = \langle x_2, y_2 \rangle \in X \times Y$ then

```
a \leq b if and only if x_1 <_X x_2 or x_1 = x_2 and y_1 <_Y y_2.
```

Definition 2.2 ([7]). Let $(X, \tau_X, <_X)$, $(Y, \tau_Y, <_Y)$ be GO-spaces. Let λ_X and λ_Y be the usual interval topology on X and Y, respectively, and let λ_{X*Y} be the usual interval topology on the linearly ordered set X * Y.

The generalized ordered topology (GOT) τ_{X*Y} is generated by a subbase $\lambda_{X*Y} \cup \tau_R \cup \tau_L \cup \{ [\langle x, y \rangle, \rightarrow) \subseteq X * Y \mid x \in X, y \in$ Y and $[y, \rightarrow) \in \tau_Y - \lambda_Y \} \cup \{ (\leftarrow, \langle x, y \rangle] \subseteq X * Y \mid x \in X, y \in$ Y and $(\leftarrow, y] \in \tau_Y - \lambda_Y \}$, where either

 $\tau_R = \emptyset$ and $\tau_L = \emptyset$, if Y does not have endpoints,

or

$$\tau_R = \{ [\langle x, y_0 \rangle, \rightarrow) \mid x \in X \text{ and } [x, \rightarrow) \in \tau_X - \lambda_X \} \text{ and } \tau_L = \emptyset, \text{ if } Y \text{ has a left endpoint } y_0, \text{ but no right one,}$$

or

 $\tau_R = \emptyset$ and $\tau_L = \{(\leftarrow, \langle x, y_1 \rangle] \mid x \in X \text{ and } (\leftarrow, x] \in \tau_X - \lambda_X\}$, if Y has a right endpoint y_1 , but no left one,

or

 $\tau_R = \{ [\langle x, y_0 \rangle, \to) \mid x \in X \text{ and} [x, \to) \in \tau_X - \lambda_X \} \text{ and} \\ \tau_L = \{ (\leftarrow, \langle x, y_1 \rangle] \mid x \in X \text{ and} (\leftarrow, x] \in \tau_X - \lambda_X \}, \text{ if } Y \text{ has} \\ \text{both a left endpoint } y_0 \text{ and a right endpoint } y_1.$

We say that the space $(X * Y, \tau_{X*Y})$ is the generalized ordered topological product (GOTP) of GO-spaces $(X, \tau_X, <_X)$ and $(Y, \tau_Y, <_Y)$, and denote it by GOTP(X * Y). Similarly, we denote $(X * Y, \lambda_{X*Y})$ by LOTP(X * Y).

In Definition 2.2, if X, Y are LOTS, then $\tau_{X*Y} = \lambda_{X*Y}$. For each $x \in X$, the subspace $\{x\} * Y$ of the GOTP(X * Y) is homeomorphic to Y. Moreover, the topology on the GOTP(X * Y) is determined by the topologies on X and Y. So the GOTP(X * Y) is a natural generalization of the lexicographic product with the usual interval topology. **Convention.** When the meanings are clear from the context, we do not distinguish notations for orderings on different ordered sets and use simply < instead of $<_X$, $<_Y$, and <.

Definition 2.3. Let X be a GO-space and $S \subseteq X$ be convex in X. Define

$$I(S) = \{ x \in S \mid \text{ there exist } a, \ b \in S \text{ with } a < x < b \}.$$

For any subset $G \subseteq X$, define

 $I(G) = \bigcup \{ I(S) \mid S \text{ is a convex component of } G \}.$

For any subset G of GO-space X, I(G) is open in X. Next, we explore when the lexicographic product of two GO-spaces with a generalized ordered topology is Lindelöf. First, we need the following lemmas.

Lemma 2.1 ([7]). Let X, Y be GO-spaces and y_0 (y_1) be a left (right) point of Y. Suppose \mathcal{U} is an open cover of the GOTP(X*Y) by convex sets and

 $E = \{ x \in X \mid no \text{ element of } \mathcal{U} \text{ contains both } \langle u, y_0 \rangle$ and $\langle v, y_1 \rangle$ for some $u, v \in X$ and $u < x < v \}.$

Then E is a closed discrete subspace of X.

Lemma 2.2 ([7]). Let X, Y be GO-spaces. Suppose π_1 is a mapping from the GOTP(X*Y) onto X, which is defined by $\pi_1(\langle x, y \rangle) = x$ for each point $\langle x, y \rangle \in X * Y$. If Y has both a left and a right endpoint, then π_1 is continuous.

Remark. In this paper, π_1 always denotes the map defined in Lemma 2.2.

Theorem 2.1. Let X, Y be GO-spaces. If Y has both a left and a right endpoint, then the following are equivalent.

- (1) X, Y are Lindelöf;
- (2) the GOTP(X * Y) is Lindelöf.

Proof: (1) \Longrightarrow (2) Let y_0 be a left endpoint of Y and y_1 be a right endpoint of Y. Suppose \mathcal{U} is any open cover of the GOTP(X * Y). Without loss of generality, suppose every member of \mathcal{U} is convex.

