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A NEW CRITERION FOR DISK-LIKE
CRYSTALLOGRAPHIC REPTILES

BENOÎT LORIDANT, JUN LUO, AND JÖRG M. THUSWALDNER

Abstract. Let Γ be a planar crystallographic group and
let g : R2 → R2 be an expanding affine mapping satisfying
gΓg−1 ⊂ Γ. Then choose a complete set of right coset repre-
sentatives δ1, . . . , δn of Γ/gΓg−1 . We call the attractor T of
the iterated function system

g(T ) = δ1(T ) ∪ . . . ∪ δn(T )

a crystallographic reptile if the collection

{γ(T ) : γ ∈ Γ}
tiles the plane. In the present paper we give a criterion for
the set T to be homeomorphic to a closed disk.

Using results from a previous paper by the same authors,
we give applications of our criterion to examples of crystallo-
graphic tiles. The special case Γ = Z2 of our criterion provides
a new proof of Bandt and Wang’s result on self-affine lattice
tiles that are homeomorphic to a closed disk.

1. Introduction

Topological properties of self-affine tiles have been of interest,
especially when T is related to problems from other mathematical
fields (cf. for instance [1, 4, 9, 13, 15, 17, 18]). We refer to Wang’s
survey [19] for fundamentals of self-affine tiles, and to [1] for results
on topological properties of tiles related to number systems.
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This paper is devoted to the study of self-affine sets that tile
the plane by the action of a crystallographic group. (Especially
we will emphasize on the planar case where there exist 17 differ-
ent planar crystallographic groups also called wallpaper groups ; see
Grünbaum and Shephard [8, p. 40ff] for a definition of crystallo-
graphic groups.) Such crystallographic reptiles have been defined
by Gelbrich [7], who studied some fundamental properties of these
objects. In Loridant et al. [12] the authors of the present paper
started the systematic study of topological properties of crystal-
lographic reptiles. The topological structure of a tile in a tiling
strongly depends on the relation of this tile to its neighbors. Tools
are given in [12] in order to determine the set of neighbors of a
crystallographic reptile T and to characterize particular kinds of
neighbors of T , like vertex neighbors, which meet T at only one
point, or adjacent neighbors, which have an edge in common with
T . In the present paper we will prove a criterion for a crystallo-
graphic tile to be homeomorphic to a closed disk, or disk-like for
short. This criterion depends on the structure of the set of neigh-
bors of a tile in the tiling.

We arrange this paper as follows. In Section 2 we will state
the main result and recall some known disk-like results obtained
earlier (cf. for instance [4, 7, 14]). Section 3 provides a complete
proof of the main theorem. Section 4 gives a new proof for the
Bandt and Wang Theorem (see [4]), which concerned the case of
lattice reptiles. After that we add some new examples related to
crystallographic reptiles and discuss a few open questions.

2. Basic definitions and statement of the main result

A compact set T in Rn that equals the closure of its interior
int(T ), T = int(T), is said to induce a tiling if there exists a count-
able collection

T := {γ(T ) : γ ∈ Γ},
where Γ is a set of isometries of Rn, such that T is a cover of Rn

and every two elements of T do not have common interior points.
We also say that T tiles Rn and that the collection T is a tiling
of Rn, using the single set T . Without loss of generality we may
assume that Γ contains id, the identity map of Rn, and id(T ) = T
is called the central tile of the tiling.
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In a tiling T using a single tile T , two distinct sets γ1(T ), γ2(T ) ∈
T (or the corresponding isometries, if the tiling is fixed) are called
neighbors if they intersect each other, and they are called adjacent
or edge neighbors if the interior of γ1(T ) ∪ γ2(T ) contains a point
of γ1(T )∩ γ2(T ). Moreover, let

S := {γ ∈ Γ \ {id} : T ∩ γ(T ) 6= ∅}

denote the set of neighbors of id, and

A := {γ ∈ Γ \ {id} : T and γ(T ) are adjacent}

the subset of S comprising the adjacent neighbors of id. In the
tilings considered in this paper, the set of neighbors and the set
of adjacent neighbors of a tile γ(T ) (γ ∈ Γ) are then γS and γA
respectively.

