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The fortieth annual Spring Topology and Dynamical Systems
Conference was held at the University of North Carolina at Greens-
boro, March 23–25, 2006. The conference featured six plenary
talks, twelve semi-plenary talks, and four parallel special sessions in
the areas of Continuum Theory, Dynamical Systems, General/Set-
Theoretic Topology, and Geometric Topology/Geometric Group
Theory.

Information about the conference, including abstracts of the talks,
is available at Topology Atlas:

http://at.yorku.ca/cgi-bin/amca-calendar/d/facv72

We have collected the following remarks and open problems con-
tributed by speakers at the conference and organized them under
the titles of the four special sessions. In some cases our organi-
zation of these contributions is somewhat arbitrary because of the
interaction among the various areas at the conference, as was evi-
dent by the large attendance at the plenary and semi-plenary talks
and from the makeup of the audiences at many of the talks in the
special sessions.

The conference organizers gratefully acknowledge support for the conference
from NSF Grant DMS 0539088 and from both the College of Arts and Sciences
and the Department of Mathematical Sciences, UNCG.
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1. Continuum Theory

The March 23, 2006, Special Session in Continuum Theory was
dedicated to Charles Hagopian, on the occasion of his sixty-fifth
birthday. Thirty-two national and international (Mexico, Canada,
and Poland) speakers, including one plenary and two semi-plenary
speakers presented their research. Organizers of the special sessions
were Wayne Lewis, Sergio Maćıas, and Sam Nadler.

Plenary speaker

Charles L. Hagopian

Semi-Plenary speakers

Patricia Pellicer-Covarrubias (Mexico) Elzbieta Pol (Poland)

1.1 Charles L. Hagopian

My lecture focused on fixed-point results that followed and, in
many cases, were motivated by R. H. Bing’s 1969 expository arti-
cle, [“The elusive fixed point property,” Amer. Math. Monthly 76

(1969), 119–132]. At the center of this area is the problem of deter-
mining whether every plane continuum that does not separate the
plane has the fixed-point property. David P. Bellamy’s 1979 exam-
ple of a tree-like continuum without the fixed-point property [“A
tree-like continuum without the fixed-point property,” Houston J.
Math. 6 (1980), no. 1, 1–13] has given us insight into the nature of
this classical problem. As I stated in my lecture, the problem would
be solved if one could embed Bellamy’s second example (defined by
applying the Fugate-Mohler technique to Bellamy’s first example)
in the plane. It would also be a major breakthrough to prove every
triod-like continuum has the fixed-point property. Recent examples
of Miros law Sobolewski, Janusz R. Prajs, and myself, which answer
questions of Bing, cause us to believe there exists a plane contin-
uum with the fixed-point property whose product with an interval
does not have the fixed-point property. This is another unsolved
problem of Bing. The most recent result that I stated in my lecture
is Alejandro Illanes’s beautiful example of a tree-like continuum (a
spiral to a triod), whose cone admits a fixed-point-free map. It is
not known if the cone over a uniquely arcwise connected plane con-
tinuum must have the fixed-point property. Illanes’s example can
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be modified to show the answer to this question is no for uniquely
arcwise connected continuum in Euclidean 3-space.

1.2 Patricia Pellicer-Covarrubias

Let m ∈ N. We say that a continuum X is 1
m

-homogeneous

provided that the action of the group of homeomorphisms of X
onto itself has exactly m orbits. A continuum is indecomposable

provided it cannot be expressed as the union of two of its proper
subcontinua.

Question 1. Is there a 1
2
-homogeneous indecomposable arc-like

(or circle-like) continuum?

It is known that ifX is a 1-dimensional continuum, then Cone(X)
is 1

2
-homogeneous if and only if X is an arc or a simple closed curve.

It is also known that this cannot be generalized to dimension n ≥ 4
[3]. Thus, we have the following question.

Question 2. (a) If X is a continuum of dimension n = 2 or 3
such that Cone(X) is 1

2
-homogeneous, must X be an n-cell or an

n-sphere? What about when X is locally connected?
(b) If the cone over a finite-dimensional continuum is 1

2
-homo-

geneous, must the cone be an n-cell? What about when X is locally
connected?

Note: Other results and problems related to 1
2
-homogeneity on

cones of continua can be found in [3].

For a continuum X, the hyperspace 2X is the space of all closed,
nonempty subsets of X with the Hausdorff metric. We also define
C(X) = {A ∈ 2X : A is connected} and Cn(X) = {A ∈ 2X : A has
at most n components}.