Let E be defined as in Lemma 2.1. Since X is Lindelöf, E is countable by Lemma 2.1. Let

$$I(\pi_1(\mathcal{U})) = \{I(\pi_1(U)) \mid U \in \mathcal{U}\}$$

and

$$\mathcal{U}(I_X) = \{\{x\} \mid x \in E \cap I_X\}.$$

For each $x \in E \cap ((R_X \cup L_X) - I_X)$, choose $u_x, v_x \in X$ and $U_x \in \mathcal{U}$ satisfying the following properties:

- (i) if $x \in E \cap (R_X I_X)$, then $v_x > x$ and $[\langle x, y_1 \rangle, \langle v_x, y_1 \rangle] \subseteq U_x \in \mathcal{U};$
- (ii) if $x \in E \cap (L_X I_X)$, then $u_x < x$ and $[\langle u_x, y_0 \rangle, \langle x, y_0 \rangle] \subseteq U_x \in \mathcal{U}$.

For each $x \in E - (R_X \cup L_X \cup I_X)$, choose $u_x, v_x \in X$ and $U_{x0}, U_{x1} \in \mathcal{U}$ satisfying the following property:

$$u_x < x < v_x, \ [\langle u_x, y_0 \rangle, \langle x, y_0 \rangle] \subseteq U_{x0} \in \mathcal{U} \text{ and } \\ [\langle x, y_1 \rangle, \langle v_x, y_1 \rangle] \subseteq U_{x1} \in \mathcal{U}.$$

Then let

$$\begin{aligned} \mathcal{U}(R_X) &= \{ [x, v_x) \mid x \in E \cap (R_X - I_X) \}, \\ \mathcal{U}(L_X) &= \{ (u_x, x] \mid x \in E \cap (L_X - I_X) \}, \\ \mathcal{U}(T_X) &= \{ (u_x, v_x) \mid x \in E - (R_X \cup L_X \cup I_X) \} \end{aligned}$$

We claim that $\mathcal{U}' = I(\pi_1(\mathcal{U})) \cup \mathcal{U}(I_X) \cup \mathcal{U}(R_X) \cup \mathcal{U}(L_X) \cup \mathcal{U}(T_X)$ is an open cover of X. Obviously, every member of \mathcal{U}' is open in X. It remains to show that $I(\pi_1(\mathcal{U})) \supseteq X - E$ since $\mathcal{U}(I_X) \cup$ $\mathcal{U}(R_X) \cup \mathcal{U}(L_X) \cup \mathcal{U}(T_X) \supseteq E$. For every $x \in X$, if $x \notin E$, then there exist $u, v \in X$ with the property u < x < v and $\langle x, y_0 \rangle \in$ $[\langle u, y_0 \rangle, \langle v, y_1 \rangle] \subseteq U \in \mathcal{U}$. Thus, $x \in (u, v) \prec I(\pi_1(U)) \in I(\pi_1(\mathcal{U}))$. Suppose that \mathcal{V} is a countable subcover of \mathcal{U}' . Define

$$\begin{aligned} \mathcal{W}_1 &= \{ U \in \mathcal{U} \mid I(\pi_1(U)) \in \mathcal{V} \}; \\ \mathcal{W}_2 &= \{ U_x \mid x \in E \cap (R_X - I_X) \text{ and } [x, v_x) \in \mathcal{V} \}; \\ \mathcal{W}_3 &= \{ U_x \mid x \in E \cap (L_X - I_X) \text{ and } (u_x, x] \in \mathcal{V} \}; \\ \mathcal{W}_4 &= \{ U_{x_0}, U_{x_1} \mid x \in E - (R_X \cup L_X \cup I_X) \text{ and } (u_x, v_x) \in \mathcal{V} \}. \end{aligned}$$

Since Y is Lindelöf and homeomorphic to $\{x\} * Y$, there is a countable open subfamily \mathcal{V}_x of \mathcal{U} covers $\{x\} * Y$ for every $x \in X$. Then let

$$\mathcal{W}_5 = \bigcup \{ \mathcal{V}_x \mid x \in E \}.$$

Hence, for i = 1, 2, 3, 4, 5, W_i is a countable open collection of the GOTP(X * Y). Define $\mathcal{W} = \bigcup \{ \mathcal{W}_i \mid i = 1, 2, 3, 4, 5 \}$. By the above construction, \mathcal{W} is a subset of \mathcal{U} . To conclude the proof, it suffices to show that \mathcal{W} is an open cover of the GOTP(X * Y). Let $s = \langle z, y \rangle \in X * Y$. There are two cases:

- (i) If $z \in E$, then $s = \langle z, y \rangle$ is covered by \mathcal{W}_5 .
- (ii) If $z \notin E$, then there exists $V \in \mathcal{V}$ with $z \in V$. Furthermore, V must be a member of $I(\pi_1(\mathcal{U})) \cup \mathcal{U}(R_X) \cup \mathcal{U}(L_X) \cup \mathcal{U}(T_X)$. If $V \in I(\pi_1(\mathcal{U}))$, then there exists a $U \in \mathcal{U}$ such that $V = I(\pi_1(U))$. Hence, $s \in U \in \mathcal{W}_1$. If $V \in \mathcal{U}(T_X)$, then there exists $x \in E - (R_X \cup L_X \cup I_X)$ with $V = (u_x, v_x)$ and $x \neq z$. Thus, $s = \langle z, y \rangle$ belongs to $(\langle u_x, y_0 \rangle, \langle x, y_0 \rangle)$ or $(\langle x, y_1 \rangle, \langle v_x, y_1 \rangle)$. Hence, $s = \langle z, y \rangle$ belongs to U_{x_0} or U_{x_1} , either of which belongs to \mathcal{W}_4 . The other cases are similar.