If Γ is a crystallographic group, we say that T is a crystallo-
graphic tiling. Recall that by a theorem of Bieberbach (cf. for
instance [5]), a crystallographic group in dimension n always con-
tains a maximal abelian subgroup Λ called lattice such that the
point group Γ/Λ is finite. The main object of our interest is defined
as follows.

Definition 2.1. A crystallographic reptile (or simply crystile) with
respect to a crystallographic group Γ is a compact non-empty set
T ⊂ Rn with the following properties:

• The family {γ(T ) : γ ∈ Γ} is a tiling of Rn.
• There is an expanding affine map g : Rn → Rn such that

g ◦ Γ ◦ g−1 ⊂ Γ, and there exists a complete set of right
coset representatives D ⊂ Γ of Γ/gΓg−1, called digit set,
such that

g(T ) =
⋃

δ∈D
δ(T ).

We refer the reader to [7] and [12] for further information about
crystallographic reptiles.

Before we can formulate our main result we recall some notions
and definitions related to graphs. A graph is a pair G = (V, E) of
sets such that E ⊂ V × V , with V and E finite or infinite; thus,
the elements of E are 2-element subsets of V . The elements of V
are called vertices (or points) of the graph G, the elements of E are
called edges (or lines). Two vertices are incident if they constitute
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an edge. The two vertices incident with an edge are its end-vertices
or ends, and an edge joins its ends. An edge {x, y} is usually written
as xy (or yx). Eventually, if V ′ ⊂ V , the subgraph of G induced
by V ′ is the graph G′ = (V ′, E ∩ V ′ × V ′).

The usual way to draw a graph is by drawing a dot for each
vertex and joining two of these dots by a line if the corresponding
two vertices form an edge. If we can “draw” a graph G on the
plane in such a way that no two edges meet in a point other than a
common end, G is planar and the drawing is a plane graph. Here,
we give definitions for drawing and plane graph which are a bit
different from the ones given in [6].

Definition 2.2. Let G = (V, E) be a planar graph with set of
vertices V and set of edges E. Then a drawing of G is a mapping
π : (V, E) → R2 such that π(V ) is a discrete set of the plane, π(xy)
is a simple arc joining π(x) and π(y), and

π(xy)∩π(uv) = {π(x), π(y)}∩{π(u), π(v)} (xy, uv ∈ E disjoint).

We also say that π(G) is a drawing of G. For every planar graph G
with a drawing π, the set R2 \ π(G) is an open set; its components
are the faces of π(G) (or G).

Given a planar graph G = (V, E) and a drawing π of G, let us
consider the derived graph of G, i.e., the graph G1 = (V, E1) emerg-
ing from G with the same set of vertices and where two vertices x, y
are incident if their images π(x), π(y) belong to the closure of the
same face of G. E1 contains E, and we extend π to a map π1 on
E1 by joining the images of vertices corresponding to a new edge
by a simple open arc inside one of their common faces. Such an
extension π1 is not unique. Also note that it need not be a drawing
in the above sense because the derived graph of a planar graph is
not necessarily planar.

For a crystallographic tiling T := {γ(T ) : γ ∈ Γ} of the plane
which uses a single crystile T , define the adjacency graph GA as the
graph with vertex set Γ for which a 2-element set {γ1, γ2} ⊂ Γ is an
edge whenever the two tiles γ1(T ), γ2(T ) are adjacent. If we define
a 2-element subset {γ1, γ2} of Γ to be an edge if γ1(T ), γ2(T ) are
neighbors, we have the neighbor graph GN with vertex set Γ.
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We need special drawings of the adjacency graph GA. In the
following definition as well as in the rest of the paper we use

Br(x) := {y ∈ R2 : |y − x| ≤ r}
to denote a closed disk with radius r centered at x.

