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SETS AND POINTS OF COUNTABLE WEAK
CHARACTER IN COMPACTA

ALEXANDER V. ARHANGEL’SKII AND RAUSHAN Z. BUZYAKOVA

Abstract. A closed subset C of a compactum X is said to
have countable weak character in X if there exists a countable
family F of closed sets in X such that ∩F = C and every non-
compact set S that is closed in X \ C meets all elements of
F . We show that if X is a sequential compactum and the
diagonal ∆X has countable weak character in X2 then X is
metrizable. We also prove that a weakly perfect sequential
compactum is perfect.

1. Introduction

In this paper we will consider only Tychonoff spaces. In notation
and terminology we will follow [ENG]. In [AR1], the first author
introduced the notion of weak first countability. Recall that a space
X is weakly first-countable if for every point x ∈ X there exists a
countable family Bx of closed subsets containing x such that U ⊂ X
is open whenever for every x ∈ U there exists Bx ∈ Bx such that
Bx ⊂ U . Yakovlev [YAK] distinguished weak first countability from
first countability in the class of compact spaces (consistently). The
definition of first countability suggests a quest for an acceptable
definition of “countable weak character” at a point. In [AR2], the
first author gives a natural definition for this notion. However, it
is not clear yet if having countable weak character at every point
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is equivalent to weak first countability for compact spaces. Let
us give the definition from [AR2], which is designed especially for
compacta.

Given a compact space X and its closed subset A ⊂ X , we
say that F is stationary at A if F is closed and meets every non-
compact S that is closed in X \A. Given a compact space X and its
closed subset C ⊂ X , the weak character of C in X is the smallest
cardinal number τ such that there exists a τ -sized family F of sets
stationary at C such that

⋂
F = C. Such a family F will be called

a weak base at C. The weak character of a point x in X is the weak
character of {x} in X . A compactum X is weakly perfect if every
closed subset of X has countable weak character in X .

As one can see, elements of a weak base at a point x ∈ X share
a very strong property with open sets, namely, they block all ap-
proaches to x from outside. As we mentioned earlier we do not
know if for compact spaces the definition of countable weak char-
acter naturally agrees with that of weak first countability. The
following two results speak in favor of “yes”. For the first result
recall that a space X is sequential if for every non-closed subset
A of X there exists a point x ∈ A \ A and a sequence {xn}n of
elements of A that converges to x.

Theorem 1.1. A compactum X is weakly first-countable iff X is
sequential and every x in X has countable weak character.

Proof. (⇒) Sequentiality is proved in [AR1]. For each x ∈ X fix
countable Bx as in the definition of weak first countability. Let us
show that Bx is a weak base at x. It is clear that

⋂
Bx = {x}. We

need to show that every B ∈ Bx is stationary at x. Assume the
contrary. Then there exist a non-compact set A ⊂ X \ {x} that is
closed in X \ {x} and an element Bx ∈ Bx that does not meet A.
Put U = X \A. The set W = X \ (A∪{x}) is open and is equal to
U \ {x}. Therefore, for every y ∈ W there exist By ∈ By such that
By ⊂ W ⊂ U . Since Bx∩A = ∅ we have Bx ⊂ U . By the definition
of weak first countability, U is open. This contradicts the fact that
x is a limit point for A.

(⇐) For each x ∈ X fix a countable weak base Bx at x.
Fix an open set U and x ∈ U . Since X is compact,

⋂
Bx = {x}

and each element of Bx is closed there exists an element Bx ∈ Bx

such that Bx ⊂ U .



SETS AND POINTS OF COUNTABLE WEAK CHARACTER... 421

Now fix any W ⊂ X . Assume that for each x ∈ W there exists
Bx ∈ Bx such that Bx ⊂ W . We need to show that W is open.
Assume the contrary. By sequentiality, there exists a sequence
{an}n of elements of X \ W that converges to a point x ∈ W .
Then the set {an : n ∈ ω} of terms of the sequence forms a non-
compact set in X \ {x} that does not meet Bx. This contradicts
stationarity of Bx at x. �

According to Theorem 1.1, to show that the definition of count-
able weak character agrees with the definition of weak first count-
ability we only need to prove that countable weak character at each
point implies sequentiality. Our next observation is a convincing
step in this directions. First, recall that S = {xα : α < ω1} is an
ω1-long free sequence in X if {xα : α < β} ∩ {xα : α > β} = ∅ for
every β < ω1.

Theorem 1.2. Let X be a compactum. Suppose that every x ∈ X
has countable weak character. Then X is countably tight.