(2) \Longrightarrow (1) Clearly, Y is Lindelöf because $\{x\} * Y$ is a closed set of the GOTP(X * Y) and homeomorphic to Y for every x of X. Next, we will prove that X is Lindelöf. For any open cover \mathcal{V} of X by convex sets, $\pi_1^{-1}(\mathcal{V}) = \{\pi_1^{-1}(V) \mid V \in \mathcal{V}\}$ is an open cover of the GOTP(X * Y) by Lemma 2.2. So, there is a countable open subcover $\pi_1^{-1}(\mathcal{V}')$ of $\pi_1^{-1}(\mathcal{V})$ with $\mathcal{V}' \subseteq \mathcal{V}$. Then, \mathcal{V}' is a countable open subcover of \mathcal{V} . In fact, for each $x \in X$, there exists $V \in \mathcal{V}'$ such that $\langle x, y_0 \rangle \in \pi_1^{-1}(V)$. Hence, $x \in V$.

In Theorem 2.1, if Y has only one endpoint, then the GOTP(X * Y) may not be Lindelöf.

Example 2.1. Let Y = [0, 1) with the usual topology and let X denote [0, 1] having a base consisting of all intervals (z, 1], [x, y), where $x, y, z \in [0, 1]$; x < y; and $x \neq 1$. Then the GOTP(X * Y) is not Lindelöf.

In addition, we have the following theorem.

Theorem 2.2. Let X, Y be GO-spaces. If Y has neither a left nor a right endpoint, then the GOTP(X * Y) is Lindelöf if and only if Y is Lindelöf and $|X| < \omega_1$.

Proof: Obvious, since X * Y is the disjoint union of the open subset of the GOTP(X * Y).

3. PARACOMPACTNESS AND THE GOTP

Lemma 3.1 ([4]). Let X be a GO-space. Then X is hereditarily paracompact iff $X - \{x\}$ is paracompact for each point $x \in X$.

Lemma 3.2. Let X, Y be GO-spaces. If Y has both a left and a right endpoint, and

- if A is discrete in X and B is discrete in Y, then A * B is discrete in the GOTP(X * Y);
- (2) if D is discrete in the GOTP X * Y, then $\pi_1(D)$ is discrete in X.

Proof: Let y_0 denote the left endpoint of Y and y_1 denote the right endpoint of Y.

(1) For every $x \in X$ and $y \in Y$, there exist convex open subsets O(x, A) (in X) and U(y, B) (in Y) such that $O(x, A) \cap (A - \{x\}) = \emptyset$ and $U(y, B) \cap (B - \{y\}) = \emptyset$, respectively. It suffices to show that there exist open subsets $V(\langle x, y \rangle)$ of the GOTP(X * Y) such that $V(\langle x, y \rangle) \cap (A * B - \{\langle x, y \rangle\}) = \emptyset$ for each $\langle x, y \rangle \in X * Y$. If $y \neq y_0, y_1$, then let $V(\langle x, y \rangle) = \{x\} * (U(y, B) - \{y_0, y_1\})$. If $y = y_0$, then let $V(\langle x, y \rangle) = \{x\} * U(y_0, B) \cup (\pi_1^{-1}(O(x, A)) \cap (\leftarrow, \langle x, y_0 \rangle))$. If $y = y_1$, then let $V(\langle x, y \rangle) = \{x\} * U(y_1, B) \cup (\pi_1^{-1}(O(x, A)) \cap (\langle x, y_1 \rangle, \rightarrow))$.

(2) For every $\langle x, y \rangle \in X * Y$, there exists a convex open neighborhood $O(\langle x, y \rangle)$ of $\langle x, y \rangle$ in the GOTP X * Y such that $O(\langle x, y \rangle) \cap$ $(D - \{\langle x, y \rangle\}) = \emptyset$. We shall prove that there exists an open neighborhood U(x) of x in X such that $U(x) \cap (\pi_1(D) - \{x\}) = \emptyset$. There are four cases to consider: (i) $x \in I_X$ is clear. (ii) $x \in X - (R_X \cup L_X \cup I_X)$. Then there exists $u_x, v_x \in X$, $O(\langle x, y_0 \rangle)$ and $O(\langle x, y_1 \rangle)$ with $u_x < x < v_x$, $\langle v_x, y_1 \rangle \in O(\langle x, y_1 \rangle)$ and $\langle u_x, y_0 \rangle \in O(\langle x, y_0 \rangle)$. Then, let $U(x) = (u_x, v_x)$. (iii) $x \in R_X - I_X$. For $\langle x, y_1 \rangle \in X * Y$, there exists $v_x > x$ with $\langle v_x, y_1 \rangle \in O(\langle x, y_1 \rangle)$. Then let U(x) = $[x, v_x)$. (iv) $x \in L_X - I_X$. Similarly, there exists $u_x < x$ with $\langle u_x, y_0 \rangle \in O(\langle x, y_0 \rangle)$, then let $U(x) = (u_x, x]$.

Corollary 3.1. Let X, Y be GO-spaces. If Y has both a left and a right endpoint, then the following are equivalent.

- (1) The GOTP(X * Y) is σ -discrete;
- (2) X, Y are σ -discrete.