Definition 2.3. Let GA = (Γ, E) be the adjacency graph of a
crystallographic tiling. Assume that GA is planar. We say that a
drawing π of GA is admissible if there is a p ∈ R2 with γ1(p) 6= γ2(p)
for all γ1, γ2 ∈ Γ, γ1 6= γ2 such that:

• π(γ) = γ(p) (γ ∈ Γ).
• There is a constant c ∈ R such that for all e ∈ E joining

the vertices x and y, we have:

(2.1) π(e) ⊂ Bc(x) ∩ Bc(y).

Moreover, let π1 an extension of π as defined above. We call π1

admissible if it satisfies (2.1) for all e ∈ E1 and the same constant
c.

Theorem 2.4. Assume that T ⊂ R2 is a planar crystallographic
reptile with respect to a crystallographic group Γ. Then T is disk-
like, if and only if the following three conditions all hold:

(i) The adjacency graph GA is a connected planar graph.
(ii) The digit set D induces a connected subgraph in GA.
(iii) GA has an admissible drawing π : GA → R2 such that the

derived graph of GA is exactly the neighbor graph GN .

Remark 2.5. Condition (iii) says that two tiles γ1(T ), γ2(T ) are
neighbors if and only if the vertices π(γ1), π(γ2) lie on the boundary
of a single face of the drawing π(GA).

This is not the first result on disk-like fractal sets. Luo et al. [14]
proved that if an attractor of an iterated function system has con-
nected interior then it is disk-like. The proof of this result is essen-
tially based on Torhorst’s Theorem [11, §61, II, Theorem 4]. Bandt
and Wang [4] use this criterion in order to show that a lattice reptile
is disk-like if it has 6 or 8 neighbors and a digit set that fulfills cer-
tain properties (see Section 4 for details). Luo and Zhou [15] show
that a class of lattice tiles is disk-like by proving that its boundary
is a simple closed curve. In Akiyama and Thuswaldner [2] a class of
lattice tiles related to number systems in quadratic number fields
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is shown to be disk-like. In this paper also the above mentioned
result [14] was used. The study of disk-like crystiles was started
in [12], where some examples of crystiles presented in Gelbrich’s
paper [7] were shown to be disk-like.

3. Proof of the main theorem

We recall the following definitions and facts from planar topology
which will be used in the proof.

Definition 3.1 ([11, §46, VII]). A set C is said to separate the
plane between A and B if there exist two sets M, N such that

R2 \ C = N ∪ M,
(
M ∩ N

)
∪
(
N ∩ M

)
= ∅, A ⊂ M, B ⊂ N.

Definition 3.2 ([11, §54, IV]). Let X ⊂ Y and f : X → Y
be a continuous function. If there exists a continuous function
h : X × [0, 1] → Y such that h(x, 0) = x and h(x, 1) = f(x), the set
f(X) is said to be obtained from X by a deformation in Y .

Lemma 3.3 ([11, §59, IV, Theorem 2]). If a compact set F ⊂ R2

separates between two points p and q, then every set obtained from
F by a deformation in R2 \ {p, q} separates between p and q.

In a topological space, a continuum is a connected compact set,
and a set is locally connected if for each of its points, every open
neighborhood contains a connected neighborhood.

Lemma 3.4 ([11, §61, II, Theorem 5]). Every locally connected
continuum which separates the plane between two continua A and
B contains a simple closed curve which separates the plane between
A and B.

Hereafter in this section, we assume that T ⊂ R2 is a planar
crystallographic reptile with respect to a crystallographic group Γ,
an expanding affine map g and a digit set D.