Recent research [1] has shown that if there exists a positive in-
teger k such that X does not contain k-ods, then Cn(X) is 1

2
-

homogeneous if and only if (i) n = 1 and X is an arc or a simple
closed curve, or (ii) n = 2 and X is an arc. Moreover, if X is locally
connected, then Cn(X) is 1

2
-homogeneous if and only if (i) n = 1

and X is an arc or a simple closed curve, or (ii) n = 2 and X is an
arc.

The following question remains unanswered.

Question 3. If X is a continuum such that Cn(X) is 1
2
-homo-

geneous, then is X an arc or a simple closed curve?
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Note: We conclude noting that 1
2
-homogeneity has been of recent

interest and we invite the reader to look for results and problems
on the topic in the papers referenced below.
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Problems and Questions by the late Professor Janusz J. Charatonik
(presented by Sergio Maćıas)

A continuum is a nonempty compact, connected, metric space.
A continuum X is said to be decomposable if it is the union of two of
its proper subcontinua. The continuum X is indecomposable if it is
not decomposable. The continuum X is hereditarily decomposable

(hereditarily indecomposable) provided that each of its nondegener-
ate subcontinua is decomposable (indecomposable).

A dendroid is an arcwise connected continuum such that the
intersection of any two subcontinua is connected. A dendrite is a
locally connected dendroid.

By a map, we mean a continuous function. A surjective map
f : X → Y between continua is said to be

(i) open, provided for each open subset U of X, f(U) is open in
Y ;

(ii) monotone, if f−1(y) is connected for every y ∈ Y ;

(iii) light, provided that f−1(y) is totally disconnected for each
y ∈ Y .

Given a continuum X, the hyperspaces of X are

2X = {A ⊂ X | A is nonempty and closed};

Cn(X) = {A ∈ 2X | A has at most n compontents};
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Fn(X) = {A ∈ 2X | A has at most n points}.
We topologize these sets with the Hausdorff metric defined by

H(A,B) = inf{ε > 0 | A ⊂ N(ε,B) and B ⊂ N(ε,A)},
where N(ε,A) is the ε-open ball about A.

Remark: In the literature, C1(X) is denoted by C(X). The
interest in Cn(X) is recent.

Characterization of dendrites is one of the oldest problems in the
study of dendroids. In [4], there are over 60 equivalent definitions
of dendrites. Some of these definitions are in terms of maps. One
of the problems follows.

Problem 1. Characterize all dendrites X having the property that
each open image of X is homeomorphic to X [4, Problem 2.14].

Professor Charatonik proved the following result.

Theorem 1. Let D be a dendrite. For any compact space X and

for any light open map f : X → Y , where D ⊂ Y , there exists a

homeomorphic copy D′ ⊂ X of D such that f |D′ : D′ → D is a

homeomorphism [3, Theorem 1.2].

Motivated by Theorem 1, Professor Charatonik presented the
following problem.

Problem 2. Characterize all dendrites X having the property that
if a dendrite Z can be mapped onto X by a monotone map, then
Z contains a homeomorphic copy of X [3, Problem 1.3].

Let M be a class of surjective maps of continua. We say that
a continuum X is homogeneous with respect to M provided that
for any two points x1 and x2 of X there exists f ∈ M such that
f(x1) = x2. Professor Charatonik, the first person interested in
generalized homogeneity, posed the following question.

Question 4. What dendrites are homogeneous with respect to
monotone maps [1, Question 7.2]?

A continuum X has the property of Kelley provided that for every
ε > 0, there exists δ > 0 such that for any two points a, b ∈ X with
d(a, b) < δ and any A ∈ C(X), there exists B ∈ C(X) such that
b ∈ B and H(A,B) < ε.

The property of Kelley has been proved to be an important one.
For example, if a continuum X has the property of Kelley, then
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2X and Cn(X) are contractible. Professor Charatonik asked the
following question.

Question 5. For what continua X does the property of Kelley
imply local connectedness of X at some point [2, Question 5.20]?
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Questions 6 – 8 posed by Professors Sam Nadler and Sergio Maćıas

Regarding hyperspaces, a geometric way to see hyperspaces is
as a “cone”; even though it is not true that all hyperspaces are
homeomorphic to cones, they have a lot of similarities and there
are some cases in which a hyperspace is homeomorphic to a cone.