Proof: (1) \implies (2) Let the GOTP(X * Y) be σ -discrete. Obviously, Y is σ -discrete. Moreover, let

 $X * Y = \bigcup \{ D_n \mid n \in \mathbb{N} \text{ and } D_n \text{ is discrete} \}$

in the GOTP(X * Y) for each $n \in \mathbb{N}$.

Then, $X = \pi_1(X * Y) = \bigcup \{ \pi_1(D_n) \mid n \in \mathbb{N} \}$ is σ -discrete in X by Lemma 3.2(2).

 $(2) \Longrightarrow (1)$ Since X, Y are σ -discrete, we have

 $X = \bigcup \{A_n \mid n \in \mathbb{N} \text{ and } A_n \text{ is discrete in } X \} \text{ and } Y = \bigcup \{B_m \mid m \in \mathbb{N} \text{ and } B_m \text{ is discrete in } Y \}.$

For each $n, m \in \mathbb{N}$, let $C_{n,m} = \bigcup \{\{x\} * B_m \mid x \in A_n\}$. Then $X * Y = \bigcup \{C_{n,m} \mid n, m \in \mathbb{N}\}$. By Lemma 3.2(1), $C_{n,m}$ is discrete in the GOTP(X * Y). Thus, the GOTP(X * Y) is σ -discrete. \Box

Lemma 3.3 ([4], Theorem 2.4.6). Let X be a GO-space. Then X is paracompact if and only if for each gap and each pseudo-gap (A, B) in X, there exist discrete subsets $C \subset A$ and $D \subset B$ which are cofinal in A and coinitial in B, respectively.

Theorem 3.1. If X, Y are (hereditarily) paracompact GO-spaces, then the GOTP(X * Y) is a (hereditarily) paracompact GO-space.

Proof: Let X, Y be paracompact. Suppose (A, B) is a leftpseudo-gap in the GOTP(X * Y). (The other cases can be proved similarly.) Then, the singleton set $\{\langle b_{0X}, b_{0Y} \rangle\}$ of the left endpoint of B is a discrete subset of the GOTP(X * Y) which is coinitial in B. So, it suffices to prove that there exists a cofinal subset D of A which is discrete in the GOTP(X * Y). Let

 $A_X = \{a_X \in X \mid \text{there exists } a_Y \in Y \text{ such that} \\ a = \langle a_X, a_Y \rangle \in A \}, \\ B_X = \{b_X \in X \mid \text{there exists } b_Y \in Y \text{ such that} \}$

 $b = \langle b_X, b_Y \rangle \in B \}.$

Then $X = A_X \cup B_X$, $a_X \leq b_X$ for all $a_X \in A_X$, and $b_X \in B_X$. Further, $|A_X \cap B_X| \leq 1$ and B_X has a left endpoint b_{0X} .

Case 1. $A_X \cap B_X = \emptyset$. Since (A, B) is a left-pseudo-gap, Y has a left endpoint $y_0 = b_{0Y}$. First we claim that (A_X, B_X) must be a left-pseudo-gap in X. In fact, if (A_X, B_X) were not a left-pseudogap in X, then it would be a jump. So b_{0X} has an immediate predecessor b_{0X}^- in X that is the maximal point of A_X . Then Y

does not have a right endpoint since (A, B) is a left-pseudo-gap of the GOTP(X * Y). But by the definition of GOTP, $[\langle b_{0X}, b_{0Y} \rangle, \rightarrow)$ is not open in the GOTP(X * Y). This contradicts that (A, B) is a left-pseudo-gap of the GOTP(X * Y).

Now we know that (A_X, B_X) is a left-pseudo-gap in X. Then there exists $D_X \subseteq A_X$ such that D_X is a discrete subset of X and cofinal in A_X . Pick arbitrary $y \in Y$. Let $D = \{\langle x, y \rangle \mid x \in D_X\}$. Obviously, D is a cofinal subset of A. By Lemma 3.2, D is discrete in the GOTP(X * Y).

Case 2.
$$A_X \cap B_X \neq \emptyset$$
. Then $A_X \cap B_X = \{b_{0X}\}$. Let
$$A_Y = \{a_Y \in Y \mid \langle b_X, a_Y \rangle \in A\}$$

and

$$B_Y = \{ b_Y \in Y \mid \langle b_X, b_Y \rangle \in B \}.$$

Then (A_Y, B_Y) is a left-pseudo-gap in Y since $\{b_X\} * Y$ is homeomorphic to Y. Hence, there exists a subset $D_Y \subseteq A_Y$ which is discrete in Y and cofinal in A_Y . Now, define $D = \{\langle b_{0X}, y \rangle \mid y \in D_Y\}$. Then D is a discrete subset of the GOTP(X * Y) and a cofinal subset of A.