Proof of Theorem 2.4. We split the proof in two parts.
Sufficiency. 1 Assume that conditions (i), (ii) and (iii) of Theo-

rem 2.4 hold. In view of the result of [14, Theorem 1.1] mentioned
at the end of the preceding section, it suffices to show that the in-
terior of T is connected. We fix an admissible drawing π for GA,

1Some parts of this proof are inspired by the proof of the Bandt and Wang
Theorem in [4].
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which gives an associated constant c and a point p defined in
Definition 2.3 (w.l.o.g., p ∈ T ). GN is by assumption the derived
graph of GA and we call π1 an admissible extension of the drawing
π.

For each k ∈ N, we define the set Dk of elements in Γ such that

gk(T ) =
⋃

γ∈Dk

γ(T ).

Thus we have D1 = D, and using condition (ii), it can be shown
recursively that the subgraph Gk

A of GA induced by Dk is connected
for every k ∈ N.

Our aim is to find a curve in π(Gk
A) intersecting a curve in

π1(GN \Gk
A) and to derive a contradiction (GN \Gk

A is the subgraph
of GN induced by the set of vertices Γ \ Dk).

We denote by D the diameter of the tiles (i.e., the maximal
distance between two points of a tile γ(T )) and by L the minimal
distance between two disjoint tiles. We set M := max{D, L, c}.

Suppose that int(T ) is disconnected, and let z1 and z2 be two
points in different components of int(T ). Let k ∈ N be large enough
such that B6M (gk(zi)) ⊂ gk(int(T )) (i ∈ {1, 2}). For i = 1, 2, we
denote by γi an element of Dk such that the tile γi(T ) contains
gk(zi) and by Ωi the component of gk(int(T )) containing gk(zi).
In the following, Ap (1 ≤ p ≤ 6) will stand for the unbounded
connected region R2 \

(
BpM (gk(z1))∪ BpM (gk(z2))

)
.

Then the boundary ∂Ω1 of the component Ω1 is contained in A6

and separates between B1 := B2M (gk(z1)) and B2 := B2M(gk(z2)).
Consider the the finite collection

U := {γ ∈ Γ \ Dk : γ(T )∩ ∂Ω1 6= ∅}.
This definition implies that

⋃
γ∈U γ(T ) is contained in A5 and sep-

arates between B1 and B2. By Lemma 3.4, there is a simple closed
curve C in

⋃
γ∈U γ(T ) which separates between B1 and B2 too. We

suppose that B1 lies in the bounded component of R2 \ C.
We denote by (C(t), t ∈ [0, 1]) a parametrization of C with

C(0) = C(1).
As C is uniformly continuous, we may find a constant δ > 0

such that d(C(t), C(t′)) < L as soon as |t − t′| < δ. Let m ≥ 2
and (tj)0≤j≤m be a subdivision of [0, 1] with 0 = t0 < t1 < . . . <
tm−1 < tm = 1 and tj+1 − tj < δ. Then, setting Cj := C(tj),
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we have d(Cj , Cj+1) < L for all 0 ≤ j ≤ m − 1. Choose now for
each j ∈ {0, . . . , m} an element αj ∈ U with α0 = αm and such that
Cj ∈ αj(T ). Then for all 0 ≤ j ≤ m − 1, d(αj(T ), αj+1(T )) < L.
Thus, by the definition of L, two consecutive tiles are neighbors,
i.e., α−1

j αj+1 ∈ S ∪ {id}.
We now construct a closed curve that is homotopic to C in A2

and is made by pieces π(e) for some edges e ∈ GN \ Gk
A. By

Lemma 3.3, this closed curve will also separate between B1 and B2.
Let j ∈ {0, . . . , m−1}. Consider the union Rj of the intersecting

balls B2M (αj(p)) and B2M (αj+1(p)). Then Rj ⊂ A2. Moreover,
the line segments αj(p)Cj and Cj+1αj+1(p), the arc