Proof. Assume the contrary. Then by Juhász-Szentmiklóssy theo-
rem [J&S] there exists a free sequence S = {xα : α < ω1} that has
a single complete accumulation point x in X . The set A = S \ {x}
is non-compact and closed in X \ {x}. Let Bx be a fixed countable
weak base at x. Since each B in Bx is stationary at x, B ∩ A 6= ∅.
Fix aB ∈ A ∩ B for every B ∈ Bx. Then x is a limit point for
{aB : B ∈ Bx}. However, each an is a limit point for some count-
able subset of S. Therefore, x is a limit point for a countable subset
of S, a contradiction with S being a free sequence. �

Since there are models of ZFC in which every countably tight
compactum is sequential (see [BAL] and [DO1]) we have the fol-
lowing result.

Corollary 1.3. It is consistent with the axioms of ZFC that a com-
pactum X is weakly first-countable iff every x in X has countable
weak character.

Question 1.4. Let X be a compactum that has countable weak
character at every point. Is X weakly first-countable?

As we mentioned earlier, to answer Question 1.4 in affirmative
we only need to show that countable weak character at every point
in a compact space X implies sequentiality. In connection with this



422 A. V. ARHANGEL’SKII AND R. Z. BUZYAKOVA

observation it might be worth to stress the importance of closeness
(or smallness) of elements of a weak base. This is demonstrated by
the next example.

Example 1.5. There exists a compactum X such that every point
x of X has uncountable weak character, uncountable tightness, and
a countable family Bx with the following properties:

(1)
⋂

Bx = {x};
(2) Every B ∈ Bx meets every non-compact S that is closed in

X \ {x}.

Proof. Let ω∗ = βω\ω. It is clear that no point of ω∗ has countable
weak character or countable tightness. Let {An}n be a collection
of disjoint subsets of ω∗ such that

⋃
n An = ω∗ and every infinite

closed subset of ω∗ meets every An. For each x ∈ ω∗, let Bn(x) =⋃
i>n[Ai ∪ {x}]. Put Bx = {Bn(x)}n. The properties 1 and 2 are

clearly met. �

Even if one finds a model of ZFC in which Question 1.4 has a
negative answer, we still think that the definition of countable weak
character deserves attention (under a different name maybe). Since
we believe in the theorem we will keep the name of the notion we
are about to study. In [AR2], the first author concentrated on weak
character at special points. We will study countable weak character
at special closed sets in compacta.

It is a classical theorem of Sneider [SNE] that if X is compact
and the diagonal ∆X = {(x, x) : x ∈ X} has countable character in
X×X then X is metrizable. We will show that in Sneider theorem
“countable character” can be replaced by “countable weak charac-
ter” if we restrict the theorem to sequential compacta (Theorem
2.6). We also show that a weakly perfect sequential compactum
is perfect (Theorem 2.2). Of course, sequentiality will be dropped
from the hypothesis of each theorem if an answer to Question 1.4 is
“yes”. The proofs of these two theorems, which are the main results
of this work, are based on a new fact (to be proved too) that every
hereditarily ω1-Lindelöf space is hereditarily Lindelöf. Recall that
a space X is ω1-Lindelöf if every ω1-sized subset A of X has a com-
plete accumulation point in X , that is, a point whose every open
neighborhood contains ω1 many elements of A. This property is
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equivalent to the property that every ω1-sized open cover of X con-
tains a countable subcover. Although the fact we mentioned is easy
to prove it shows itself very handy in proving Lindelöf property.

2. Study

For our main results we need the following theorem.

Theorem 2.1. Every hereditarily ω1-Lindelöf space X is heredi-
tarily Lindelöf.

Proof. Assume the contrary. Then there exists a strictly increasing
family {Uα : α < ω1} of open sets in X . For each α < ω1, fix
xα ∈ Uα \

⋃
β<α Uβ . Clearly, no point in Uα for α < ω1 can be

a complete accumulation point for {xα : α < ω1}, contradicting
ω1-Lindelöfness of

⋃
α Uα. �

Theorem 2.2. Let X be a sequential compactum. If X is weakly
perfect then X is perfect.

Proof. We will reach the conclusion by showing that X is heredi-
tarily Lindelöf. Fix F an ω1-sized subset of X . Let C be the set of
all complete accumulation points for F in X . By virtue of Theorem
2.1, it suffices to show that F meets C.

Assume the contrary. Then F \ C is uncountable. Since C has
countable weak character in X and F \ C is uncountable, there
exists B1 ⊂ X stationary at C such that F \B1 has cardinality ω1.
Inductively for each n > 1, define Bn with the following properties:

P1: Bn is stationary at Bn−1;
P2: F \ Bn has cardinality ω1.