Next, let X, Y be hereditarily paracompact. By Lemma 3.1, it suffices to prove that there are discrete subsets D and R of $X * Y - \{p\}$, such that D is cofinal in $\{s \in X * Y \mid s < p\}$ and R is coinitial in $\{s \in X * Y \mid p < s\}$ for every $p \in X * Y$. Let $p = \langle p_X, p_Y \rangle \in X * Y$. If p_Y is not an endpoint of Y, then the proof is clear since Y is hereditarily paracompact. Let p_Y be the left endpoint of Y. Then there are two possibilities to consider:

- (i) p_X has an immediate predecessor p_X^- in X. If Y has the right endpoint y_1 , then let $D = \{\langle p_X^-, y_1 \rangle\}$. If Y does not have a right endpoint, then there exists $D_Y \subseteq Y$ such that D_Y is discrete and cofinal in Y. Thus, let $D = \{\langle p_X^-, y \rangle \mid y \in D_Y\}$.
- (ii) p_X does not have an immediate predecessor in X. Then there exists $D_X \subseteq X - \{p_X\}$ such that D_X is discrete in $X - \{p_X\}$ and cofinal in $\{x \mid x < p_X\}$. Thus, let D = $\{\langle x, p_Y \rangle \mid x \in D_X\}$.

In either case, D is discrete in $X * Y - \{p\}$ and cofinal in $\{s \in X * Y \mid s < p\}$. Further, there exists $R_Y \subseteq Y$ such that R_Y is discrete and coinitial in $Y - \{p_Y\}$. Hence, let $R = \{\langle p_X, y \rangle \mid y \in R_Y\}$. Then R

is discrete in $X * Y - \{p\}$ and cofinal in $\{s \in X * Y \mid s > p\}$. If p_Y is the right endpoint of Y, the proof is similar.

The converse of the above theorem is not true. (See Example 3.1.)

Example 3.1. Let $X = \omega_0$ and $Y = \omega_1$ with the usual order topology. Then Y is not paracompact. However, the GOTP(X * Y) is paracompact. (In fact, the GOTP(X * Y) is Lindelöf.)

Theorem 3.2. Let X, Y be GO-spaces. If Y has neither a left nor a right endpoint, then the GOTP(X * Y) is paracompact if and only if Y is paracompact.

The proof of Theorem 3.2 is obvious because the GOTP(X * Y) is the disjoint union of open subsets of X * Y, each homeomorphic to Y. Moreover, when "paracompact" is replaced by σ -discrete, or perfectly normal, or *p*-space, or *M*-space, or metrizable, the conclusion of Theorem 3.2 is also true.

Theorem 3.3. Let X, Y be GO-spaces. If Y has both a left and a right endpoint, then the following are equivalent.

- (1) The GOTP(X * Y) is paracompact;
- (2) X, Y are paracompact.

Proof: $(2) \Longrightarrow (1)$ is clear by Theorem 3.1.

(1) \Longrightarrow (2) Obviously, Y is paracompact since it is homeomorphic to the closed $\{x\} * Y$ of the GOTP(X * Y) for every $x \in X$. Next, we prove that X is paracompact. Let (A, B) be a left-pseudo-gap in X. (The other cases are proved similarly.) Then $(\pi_1^{-1}(A), \pi_1^{-1}(B))$ is a left-pseudo-gap in the GOTP(X * Y). Hence, there exists a discrete subset D of the GOTP(X * Y) such that D is a cofinal subset of $\pi_1^{-1}(A)$. Thus, $\pi_1(D)$ is a cofinal subset of A and a discrete subset of X by Lemma 3.2(2).

Theorem 3.4. Let X, Y be GO-spaces. If X does not have neighbor points, then the following are equivalent.

- (1) the GOTP(X * Y) is paracompact;
- (2) X, Y are paracompact.

Proof: $(2) \Longrightarrow (1)$ is clear by Theorem 3.1.

 $(1) \Longrightarrow (2)$ Since X does not have neighbor points, $\{x\} * Y$ is a closed subset of the GOTP(X * Y) for every $x \in X$. Then Y

is paracompact because Y is homeomorphic to $\{x\} * Y$ for every $x \in X$. Next, we prove that X is paracompact. Let (A, B) be a left-pseudo-gap in X. (The other cases proved similarly.) There are two cases.

Case 1. If Y has a left endpoint, then $(\pi_1^{-1}(A), \pi_1^{-1}(B))$ is a left-pseudo-gap in the GOTP(X * Y).

Case 2. If Y does not have a left endpoint, then $(\pi_1^{-1}(A), \pi_1^{-1}(B))$ is a gap in the GOTP(X * Y).

In either case, there is a discrete subset D in the GOTP(X * Y) which is cofinal in $\pi_1^{-1}(A)$. Thus, $\pi_1(D)$ must be cofinal in A. Further, $\pi_1(D)$ is a discrete subset of X by Lemma 3.2 (2). The proof is finished.

In Theorem 3.4, the condition "X does not have neighbor points" cannot be removed. Otherwise, Y may not be paracompact (see Example 3.1).

Lemma 3.4 ([4]). Let X be a GO-space. Then the following are equivalent.

- (1) X is metrizable;
- (2) there exists a subset $D \subseteq X$ such that (i) $\overline{D} = X$; (ii) $E_X \subseteq D$; (iii) D is σ -discrete (in X).

Theorem 3.5. Let X, Y be GO-spaces. If Y has both a left and a right endpoint, then the following are equivalent.

- (1) The GOTP(X * Y) is metrizable;
- (2) X is σ -discrete and Y is metrizable.

By Lemma 3.2 and Lemma 3.4, the proof of Theorem 3.5 is easy.

4. Other results on the GOTP

Theorem 4.1. Let X, Y be GO-spaces.

- (1) If |Y| > 2 and Y has both a left and a right endpoint, then the GOTP(X * Y) is perfectly normal $\iff X$ is σ -discrete and Y is perfectly normal.
- (2) If |Y| = 2, then the GOTP(X * Y) is perfectly normal $\iff X$ is perfectly normal and E_X is σ -discrete in X.