Ej := π1(αj(p)αj+1(p))

as well as the piece

Cj := {C(t) : t ∈ [tj , tj+1]}
of the curve C are all contained in the simply connected set Rj.
Thus the arc Ej can be obtained from the union of αj(p)Cj , Cj

and Cj+1αj+1(p) by a deformation in Rj .
Consequently, the union

E :=
⋃

0≤j≤m−1

Ej

of the arcs is obtained from the union

F :=
⋃

0≤j≤m−1

(
αj(p)Cj ∪ Cj ∪ Cj+1αj+1(p)

)

by a deformation in
⋃

0≤j≤m−1 Rj ⊂ A2.
Note that F separates between B1 and B2. By Lemma 3.3, so

does E . Thus every curve from γ1(p) ∈ B1 to γ2(p) ∈ B2 intersects
E . Since the subgraph Gk

A of GA induced by Dk is connected and
γ1, γ2 ∈ Dk , there is a connected path γ1 := γ1, γ2, . . . , γq−1, γq :=
γ2 in GA with γi ∈ Dk , i = 1, . . . , q. The image by π of this path is a
curve in π(Gk

A) joining γ1(p) and γ2(p). It is intersected by E , which
is a closed curve in π1(GN \ Gk

A). Thus, an arc π1(αj(p)αj+1(p))
(maybe degenerated in the sense that αi = αj+1) must intersect an
arc π(γi(p)γi+1(p)). But by the assumption on the drawing, either
π1(αj(p)αj+1(p)) is in π(GA) or

π1(αj(p)αj+1(p)) \ {αj(p), αj+1(p)}
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is all contained in a face of the drawing. In both cases, these
arcs must share a common end point to intersect, contradicting the
disjointness of {α0, . . . , αm} and {γ1, . . . , γq}.

Necessity. Assume that T is disk-like. We have to check con-
ditions (i), (ii) and (iii) of Theorem 2.4. Condition (ii) can be
directly inferred from the disk-likeness of T . Thus we have to show
that conditions (i) and (iii) are also satisfied.

As γ(T )∩γ ′(T ) is either empty or a connected set for all distinct
elements γ, γ ′ ∈ Γ (cf. [7, 12]), the boundary ∂T consists of arcs
P1, . . . , Pk, where 3 ≤ k ≤ 6 (cf. [7, p. 128]) and Pj = T ∩ γj(T ).
Here γ1, . . . , γk are the edge neighbors of id. The arcs P1, . . . , Pk

can be arranged to a circular chain in the sense that for all distinct
i, j ∈ {1, 2, . . . , k} the intersection Pi ∩ Pj is a singleton if j ≡
i + 1(mod k), and is an empty set otherwise.

Choose an interior point x1 of P1 (in subspace topology), and
let Orb(x1) = {γ(x1) : γ ∈ Γ} be the Orbit of x1 under the trans-
formation group Γ. Clearly, the number of points in Orb(x1) ∩ ∂T
is between 1 and k. If it is not k, we can choose a least inte-
ger i1 such that Orb(x1) ∩ Pi1 = ∅. Let x2 be an interior point
of Pi1 , then Orb(x1) ∩ Orb(x2) = ∅ and the number of points in
(Orb(x1) ∪ Orb(x2)) ∩ ∂T is between 2 and k. Going on with this
procedure for at most k − 1 steps, we will find k′ points x1, . . . , xk′

on ∂T , where k′ ≤ k, such that the number of points in
(

k′⋃

i=1

Orb(xi)

)
∩ ∂T

is exactly k. Rename the k points of the above intersection as
y1, . . . , yk with yl ∈ Pl.

By the Schönflies Theorem [16], choose a homeomorphism
h : T → {reit : 0 ≤ t < 2π, 0 ≤ r ≤ 1} such that h(yl) = e

2πl
k

i. Let
Rl = {re 2πl

k
i : 0 ≤ r ≤ 1} be the radius joining the origin 0 and

the point h(yl), for 1 ≤ l ≤ k. Then W = h−1
(
∪k

l=1Rl

)
is a union

of arcs in T which are disjoint except at their common endpoint
h−1(0) ∈ int(T ).