Question 6. Does there exist a continuumX, that is not an arc, for
which there is an integer n ≥ 2 such that Cn(X) is homeomorphic to
the product of two finite-dimensional continua [2, Question 4.12]?

Question 7. Does there exist an indecomposable continuum X
such that Cn(X) is homeomorphic to the cone over a finite-dimensional
continuum for some n ≥ 2 [2, Question 3.7]?

Question 8. Does there exist a hereditarily decomposable contin-
uum X that is neither an arc nor a simple m-od such that Cn(X)
is homeomorphic to the cone over a finite-dimensional continuum
for some n ≥ 2 [1, Question 3.3]?
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2. Dynamical Systems

This section was made up of twenty-six national and interna-
tional (England and Poland) speakers, including one plenary and
three semi-plenary speakers. The special sessions were organized
by James Keesling, Judy Kennedy, and Lex Oversteegen.

Plenary speaker

Micha l Misiurewicz

Semi-plenary speakers

Henk Bruin (England) Brian Raines
Lois Kailhofer

2.1 Micha l Misiurewicz

For a continuous semiflow Φ on a compact space X with a con-
tinuous observable cocycle ξ (that is, ξ : [0,∞) × X → R

m and
ξ(t + s, x) = ξ(t, x) + ξ(s,Φt(x))), the rotation set R of (X,φ, ξ)
consists of limits of the sequences (ξ(tn, xn)/tn)∞n=1, where tn goes
to infinity. By the definition, it is closed, and if ξ is time-Lipschitz
continuous, then it is easy to prove that it is connected.

An observable function is a function ζ : X → R
m such that

ξ(t, x) =
∫

t

0
ζ(Φs(x)) ds. If the limit limt→∞ ξ(t, x)/t exists, it is

called the rotation vector of x (or of its orbit). It exists for all
periodic orbits and for all generic points of ergodic measures (then
it is the integral of the observable function).

Desirable properties of R are

(a) rotation set is convex,
(b) rotation vectors of periodic orbits are dense in the rotation

set, and
(c) if ~u is a vector from the interior of R, then there exists a

nonempty compact invariant subset Y of the phase space,
such that every point from Y has rotation vector ~u. There-
fore, there exists an ergodic invariant probability measure
on the phase space, for which the integral of the velocity is
equal to ~u.

An interesting example where the rotation set can be considered
is a billiard on the m-dimensional torus T

m = R
m/Zm (m ≥ 2),

with one or more obstacles with smooth boundaries. Then the
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phase space X is

(Tm \O) × Sm−1,

with incoming and outgoing vectors on the boundary of the obstacle
identified. The observable cocycle is the displacement in the lifting,
and the observable function is the velocity.

If there is only one obstacle with strictly convex boundary and
the diameter less than

√
2/4, we show that there is a large subset

AR ⊂ R for which the properties (a)-(c) hold [Alexander Blokh,
Micha l Misiurewicz, and Nándor Simányi, Rotation sets of billiards

with one obstacle, Comm. Math. Phys. 266 (2006), no. 1, 239–
265]. This example leads to the following questions.

Question 1. Under the above assumptions, do the properties (a)-
(c) hold for the whole rotation set R?

Question 2. What other assumptions on the obstacles would yield
the properties (a)-(c) for either the whole rotation set R or its
substantial subset?

2.2 Henk Bruin

Let me add some questions that are related to my own talk. They
involve inverse limit spaces of unimodal maps and not chaotic at-
tractors, as such. I see these inverse limit spaces as a step towards
understanding the structure of, for example, strange Hénon attrac-
tors. The questions below can, with minor changes in wording, be
asked just as well for Hénon attractors.

An inverse limit space of bonding map f : X → X on metric
space X is the set of backward orbits {x = (x0, x1, x2, . . . ) : xi =
f(xi+1 ∈ X} equipped with product topology. In general, they are
continua (compact, connected, metric spaces) of a very intricate
structure. Within dynamics, they play a role in describing chaotic
attractors.

Question 3. If f : I → I is an endomorphism of the interval
(such as the logistic map f(x) = ax(1 − x)), a major question,
attributed to Ingram, results: Can two non-conjugate maps have
homomorphic inverse limit spaces?
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Note: This question has been settled (Lois Kailhofer, Sonja Sti-
mac, Louis Block, etc.) only for maps with a finite critical omega-
limit set; i.e., the set ω(c) of limit points of the orbit of the critical
point c is finite.