Let us make three remarks.

Remark 1. The set B =
⋃

n Bn is open. Indeed, fix x ∈ B. By
Theorem 1.1 we need to show that B contains a set stationary at
x. There exists n such that x ∈ Bn. Let us show that Bn+1 ⊂ B
is stationary at x. Assume the contrary. Then there exists a non-
compact A ⊂ X \ {x} that is closed in X \ {x} and does not meet
Bn+1. Since Bn ⊂ Bn+1, A is closed in X \ Bn. This contradicts
stationarity of Bn+1 at Bn which is guaranteed by P1.

Remark 2. For infinitely many n’s, the set Fn = (Bn \ Bn−1) ∩ F
has cardinality ω1. Indeed, B is open by Remark 1. Since C ⊂ B,
the set F \ B is countable. Now apply property P2.
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Remark 3. If xn ∈ Fn = (Bn \Bn−1)∩ F for each n. Then at least
one limit point for S = {xn : n ∈ ω} belongs to X \ B. Indeed, by
sequentiality, elements of an infinite subset of S form a sequence
{xm}m converging to some x. Let us show that x ∈ X \B. Assume
the contrary. Then x ∈ Bn for some n. We may assume that each
xm is in Fk for k > n + 1. However, this contradicts stationarity of
Bn+1 at x, which is proved in Remark 1.

By Remark 2, there exists an ω1-sized family S of countable sets
with the following properties:

(1) S1 ∩ S2 = ∅ for any distinct S1, S2 ∈ S;
(2) Every S ∈ S meets Fn for infinitely many n’s.

By Remark 3, for each S ∈ S there exists xS ∈ X \ B a limit
point for S. If xS is the same for uncountably many S ∈ S, then
by properties 1 and 2, xS is a complete accumulation point for F
lying off C, a contradiction. Now we may assume that xS 6= xP

for distinct S and P in S. By compactness of X \ B, there exists
x ∈ X \ B a complete accumulation point for {xS : S ∈ S}. By
properties 1 and 2, x is a complete accumulation point for F lying
off C, a contradiction. �

For our next main result we need the following three lemmas.
Since the proof of the first one is obvious it is omitted.

Lemma 2.3. Let X be compact. Let {Fn}n be a weak base at ∆X

in X2. For x ∈ X, let Bn(x) = {y : (x, y) ∈ Fn}. Then {Bn(x)}n

forms a weak base at x in X.

Lemma 2.4. Let X be compact and let ∆X have countable weak
character in X2. Then there exists a countable weak base {Dn}n at
∆X such that each Dn is symmetric with respect to the diagonal.
That is, if (x, y) ∈ Dn then (y, x) ∈ Dn.

Proof. Let {Fn}n be an arbitrary countable weak base at ∆X . For
each n, let F ′

n be the reflection of Fn in the diagonal. That is,
F ′

n = {(y, x) : (x, y) ∈ Fn}. Clearly, the reflection of a closed set
is closed. Put Dn = Fn ∪ F ′

n. Each Dn is closed as the union
of two closed sets. Now let S be a non-compact set that lies off
the diagonal and is closed in X2 \ ∆X . Since Fn is stationary
at ∆X , S meets every Fn, and therefore, every Dn = Fn ∪ F ′

n.
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We only need to show that ∆X =
⋂

n Dn. Assume the contrary
and fix (x, y) ∈

⋂
n Dn, where x 6= y. Then, (x, y) ∈ F ′

n for all n.
Therefore, (y, x) ∈

⋂
n Fn, a contradiction. �

Lemma 2.5. Let X be a compact space and let ∆X have countable
weak character in X2. If X is first-countable then X is metrizable.

Proof. Let {Dn}n be a countable weak base at ∆X in X2. By
Sneider’s theorem [SNE], it suffices to show that the interior of each
Dn contains ∆X . Fix x ∈ X . Let {Oi}i be a base at x. We need to
show that there exists open Oi such that Oi×Oi ⊂ Dn. Assume no
such i exists. Then for each i there exists (xi, yi) ∈ Oi × Oi \ Dn.
The set S = {(xi, yi) : i ∈ ω} is a non-compact subset that lies off
the diagonal and is closed there. By our construction, S does not
meet Dn, a contradiction with stationarity of Dn at ∆X . �

Observe that in the proof of Lemma 2.5 we do not use closeness
of elements of weak base at ∆X . This little detail will be used later.
We will prove now our second main result.

Theorem 2.6. Let X be a sequential compact space. If ∆X has
countable weak character in X2 then X is metrizable.