Proof: (1) Necessity. Clearly, Y is perfectly normal. Since |Y| > 2, there exists $y \in Y$ such that y is not an endpoint of Y. Then

 $\{\langle x, y \rangle \mid x \in X\}$ is a relatively discrete subset in the GOTP(X * Y). Hence, $\{\langle x, y \rangle \mid x \in X\}$ is a σ -discrete subset in the GOTP(X * Y) by Theorem 2.4.5 in [4]. Therefore, X is σ -discrete by the Lemma 3.2(2).

Sufficiency. Let P be a relatively discrete subset in the GOTP(X * Y). Let $P_x = (\{x\} * Y) \cap P$. Then P_x is a relatively discrete subset in $\{x\} * Y$ for each $x \in X$. Since $\{x\} * Y$ is homeomorphic to Y, P_x is σ -discrete in Y for each $x \in X$. In addition, $P \subseteq \{\{x\} * P_x \mid x \in \pi_1(P)\}$. Thus, P is σ -discrete in the GOTP(X * Y) by Lemma 3.2(1). By Theorem 2.4.5 in [4], the GOTP(X * Y) is perfectly normal.

(2) Necessity. Suppose $Y = \{y_0, y_1\}$ with $y_0 < y_1$. Let P be relatively discrete in X. Then $\pi_1^{-1}(P)$ is relatively discrete in the GOTP(X * Y). Hence, $\pi_1^{-1}(P)$ is σ -discrete in the GOTP(X * Y). By Lemma 3.2(2), P is σ -discrete in X. Then X is perfectly normal.

For each $x \in L_X$, $\langle x, y_1 \rangle$ is an isolated point in GOTP(X * Y)since $(\leftarrow, \langle x, y_1 \rangle]$ is open and $\langle x, y_1 \rangle$ has an immediate predecessor $\langle x, y_0 \rangle$. Similarly, for each $x \in R_X$, $\langle x, y_0 \rangle$ is isolated. Thus, $A = \{\langle x, y_1 \rangle | x \in L_X\} \cup \{\langle x, y_0 \rangle | x \in R_X\}$ is a relatively discrete subset of GOTP(X * Y). By perfectness of GOTP(X * Y), A is σ -discrete. Again by Lemma 3.2, $E_X = \pi_1(A)$ is σ -discrete in X.

Sufficiency. Let $F = (X * Y) / \sim$ be the quotient space of GOTP(X, Y) (See section 1 for the definition of the equivalence relation \sim). Then F is a GO-space with respect to the ordering inherited from X * Y. Observe that

$$N_{\text{GOTP}(X*Y)} = \{ \langle x, y_0 \rangle, \langle x, y_1 \rangle | x \in X - (L_X \cup R_X) \}$$

and

$$F = \{\{\langle x, y_0 \rangle, \langle x, y_1 \rangle\} | x \in X - (L_X \cup R_X)\} \\ \cup \{\{\langle x, y \rangle\} | \langle x, y \rangle \in (X * Y) - N_{\text{GOTP}(X * Y)}\}.$$

Define $g: X \to F$ as follows

$$g(x) = \begin{cases} \{\langle x, y_0 \rangle, \langle x, y_1 \rangle\} & \text{if } x \in X - (L_X \cup R_X) \\ \{\langle x, y_0 \rangle\} & \text{if } x \in L_X \\ \{\langle x, y_1 \rangle\} & \text{if } x \in R_X - I_X. \end{cases}$$

Then g is an embedding map from X to F. We regard x and g(x) as the same thing. Suppose I = F - X. Then I is a set consisting of

isolated points of the GOTP(X*Y). Hence, any family consisting of disjoint convex (in F) subsets of I is σ -discrete in the GOTP(X*Y) and also in F. Hence, F may be regarded as the union of X and I, and I is an open σ -discrete subset of F. Suppose \mathcal{O} is a family of disjoint open convex subsets of F. Then $\mathcal{O}|X = \{O \cap X | O \in \mathcal{O}\}$ is a family of disjoint open convex subsets of X. It follows that $\mathcal{O}|X$ is σ -discrete in X since X is perfectly normal. So we may put $\mathcal{O} = \bigcup \{\mathcal{O}_n | n \in \mathbb{N}\}$ such that $\mathcal{O}_n|X$ is discrete in X. Moreover, $\{O \in \mathcal{O}_n | O \cap X \neq \emptyset\}$ is discrete in F as well since each member of \mathcal{O}_n is convex. Therefore, $\{O \in \mathcal{O} | O \cap X \neq \emptyset\}$ is σ -discrete in F. Next, if $O \in \mathcal{O}$ does not meet X, then $O \subset I$. So $\{O \in \mathcal{O} | O \cap X = \emptyset\}$ is σ -discrete in F. Hence, $(X * Y) / \sim$ is perfectly normal. Thus, the GOTP(X * Y) is perfectly normal by [4, Lemma 3 (p. 26)]. \Box

Let X be a GO-space and suppose $\xi = (A, B)$ is a (pseudo-)gap, possibly an endgap. Then ξ is said to be *countable* from the left if some strictly increasing countably infinite sequence is cofinal in A, and ξ is said to be *countable* from the right if there is a strictly decreasing countably infinite sequence coinitial in B. The (pseudo-)gap ξ is said to be countable if it is countable from the left or from the right.