Now, we can see that
⋃

γ∈Γ γ(W ) is an admissible drawing of
GA and that condition (i) is satisfied. Clearly, each triple point of
the tiling {γ(T ) : γ ∈ Γ} must be enclosed in a face of the above
drawing. Since an arc γ ◦ h−1 (Rl) is contained in the boundary of
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a face containing a triple point x if and only if x ∈ γ(Pl), and since
two tiles γ(T ), γ′(T ) are neighbors if and only if their intersection
γ(T )∩ γ ′(T ) contains a triple point x, we see that condition (iii) is
satisfied. �

4. Applications, examples and further questions

First we show that Theorem 2.4 contains as a special case a
theorem due to Bandt and Wang [4] yielding a criterion for a self-
affine lattice reptile to be homeomorphic to a closed disk. Note
that the lattice is the easiest of the planar crystallographic groups.
It is the one having trivial point group.

Before we recall the formulation of this theorem, we need the
following definition. For two sets D and F of isometries in R2, we
say that D is F -connected if for every disjoint pair (d, d′) of elements
in D, there exist an n ≥ 1 and elements d =: d0, d1, . . . , dn−1, dn :=
d′ of D such that d−1

i di+1 ∈ F for each i ∈ {0, . . . , n− 1}.

Theorem 4.1 (Bandt-Wang Theorem). Let T be a self-affine
lattice reptile with digit set D.

(i) Suppose that the neighbor set S of T has not more than six
elements. Then T is disk-like if and only if the digit set D
is S-connected.

(ii) Suppose that the neighbor set S of T has eight elements
{a±1, b±1, (ab)±1, (ab−1)±1}. Then T is disk-like if and only
if {a±1, b±1} are the only adjacent neighbors and the digit
set D is {a±1, b±1}-connected.

Proof. We prove this theorem by showing that if a lattice tile T
satisfies the conditions of this theorem, it must satisfy the condi-
tions of Theorem 2.4 too.

(i) By [4, Theorem 3.2] we can assume without loss of gener-
ality that the lattice Γ has two elements a, b ∈ Γ, such that
the tile T has exactly 6 neighbors

{a, a−1, b, b−1, ab, a−1b−1}.

In a similar way as in [12, Proposition 5.4] it can be shown
that these neighbors are all adjacent ones. Then the adja-
cency graph GA has a drawing as in Figure 1. It is identical
with the neighbor graph GN . In this case, it is clear that
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T satisfies conditions (i) and (iii) in Theorem 2.4. Since
condition (ii) is satisfied by assumption, we are done.

• • • (ab)−1

• b−1

• •a−1
• id • a

• • b • ab •

• • • •

Figure 1. The graph GA for a lattice tile with six
edge neighbors. In this case, GA is equal to its de-
rived graph.

(ii) Suppose that the tile T has exactly 8 neighbors

{a±1, b±1, ab, a−1b−1, a−1b, ab−1}.

It follows that exactly the neighbors a±1, b±1 are the adja-
cent ones. Then, the adjacency graph has a drawing as in
Figure 2. In this case, T satisfies all the conditions in The-
orem 2.4 if the digit set D is {a±1, b±1}−connected. The
neighbor graph is exactly the derived graph of the drawing
of GA (see Figure 2).

�

We will now apply the new criterion to p2-reptiles.

Example 4.2. Assume that T is a connected reptile with respect
to a p2-group Γ, with digit set D ⊃ {id}.

• Suppose that there exist two translations a, b ∈ Γ and a
π-rotation c ∈ Γ with

Γ = {aibjck : i, j ∈ Z, k ∈ {0, 1}},
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• • (ab)−1

• b−1
• ab−1

•

• • a−1
• id • a •

• • a−1b • b • ab •

• • • • •

Figure 2. The graph GA for a lattice tile with four
adjacent neighbors (full edges) and its derived graph
(full and dashed edges).

such that the tile T has exactly 6 neighbors of the following
shape.