Proof. Fix {Dn}n a countable weak base at ∆X that consists
of symmetric sets (Lemma 2.4). For each x ∈ X , let Bn(x) =
{y : (x, y) ∈ Dn}.

By Lemma 2.5, it suffices to show that X is first-countable. By
Theorem 2.1, it suffices to show that X is hereditarily ω1-Lindelöf.
Fix an arbitrary ω1-sized collection {Uα}α<ω1 of opens sets in X .

Let Wα =Uα \
⋃
{Uβ :β <α}. Let Sα,n = {x∈Wα :Bn(x)⊂Uα}.

Since Bn(x)’s form a weak base at x, the set
⋃

n Sα,n cover Wα.
Our goal is to show that there exists α∗ < ω1 such that Wα = ∅ for
all α > α∗. To reach the goal we need to find α∗ < ω1 such that
Sα,n = ∅ for all α > α∗ and all n.

Fix n. We claim that Sα,n is not empty only for finitely many in-
dices α. Assume the contrary and let {αk}k be a strictly increasing
sequence such that Sαk ,n 6= ∅ for all k. For each k, fix xk ∈ Sαk ,n.
By compactness and sequentiality of X , we may assume that the
sequence {xk}k converges to some x in X . Since xk+1 lies outside of⋃
{Uα : α ≤ αk}, the limit x belongs to X \

⋃
{Uα : α < sup{αk}k}.

Since the set {xk : x ∈ ω} is non-compact and closed in X \ {x},
the set Bn(x) contains almost all xk’s. Assume x5 ∈ Bn(x).
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Then (x, x5) ∈ Dn. By symmetry, (x5, x) ∈ Dn. Therefore,
x ∈ Bn(x5). Therefore, x ∈ Uα5 , a contradiction. �

In the rest of the paper we will give a number of observations
related to the main results. In Theorem 2.6, we use all aspects of
stationarity including closeness. Following classical approaches it is
natural to drop the requirements on closeness of elements of weak
base of the diagonal. A compactum X has a thin diagonal if there
exists a family {Fn}n of subsets of X2 such that ∆X =

⋂
n Fn and

any non-compact subset S ⊂ X2 \∆X closed in X2 \∆X meets all
Fn’s. Such a family of Fn’s will be called a thin diagonal sequence.

Theorem 2.7. Let X be a compactum with a thin diagonal. If X
is Frechet-Uryson then X is metrizable.

Proof. Fix a thin diagonal sequence {Dn}n. Let us show that X
is first-countable. Fix x ∈ X . Let Bn(x) = {y : (x, y) ∈ Dn}. It
suffices to show that the interior of Bn(x) contains x for all n. If
the set X \ Bn(x) does not contain x for each n, we are done. Oth-
erwise, by Frechet-Uryson property, there exists a sequence {yk}k

of elements of X \Bn(x) that converges to x for some n. Then the
set {(x, yn) : n ∈ ω} is a non-compact subset closed in X2 \ ∆X

that does not meet Dn, a contradiction.
As we pointed out after Lemma 2.5, the conclusion of Lemma 2.5

holds even if elements of weak base of the diagonal are not closed.
Therefore, we are done. �

Theorem 2.8. It is consistent with the axioms of ZFC that every
homogeneous compactum of countable tightness with a thin diagonal
is metrizable.

Proof. It is known that there are models of ZFC in which every
countably tight compactum has a point of countable character (see
[DO2]). Therefore, in such models every homogeneous compactum
of countable tightness is Frechet-Uryson. Now, apply Theorem 2.7.

�
It is important to point out that some convergence-type prop-

erties must be assumed when dealing with thin diagonals. This is
witnessed by the following example.

Example 2.9. There exists a compactum X which is not countably
tight and has a thin diagonal.



SETS AND POINTS OF COUNTABLE WEAK CHARACTER... 427

Proof. Let ω∗ = βω\ω. Let {An}n be a collection of disjoint subsets
of ω∗×ω∗ such that

⋃
n An = ω∗×ω∗ and every infinite closed subset

of ω∗ × ω∗ meets every An. Put Dn =
⋃

i>n[Ai ∪ ∆ω∗ ]. �

Question 2.10. Is there a sequential (or countably tight) com-
pactum with a thin diagonal which is not metrizable?

One way to construct such an example is answering the following
question in affirmative.

Question 2.11. Is there a Yakovlev locally compact space with a
Gδ-diagonal?

By a Yakovlev locally compact space X we understand a first-
countable locally compact space whose one-point compactification
has countable weak character and uncountable character. To show
a connection between the above two questions we need the following
lemma.