Lemma 4.1 ([6]). (1) Let X be a GO-space. Then X is a pspace if and only if there exists a sequence $(\mathcal{V}(n))_{n\in\mathbb{N}}$ of convex open covers of X with the property that for each $x \in X$ and each $(pseudo-)gap \xi = (A, B)$ in X there exists an $n = n(x, \xi) \in \mathbb{N}$ such that $St(x, \mathcal{V}(n))$ does not cover the $(pseudo-)gap \xi$.

(2) Let X be a GO-space. Therefore, X is an M-space if and only if there exists a sequence $(\mathcal{V}(n))_{n\in\mathbb{N}}$ of convex open covers of X with the property that for each $x \in X$ and each countable $(pseudo-)gap \xi = (A, B)$ in X, there exists an $n = n(x, \xi) \in \mathbb{N}$ such that $St(x, \mathcal{V}(n))$ does not cover the $(pseudo-)gap \xi$.

The following theorem can be proved in a way analogous to the proof of Theorem 3.1.2 in [6]. But we give here a different (direct) proof.

Theorem 4.2. Let X and Y be GO-spaces. If Y has both a left and a right endpoint and no (interior) gaps, then the following are equivalent.

(1) X is a p-space;

(2) the GOTP(X * Y) is a p-space.

Proof: Let y_0 denote a left endpoint of Y and y_1 denote a right endpoint of Y.

 $(1) \Longrightarrow (2)$ Suppose (A, B) is a (pseudo-)gap of the GOTP(X * Y). Then $(\pi_1(A), \pi_1(B))$ is a (pseudo-)gap of X since Y is a compact LOTS. Let $(\mathcal{V}(n))_{n\in\mathbb{N}}$ be open covers of X with the properties of Lemma 4.1. Thus, $(\pi_1^{-1}(\mathcal{V}(n)))_{n\in\mathbb{N}}$ are open covers of the GOTP(X * Y) with the properties of Lemma 4.1. In fact, for every $\langle x, y \rangle \in X * Y$ and (pseudo-)gap (A, B), there exists $n \in \mathbb{N}$ such that $St(x, \mathcal{V}(n))$ does not cover the (pseudo-)gap $(\pi_1(A), \pi_1(B))$. Hence, $St(\langle x, y \rangle, \pi_1^{-1}(\mathcal{V}(n)))$ does not cover the (pseudo-)gap (A, B).

(2) \implies (1) Let $(\mathcal{U}(n))_{n\in\mathbb{N}}$ be open covers of the GOTP(X * Y) with the properties of Lemma 4.1. Without loss of generality, suppose that $\mathcal{U}(n+1)$ refines $\mathcal{U}(n)$. For each $n \in \mathbb{N}$, let $I(\mathcal{U}(n)) =$ $\{I(\pi_1(\mathcal{U})) \mid U \in \mathcal{U}(n))\}$ and $E(\mathcal{U}(n)) = X - \bigcup I(\mathcal{U}(n))$. For $x \in \mathcal{U}(\mathcal{U}(n))$ $E(\mathcal{U}(n)) \cap I_X$, let $V(x,n) = \{x\}$. For $x \in E(\mathcal{U}(n)) \cap (R_X - I_X)$, there exists $v_x > x$ such that $\langle v_x, y_1 \rangle \in St(\langle x, y_1 \rangle, \mathcal{U}(n))$. Then let $V(x,n) = [x, v_x)$. Similarly, for $x \in E(\mathcal{U}(n)) \cap (L_X - I_X)$, there exists $u_x < x$ such that $\langle u_x, y_0 \rangle \in St(\langle x, y_0 \rangle, \mathcal{U}(n))$. Then let $V(x,n) = (u_x, x]$. For $x \in E(\mathcal{U}(n)) - (R_X \cup L_X \cup I_X)$, there exist u_x , v_x such that $u_x < x < v_x$, $\langle u_x, y_0 \rangle \in St(\langle x, y_0 \rangle, \mathcal{U}(n))$ and $\langle v_x, y_1 \rangle \in St(\langle x, y_1 \rangle, \mathcal{U}(n))$. Then let $V(x, n) = (u_x, v_x)$ and $\mathcal{V}(n) = I(\mathcal{U}(n)) \cup \{V(x,n) \mid x \in E(\mathcal{U}(n))\}$. Thus, the sequence $(\mathcal{V}(n))_{n\in\mathbb{N}}$ of open covers of X satisfies the properties of Lemma 4.1. In fact, let (A, B) be a (pseudo-)gap of X. Then $(\pi_1^{-1}(A), \pi_1^{-1}(B))$ is a (pseudo-)gap of the GOTP(X * Y). For $x \in X$, there are $m, n \in \mathbb{N}$ such that $St(\langle x, y_0 \rangle, \mathcal{U}(m))$ and $St(\langle x, y_1 \rangle, \mathcal{U}(n))$ do not cover the (pseudo-)gap $(\pi_1^{-1}(A), \pi_1^{-1}(B))$ of the GOTP(X * Y). Let $l = \max\{m, n\}$. Then $St(\langle x, y_0 \rangle, \mathcal{U}(l))$ and $St(\langle x, y_1 \rangle, \mathcal{U}(l))$ do not cover the (pseudo-)gap $(\pi_1^{-1}(A), \pi_1^{-1}(B))$. Therefore, $St(x, \mathcal{V}(l))$ does not cover the (pseudo-)gap (A, B) because $\pi_1^{-1}(St(x, \mathcal{V}(l))) \subseteq$ $St(\langle x, y_0 \rangle, \mathcal{U}(l)) \cup St(\langle x, y_1 \rangle, \mathcal{U}(l)).$

By an argument similar to the proof of Theorem 4.2, we have the following theorem.