More detailed questions are:

Question 4. Is it true that every self-homeomorphism on the
inverse limit space is homotopic to an iterate of the shift-transfor-
mation σ(x0, x1, x2, . . . ) = (f(x0), x0, x1, x2, . . . )?

Question 5. Can one recapture dynamical features, such as the
entropy of the bonding map, from the topological structure of the
inverse limit space?

Question 6. Is any pair of arc-composants (i.e., continuous bijec-
tive images of the real line within the inverse limit space) homeo-
morphic to each other? If not, classify them.

Question 7. It is shown [Marcy Barge and Beverly Diamond,
A complete invariant for the topology of one-dimensional substi-

tution tiling spaces, Ergodic Theory Dynam. Systems 21 (2001),
no. 5, 1333–1358] that if c is periodic, then some collection of
arc-composants Ak are asymptotic to each other, i.e., each Ak

allows a parametrization gk : R → Ak such that the distance
d(gk(t), gl(t)) → 0 as t → ∞, and k 6= l. Are there any asymp-
totic arc-composants when c is not periodic? If so, classify them.

Remark: The logistic map where c has period 3 is one specific
example, stemming from my paper [Asymptotic arc-components of

unimodal inverse limit spaces, Topology Appl. 152 (2005), no. 3,
182–200]. In this case, there is a self-asymptotic arc-composant A;
i.e., there is a parametrization g : R→ A such that d(g(t), g(−t)) →
0 as t → ∞. This arc-composant would be a strong candidate for
not being homeomorphic to another arc-composant in the space,
but so far I haven’t been able to prove it.

Question 8 posed by Louis Block

Question 8. Let f be a continuous map of the interval I to itself.
Let (I, f) denote the inverse limit space obtained from the inverse
sequence all of whose maps are f and all of whose spaces are I.
Suppose that f has a periodic point of period larger than one, and
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(I, f) is homeomorphic to the pseudoarc. Does it follow that f has
periodic points of all periods?

Comment: Partial results appear in [L. Block, J. Keesling, and
V. V. Uspenskij, Inverse limits which are the pseudoarc, Houston
J. Math. 26 (2000), no. 4, 629–638].

Questions 9 – 10 posed by Grzegorz Graff

Let ind(f, x0) be a local fixed point index at x0, where f is a
self-map of R

m. Under the assumption that x0 is an isolated fixed
point for each fn, (i.e., for each n there is an isolation neighborhood
Un), {ind(fn, 0)}∞n=1 is well-defined.

The sequence of indices of iterations is a powerful device in pe-
riodic point theory. Its applications are specially fruitful if it is
known that {ind(fn, 0)}∞n=1 is a periodic sequence.

Question 9. Let f be a homeomorphism of R
m. Assume that

(*) there is a neighborhood U of x0 such that there are no
periodic orbit, except for x0 , in U .

Is it true that {ind(fn, 0)}∞
n=1 is a periodic sequence?

Comment: Without assumption (∗), this statement is true for
m = 1 (in an obvious way) and m = 2 (cf. [2], [5]). It is false
form ≥ 3 (cf. [1]).

Question 10. What if we change assumption (∗) in Question 9 by
the stronger condition:

(**) x0 is not a repelling fixed point and there is a neighborhood
U of x0 such that

⋂
k∈Z

fk(U) = {x0}, (i.e., {x0} is an
isolated invariant set).

Comment: Except for periodicity, strong restrictions on the form
of indices of iterations were found in this case for m = 2 (cf. [3],
[4], [6]).
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Questions 11 - 15 posed by Krystyna Kuperberg

Definitions: A dynamical system, or an R-action, on a metric
space X is a continuous map Φ : R×X → X such that Φ(0, p) = p
and Φ(t + s, p) = Φ(s,Φ(t, p)) for p ∈ X and t and s in R. A
trajectory of a point p is the set Φ(R × {p}). A point p whose
trajectory consists of p is a fixed point . A periodic trajectory is
a trajectory homeomorphic to S1. The trajectories are uniformly

bounded if the set of diameters is bounded. A set A is invariant if
p ∈ A implies Φ(R ×{p}) ⊂ A. An invariant set is isolated if there
is neighborhood of A in which A is the largest invariant set.