Lemma 2.12. Let X and Y be compact, a ∈ X and b ∈ Y . If
Fa and Fb are stationary at a and b, respectively, then Fa × Fb is
stationary at (a, b) in X × Y .

Proof. Let S be non-compact and closed in X ×Y \ {(a, b)}. Then,
(a, b) ∈ S. If {y : (a, y) ∈ S} is not compact then S meets {a}×Fb ⊂
Fa × Fb, and we are done.

Now we may assume that no element of S shares a single co-
ordinate with (a, b). We need to show that there exists x ∈ Fa

and y ∈ Fb such that (x, y) ∈ S. Assume that no such pair ex-
ists. Let B = {y : (x, y) ∈ S for some x ∈ Fa}. Let us show
that B is compact. Notice that B ∪ {b} is the image of the pro-
jection of [Fa × Y ] ∩ [S ∪ {(a, b}] to the second coordinate axis.
Due to compactness of S ∪ {(a, b)} and continuity of projections,
B ∪ {b} is compact. Since B is closed in Y \ {b} and, by our as-
sumption, does not meet Fb, it has to be compact. Similarly, the
set A = {x : (x, y) ∈ S for some y ∈ Fb} is compact not con-
taining a. Take open sets U 3 a and V 3 b whose closures do not
meet A and B, respectively. Pick any (x, y) ∈ S ∩ (U × V ). Let
us show that x 6∈ Fa. If x were in Fa then y would have been in
B but y ∈ V ⊂ Y \ B. Therefore, the projections of S ∩ (U × V )
to the first coordinate axis does not meet Fa, a contradiction with
stationarity of Fa at a. �
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The next lemma establishes the promised relation between Ques-
tions 2.10 and 2.11.

Lemma 2.13. Let X be a Yakovlev locally compact space with a
Gδ-diagonal. Then the one-point compactification X ∪ {∞} of X
has a thin diagonal and is sequential.

Proof. Put Y = X ∪ {∞}. Let {Fn}n be a nested weak base at ∞
in Y . To prove sequentiality, fix any non-closed A ⊂ Y . If A ∩ X
is not closed in X then apply first countability of X . Otherwise,
we may assume that A = X . In this case, select xn ∈ Fn \ {∞}.
Clearly, xn → ∞.

Now, let us prove that Y has a thin diagonal. Let {Un}n be a
nested family of open subsets of X2 such that

⋂
n Un = ∆X . Let

Dn = Un ∪ (Fn × Fn). Let us show that
⋂

n Dn = ∆Y . Fix (x, y)
off the diagonal. There exists n such that (x, y) 6∈ Un. There exists
m such that x, y 6∈ Fm. Let k = max{n, m}. Then (x, y) 6∈ Dk.

Now let us show that every non-compact set S closed in Y 2 \
∆Y meets every Dn. If (x, x) ∈ ∆Y \ {(∞,∞)} is limit for S
then S meets each Un since they are open neighborhoods of (x, x).
Otherwise, (∞,∞) is the only limit point for S on the diagonal.
By Lemma 2.12, S meets every Fn. �

Our last observation in this work is an answer to a question posed
in [AR2]. A locally compact space X is said to have countable weak
character at infinity if the one point compactification X ∪ {∞} of
x has a countable weak base at ∞.

Lemma 2.14. Let X and Y be locally compact spaces. If X and
Y have countable weak character at infinity then so does X × Y .

Proof. Let X ′ = X ∪ {∞X} and Y ′ = Y ∪ {∞Y } be the one-point
compactifications of X and Y , respectively. Let Z = ({∞X} ×
Y ′) ∪ (X ′ × {∞Y }). We need to show that Z ′ has countable weak
character in X ′ × Y ′.

Let {Fn}n and {Gn}n be weak bases at ∞X and ∞Y in X ′

and Y ′, respectively. Let Dn = (Fn × Y ′) ∪ (X ′ × Gn). Clearly,
Z =

⋂
n Dn. Let us show that Dn is stationary at Z. Since Y ′

is stationary at any y ∈ Y ′, by Lemma 2.12, the set Fn × Y ′ is
stationary at any (∞X , y). �

Let us finish this paper with several questions related to our
study.
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Question 2.15. Let C be a compactum in ω∗ that has countable
weak character in ω∗. Does C have a non-empty interior?

Question 2.16. Let X be locally compact space that has countable
weak character at infinity. Let Y be a locally compact continuous
image of X. Does Y have countable weak character at infinity?

Question 2.17. Let X be a weakly first-countable compactum. Is
it true in ZFC that X has a point of first countability?

Question 2.18. Let X be a weakly first-countable compactum.
Suppose X is hereditarily separable. Is X first-countable?
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