Theorem 4.3. Let X and Y be GO-spaces. If Y has both a left and a right endpoint and no countable gaps, then the following are equivalent.

- (1) X is an M-space;
- (2) the GOTP(X * Y) is an M-space.

The following theorems are improvements of theorems 3.1.3, 3.2.3, 3.1.5, 3.1.6, 3.2.5, 3.2.6 in [6]; Lemma 3 (page 81) and theorems 4.4.3, 4.4.7 in [4] can be proved by some modifications, respectively.

Theorem 4.4. Let X, Y be GO-spaces. If Y has both a left and a right endpoint and

- (1) if Y has at least one interior gap, then the GOTP(X * Y) is a p-space \iff X is σ -discrete and Y is a p-space.
- (2) if Y has at least one countable gap, then the GOTP(X * Y) is an M-space $\iff X$ is σ -discrete and Y is an M-space.

Theorem 4.5. Let X, Y be GO-spaces. If Y has a left (right) endpoint, but no right (left) one, and

- (1) if Y has no interior gaps, then the GOTP(X * Y) is a pspace \iff X is a left-(right) p-space, and $D = \{x \in X \mid x \text{ has no right (left) neighbor point}\}$ is σ -l-(σ -r-)discrete;
- (2) if Y has at least one interior gap, then the GOTP(X * Y) is a p-space ⇒ X is a σ-l-(σ-r-)discrete, Y is a p-space and if X contains neighbor points and the interior gaps are cofinal (coinitial) in Y, then Y has cofinality ω₀ (coinitiality ω₀^{*});
- (3) if Y has a countable right (left) endgap and no countable interior gaps, then the GOTP(X*Y) is an M-space ⇔ X is a left-(right) M-space, and D = {x ∈ X | x has no right (left) neighbor point} is σ-l-(σ-r-)discrete;
- (4) if Y has at least one countable interior gap, then the GOTP (X * Y) is an M-space ⇔ X is a σ-l-(σ-r-)discrete, Y is an M-space and if X contains neighbor points and the countable interior gaps are cofinal (coinitial) in Y, then Y has cofinality ω₀ (coinitiality ω₀^{*});
- (5) if X has neighbor points, then
 - (a) X is σ -l-(σ -r-)discrete, Y is σ -discrete, and ω_0 (ω_0^*) is cofinal (coinitial) in Y \iff the GOTP(X * Y) is σ -discrete;
 - (b) X is σ -l-(σ -r-)discrete, Y is metrizable, and ω_0 (ω_0^*) is cofinal (coinitial) in Y \iff the GOTP(X * Y) is metrizable;

- (c) X is σ -l-(σ -r-)discrete, Y is perfectly normal, and ω_0 (ω_0^*) is cofinal (coinitial) in Y \iff the GOTP(X * Y) is perfectly normal;
- (6) if X does not have neighbor points, then
 - (a) X is σ -l-(σ -r-)discrete and Y is σ -discrete \iff the GOTP(X * Y) is σ -discrete;
 - (b) X is σ -l-(σ -r-)discrete and Y is metrizable \iff the GOTP(X * Y) is metrizable;
 - (c) X is σ -l-(σ -r-)discrete and Y is perfectly normal \iff the GOTP(X * Y) is perfectly normal.

Acknowledgment. The authors are very grateful to the referee for valuable suggestions.

References

- H. Bennett, D. Lutzer, and M. Matveev, The monotone Lindelöf property and separability in ordered spaces, Topology Appl. 151 (2005), no. 1-3, 180–186.
- [2] Dennis K. Burke, *Covering properties* in Handbook of Set-Theoretic Topology. Ed. Kenneth Kunen and Jerry E. Vaughan. Amsterdam: North-Holland, 1984. 347–422.
- [3] Ryszard Engelking, *General Topology*. Translated from the Polish by the author. 2nd ed. Sigma Series in Pure Mathematics, 6. Berlin: Heldermann Verlag, 1989.
- [4] M. J. Faber, Metrizability in Generalized Ordered Spaces. Mathematical Centre Tracts, No. 53. Amsterdam: Mathematisch Centrum, 1974.
- [5] D. J. Lutzer, On Generalized Ordered Spaces. Dissertationes Math. Rozprawy Mat. 89 (1971), 32 pages.
- [6] J. M. van Wouwe, GO-spaces and (generalized) metrizability, in Topological Structures, II. Math. Centre Tracts, 116. Amsterdam: Math. Centrum, 1979. 383–393.
- [7] A.-J. Xu and W.-X. Shi, Monotone Lindelöf property, linearly ordered extensions and lexicographic product. Preprint.

(Xu) Department of Mathematics; Nanjing University; Nanjing 210093, P.R. China

E-mail address: tuopmath@nju.edu.cn

(Shi) Department of Mathematics; Nanjing University; Nanjing 210093, P.R. China

E-mail address: wxshi@nju.edu.cn