If X is furnished with a measure, then Φ is measure preserving

if for each t ∈ R, the map Φ(t, p) : X → X is measure preserving.
If X is a 3-manifold, then a trajectory of p is wild if the closure

of Φ(R− × {p}) or the closure of Φ(R+ × {p}) is a wild arc.
A compact invariant set A ⊂ X is stable if for every neighborhood

U of A, there exists a neighborhood V of A such that {Φ(t, p) | t ≥
0, p ∈ V } ⊂ U . A compact set A is movable in X if for every
neighborhood U of A there exists a neighborhood V of A such that
for every neighborhood W of A there is a homotopy H : V ×[0, 1] →
U such that H(p, 0) = p and H(p, 1) ∈ W for p ∈ V . (Note that
the definition of movability is unrelated to the dynamical system
Φ.)

Question 11 (Greg Kuperberg) Does there exist a fixed point
free, measure preserving dynamical system on R

3 with uniformly
bounded trajectories? The question may be modified by requiring
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additional conditions, such as Φ has no periodic trajectories, or Φ
is Cr (r ≥ 1) [C∞, Cω].

Comment: A fixed point free, measure preserving C0 [C1] dy-
namical system on R

3 with uniformly bounded trajectories and
with a discrete set of periodic trajectories can be modified to a
fixed point free, measure preserving C0 [C1] dynamical system with
uniformly bounded trajectories and no periodic trajectories.

Question 12. Let M be a boundaryless 3-manifold.

(1) Does there exist a C∞ [Cr (r ≥ 1)] dynamical system on M
with a discrete set of fixed points and with every non-trivial
trajectory wild?

(2) If M is closed, does there exist a Cr (r ≥ 1) [C∞] dynam-
ical system on M with exactly one fixed point and with
every non-trivial trajectory wild? In particular, does such
a dynamical system exist on S3?

Comment: It is known that there exist dynamical systems as
above such that the map Φ restricted to any of the sets {t} ×M is
C∞, but Φ is only C0.

Question 13. Does there exist a measure preserving dynamical
system on R

3 with a discrete set of fixed points and with every
non-trivial trajectory wild?

Question 14. Let A be a compact set invariant under a dynamical
system Φ on R

3.

(1) Does every neighborhood U of A contain a compact invari-
ant movable set containing A?

(2) Is A contained in a compact invariant movable set?
(3) If A is 1-dimensional, does every neighborhood U of A con-

tain a compact invariant movable 1-dimensional set con-
taining A?

(4) If A is 1-dimensional, then is A contained in a compact
invariant movable 1-dimensional set?

(5) If A is a solenoid, does every neighborhood of A intersect a
periodic trajectory?

(6) If A is a solenoid, does every neighborhood of A contain a
periodic trajectory?
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Comment: If A is a stable solenoid, then every neighborhood of A
contains a periodic trajectory. Otherwise not much is known about
the topic. The questions can be modified by adding the assumption
that Φ is fixed point free. Other modification is to replace R

3 with
the product R

2 × S1 and restrict the class of dynamical systems to
suspensions of planar orientation preserving homeomorphisms.

Question 15. Does there exist a C3 [C∞] dynamical system on
S3 with no periodic trajectories and every compact invariant set
isolated?

3. General/Set-Theoretic Topology

Forty-two national and international (Hungary, Holland, Czech
Republic, Italy, Russia, Canada, and Bulgaria) speakers, including
two plenary and four semi-plenary speakers, formed our largest
section. Organizers of the special sessions were Gary Gruenhage,
K. P. Hart, and Scott Williams.

Plenary speakers

Jan van Mill (Holland) Istvan Juhasz (Hungary)

Semi-plenary speakers

Raushan Buzyakova Dennis Burke
F. Javier Trigos-Arrieta Francis Jordan

3.1 Jan van Mill

All spaces under discussion are separable and metrizable. A
space is absolutely Borel if it is a Borel set of every space in which
it is embedded. A space is analytic if it is a continuous image of the
space of irrational numbers. A space is Polish if it is topologically
complete. A space is coanalytic if it can be embedded in a Polish
space in such a way that its “remainder” is analytic.

Question 1. Let X be a Polish space on which some (separable
metrizable) group acts transitively. Is there a Polish group that
acts transitively on X?

Question 2. Let X be a Polish space on which some absolutely
Borel group acts transitively. Is there a Polish group that acts
transitively on X?
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Question 3. Let X be absolutely Borel and assume that some
(separable metrizable) group acts transitively on it. Is there an
absolutely Borel group that acts transitively on X?

Question 4. Let X be a coanalytic, homogeneous, and strongly
locally homogeneous space. Is there a coanalytic topological group
that acts transitively on X?

3.3 Raushan Buzyakova

We consider only Tychonoff spaces. We say that a space X has
a zero-set diagonal if the diagonal ∆X = {(x, x) : x ∈ X} is a zero-
set in X2. A space X has a regular Gδ-diagonal if there exists a
countable family {Un}n of open neighborhoods of ∆X in X2 such
that ∆X = ∩nUn.

It is proved in [1] that if X has a zero-set diagonal and X2 has
countable extent, then X is submetrizable. This motivates the
following questions.

Question 5. Let X have a zero-set diagonal and countable extent.
Is X submetrizable?

Question 6. Is there a non-submetrizable space X with a regular
Gδ-diagonal such that X2 has countable extent?

Recall that a space X is ω1-Lindelöf if every ω1-sized open cover
of X contains a countable subcover. It is known that the square
of a Čech-complete ω1-Lindelöf space is ω1-Lindelöf [2]. This fact
and the mentioned result imply that if a Čech-complete ω1-Lindelöf
space has a zero-set diagonal, then it is submetrizable. It is known
[3] that a paracompact Čech-complete space with a Gδ-diagonal is
metrizable. This prompts the following question.

Question 7. Let X be a Čech-complete ω1-Lindelöf space with a
zero-set diagonal. Is X metrizable? What if X is a p-space?

Recall that a space X is linearly Lindelöf if every open cover of
X that forms a chain contains a countable subcover. A slight mod-
ification of V. E. Šnĕıder’s theorem [4] states that a Lindelöf space
with a Gδ-diagonal is submetrizable. So far it has been rather hard
to distinguish Lindelöfness from linear Lindelöfness. This motivates
the following question.
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Question 8. (A. V. Arhangel’skii) Let X be a linearly Lindelöf
space with a Gδ-diagonal. Is X submetrizable?

Comment: In Arhangel’skii’s question, we do not know answers
even if linear Lindelöfness is replaced by ω1-Lindelöfness, and/or
Gδ-diagonal is replaced by regular Gδ-diagonal/zero-set diagonal.
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3.2 F. Javier Trigos-Arrieta

All topological groups are Abelian and Tychonoff.
If H is a dense subgroup of the topological group G, then we say

that H determines G if Ĝ is topologically isomorphic to Ĥ, when
both groups are equipped with the compact open topology. G is
said to be determined if every dense of its subgroups determines G.

Question 9. Assume that G1 and G2 are determined groups. Is
G1 ×G2 determined?

Comment: Yes, when

(1) both groups are metrizable ( [1], [3]),
(2) one group is discrete (T-A, unpublished).

Unknown, even when

(1) one group is metrizable,
(2) one group is compact,
(3) one group is compact and metrizable ([4], [12]).

Question 10. Assume that G is a compact group of weight w with
ℵ1 ≤ w < c. Is G determined?

Comment: Unknown even when

(1) G = T
ℵ1 ,
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(2) G = Fℵ1 , F finite. ([4], [12]).

G is determined if its weight is ℵ0 (equivalently, when G is metriz-
able, [1], [3]). G is not determined if its weight is c or bigger [4].

Question 11. Is there a (measurable) subgroup A of T of cardi-
nality |A| with ℵ1 ≤ |A| < c such that the only compact sets of
(Z, τA) are the finite ones?

Comment: Never, if |A| = ℵ0. Yes, if |A| = c. For example,
[9] and [7] were the first ones to prove it when A = T, and [5],
[6] proved it true whenever A is a non-measurable subgroup of
T. Additionally, [2] (under MA) and [8] proved there exists A of
measure zero such that the only compact sets of (Z, τA) are the
finite ones; their subgroups A have cardinality c. On the other
hand, citeraczphd, [11] proved the existence of families A of groups
Ak, and B of groups AB , each family of size 2c and each of Ak and
Bk, of cardinality c such that

(1) the only compact sets of (Z, τAk
) are the finite ones,

(2) (Z, τBk
) has non-trivial convergent sequences [12].
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Questions 12 – 17 posed by Judith Roitman and Scott Williams

We recall some long unsolved problems in the theory of box prod-
ucts.

Suppose X is a compact space and Π = ΠωX is given the box
topology.

Question 12. If X has weight at most ω1, is Π normal?

Question 13. If X is first countable, is Π normal?

Question 14. If X is compact metric, is Π normal?

Question 15. If X = [0, 1], is Π normal?

Question 16. If X = the Cantor set, is Π normal?

Question 17. If X = ω + 1, is Π normal?

Note: Yes to (12) or (13) yields (14) and the rest. d = ω1 implies
(12). d = c implies (13). b = d implies (14). Only the obvious
implications from these statements are known. Each axiom proving
(17) also shows (14). However, it is unknown whether (17) implies
(16), (16) implies (15), or (15) implies (14). There are no known
“consistently no” results about any of these.
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Question 18 posed by Scott Williams

Question 18. Is there a notion of “dimension” for metric spaces
satisfying the following?

(1) The dimension of Euclidean n-space is n.
(2) The dimension of the product of metric spaces (under the

sup metric) is the sum of the dimensions of the factors.
(3) Dimension is non-increasing under distance non-increasing

maps.
(4) The dimension is unchanged under dense subspaces.

Note: (3) says this definition is affected by metrics even though
the topology is the same. For compact metric spaces, the Hausdorff
dimension satisfies (1)–(3).
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4. Geometric Topology and Geometric Group Theory

Thirty-one national and international (Poland, Canada, France,
and Slovenia) speakers, including two plenary and three semi-plenary
speakers presented their research. Special sessions were organized
by Tadeusz Dobrowolski, Jerzy Dydak, and Tadeusz Januszkiewicz.

Plenary speakers

Michael Davis Alexander Dranishnikov

Semi-plenary speakers

Jennifer Schultens Andrzej Nagórko (Poland)
Nikolay Brodskiy

4.1 Michael Davis

Given a discrete group G, its geometric dimension (gd(G)) is the
smallest dimension of a K(G, 1) complex; its cohomological dimen-

sion (cd(G)) is the length of the shortest projective resolution of
the trivial G-module. Obviously, gd(G) ≥ cd(G). The Eilenberg-
Ganea Problem asks whether equality always holds. By work of
Eilenberg-Ganea and Stallings and Swan, the only possibility for a
counterexample would have cd(G) = 2 and gd(G) = 3. It is con-
jectured that counterexamples can be constructed using Coxeter
groups. For example, let L be a two dimensional acyclic complex
which is not simply connected. Let W be the right-angled Coxeter
group with one generator of order 2 for each vertex of L and re-
lations that two generators commute whenever they are connected
by an edge. Let G be a torsion-free subgroup of finite index in W .
Then cd(G) = 2. It seems plausible that gd(G) is always 3.

4.2 Jennifer Schultens

A handlebody is a 3-manifold with boundary that is a 3-dimen-
sional fattening of a graph. A Heegaard splitting is a decompo-
sition of a 3-manifold via a surface that cuts the 3-manifold into
two handlebodies. Given a Heegaard splitting of a 3-manifold, one
can add a trivial handle to the Heegaard splitting to obtain a new
Heegaard splitting. This operation is called stabilization.

Question 1. Can the connected sum of two unstabilized Heegaard
splittings be stabilized?
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Comment: Currently two independent parties–David Bachman
and Ruifeng Qiu–claim an affirmative answer to the above problem.
So far, neither argument has been verified.

Question 2 posed by Bob Williams

One of the favorite properties of geometric topologists is that
of indecomposability; it comes up repeatedly in dynamics. For
example, the inverse limit of the double cover of the circle, yields
a dyadic solenoid, which is indecomposable. So are 1-dimensional
“tiling spaces.” However, inverse limits of similar maps of higher
dimensional tori are NOT indecomposable, nor are “tiling spaces”
of dimension larger than 1.

Question 2. Is there a concept “like” indecomposability that cap-
tures this–in some ways very similar–structure?

4.3 Geometric Group Theory (Gregory Bell)

Geometric group theory studies a group (usually finitely gen-
erated) from the geometric point of view. For example, one could
study the Cayley graph of a finitely generated group with respect to
a finite generating set. Because different choices of generating sets
give rise to different metric spaces, one puts an equivalence rela-
tion on two metric spaces, saying that they are the same if they are
quasi-isometric. This equivalence gives rise to what is sometimes
known as the “large-scale” or “asymptotic” approach to groups.

M. Gromov began the study of so-called asymptotic invariants
of infinite groups in [2]. Certain invariants are still the subject of
much active research today.

One immediately sees that there is a strong interest in the inter-
action between large-scale dimension and group theory and there
is a great deal of work involving non-positive curvature of groups.

There are several notions of dimensions of groups: asymptotic
dimension, cohomological dimension, Assouad-Nagata dimension,
etc.

It is known that the cohomological dimension of a group of type
FP is no more than the asymptotic dimension [1]. Also, Piotr
Nowak has identified finitely generated groups with asymptotic di-
mension 2 whose Assouad-Nagata dimension is infinite. Indeed the
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relationships between these dimensions remain a mystery in gen-
eral.
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4.4 Future of asymptotic dimension theory (Jerzy Dydak)

The most interesting set of questions in asymptotic dimension
theory deals with various characterizations of the three main di-
mensions: asymptotic dimension, Assouad-Nagata dimension, and
asymptotic Assouad-Nagata dimension. As in cohomological di-
mension theory, where the geometrically defined covering dimen-
sion has, as its algebraic counterpart, the integral dimension, there
are three basic pairs of dimensions:

a. asymptotic dimension and the dimension of the Higson corona,
b. asymptotic Assouad-Nagata dimension and the dimension of

the sublinear Higson corona, and
c. Assouad-Nagata dimension and the smallest n such that Sn

is a Lipschitz extensor of the space.
In each case, it is known that if the first dimension is finite,

then both of them are equal. However, no example is known of
the first dimension being infinite and the second dimension be-
ing finite. In cohomological dimension, it took 50 years to find a
compact space with finite integral dimension and infinite covering
dimension. Hopefully, based on experience gained, the time needed
to untangle the differences between the above pairs of dimensions
will be shorter.

Asymptotic dimension theory of groups is fairly developed. The
most interesting problem left open is if mapping class groups have
finite asymptotic dimension. Also, in case it is finite, it would be
of interest to tie it to some geometrical property.

However, in the case of Assouad-Nagata dimension of groups,
not much is known. The most pressing issue is establishing its
finiteness for basic classes of groups (nilpotent groups, polycyclic
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groups, mapping class groups). The second issue is to establish if
Assouad-Nagata dimension and asymptotic dimension coincide for
those classes of groups.

4.5 Alexander Dranishnikov

Question 3. Does a finitely generated group Γ with asdim(Γ) = n
admit a coarse embedding into product of n+ 1 binary trees?

Definition: A coloring of a set X by the set of colors F is a map
φ : X → F . We consider the product topology on the set of all
colorings FX of X where F is taken with the discrete topology.
A coloring φ : Γ → F of a discrete group Γ is called aperiodic if
φ 6= φ ◦ g for all g ∈ Γ, g 6= e. A coloring φ : Γ → F of a discrete
group is called limit aperiodic if every coloring ψ ∈ φΓ ⊂ FΓ is
aperiodic.

Question 4. Does every group admit a limit aperiodic coloring by
finitely many colors?

Comment: So far an affirmative answer is given for Coxeter
groups and Gromov hyperbolic groups.

Questions 5 - 7 suggested by Gregory Bell and Koji Fujiwara

Question 5. Is the asymptotic dimension always bounded below
by the virtual cohomological dimension for groups?

Question 6. Dan Margalit has computed the cohomological di-
mension of the Torelli subgroup of Out(Fn) [2]. Is the asymptotic
dimension of this group finite? If it is finite, what is it?

Question 6 is closely related to the corresponding question for
mapping class groups. In particular, it is known that the Torelli
subgroup of the mapping class group has finite asymptotic dimen-
sion when the genus is less than 3. For a higher genus, this is
unknown and is equivalent to the following question.

Question 7. Is the asymptotic dimension of the mapping class
group of a surface finite when the genus is at least 3 [1]?
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Questions 8 - 9

Questions 8 and 9 have been posed many times by several au-
thors, but are included here for completeness and because they indi-
cate two large classes of groups for which the finiteness of
asymptotic dimension remains unknown.

The non-positive curvature condition can be brought in at this
point. It is known that a hyperbolic group has finite asymptotic
dimension (and is therefore exact) [3]. The corresponding ques-
tion for non-positively curved groups (or CAT(0) groups) remains
an unsolved problem of major interest in this area of interaction
between curvature and dimension.

Question 8. Do CAT(0) groups have finite asymptotic dimen-
sion?

Note: In some sense, between CAT(0) groups and hyperbolic
groups lie groups that are CAT(0) with isolated flats. As these are
so-called relatively hyperbolic, these groups have finite asymptotic
dimension by a result of D. Osin, [5].

Another large, well-studied class of groups for which the finite-
ness of asymptotic dimension remains unknown is automatic groups.

Question 9. Do automatic groups have finite asymptotic di-
mension? Are automatic groups exact?
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