A := {b, b−1, c, a−1c, bc, a−1bc} or(4.1)
A := {b, b−1, c, a−1c, bc, a−1b−1c}.(4.2)

Then, each neighbor is an adjacent one by [12, Proposition
5.4]. Thus the adjacency graph has a drawing as in Fig-
ure 3 for A as in (4.1). The neighbor graph is equal to the
adjacency graph. In this case, it is clear that T satisfies
conditions (i) and (iii) in Theorem 2.4. Thus T is disk-like
if and only if the digit set is A-connected. The case where
A is as in (4.2) can be treated likewise.

• We give here a concrete example of p2-crystile with
seven neighbors. It corresponds to a disk-like candidate of
Gelbrich (see [7, p. 252, (c)]). Let

a(x, y) = (x + 1, y),
b(x, y) = (x, y + 1),
c(x, y) = (−x,−y).

Then the p2 group Γ can be written as

Γ = {aibjck : i, j ∈ Z, k ∈ {0, 1}}.



DISK-LIKE CRYSTALLOGRAPHIC REPTILES 605

• • b−1

• • a−1c • c

• • id

• • a−1bc • bc

• • b •

• •

• • •

• •

Figure 3. The graph GA for a p2 crystile with six
edge neighbors. In this case, GA is equal to its de-
rived graph.

Figure 4. p2-crystile with seven neighbors, digit
set {id, b, c}.

The expanding map g is chosen as g(x, y) = (y, 3x + 1), the
digit set as D = {id, b, c}, thus the tile T is defined by

g(T ) = T ∪ b(T )∪ c(T ).
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It is depicted in Figure 4.

•a−1b−1c •

• • b−1

•a−1c • c

• • id

•a−1bc • bc

• • b

• •

• •

Figure 5. The graph GA for a p2 crystile with five
edge neighbors (full edges) and its derived graph
(full and dashed edges).

It can be shown with the tools developed in [12] that T
has exactly 7 neighbors

S = {b, b−1, c, b−1c, a−1c, a−1bc, a−1b−1c},
and that its adjacent neighbors are

A = {b, b−1, c, b−1c, a−1c}.
Thus the adjacency graph has a drawing as in Figure 5.
Its neighbor graph GN is exactly the derived graph of the
drawing of GA (see Figure 5 also). In this case, T satisfies
all the conditions in Theorem 2.4 because the digit set D is
A-connected. Hence it is disk-like.

Example 4.3. This example is devoted to a p3-crystile with ten
neighbors which is called “terdragon”. It also occurs in Gelbrich’s
paper (see [7, p. 255]).

Let

a(x, y) = (x + 1, y),

b(x, y) = (x + 1/2, y +
√

3/2),

c(x, y) = (−x −
√

3y)/2, (
√

3x − y)/2.
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Figure 6. The “terdragon”, a p3-crystile with ten
neighbors, digit set {id, ac2, bc2}.

• • • • • • •

• • • •

•c2

•
ab−1c

•ac2

•
a2b−1c

• • •

•
a−1

•id • a •

• •c •bc2

• ac •abc2

• •

• • • •

• • • • • • •

Figure 7. The graph GA for a p3 crystile with four
edge neighbors. The additional edges connected to
id in the derived graph are also represented
(dashed).
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The crystallographic group p3 is then generated by a, b and c, i.e.,

Γ = {aibjck : i, j ∈ Z, k ∈ {0, 1, 2}}.

The expanding map g is chosen as g(x, y) =
√

3(y,−x), the digit
set as D = {id, ac2, bc2}, thus the tile T is defined by

g(T ) = T ∪ ac2(T ) ∪ bc2(T ).

It is depicted in Figure 6. Using the tools developed in [12] it can
be shown that T has exactly the 10 neighbors

S = {a, a−1, c, c2, ac, ac2, bc2, ab−1c, abc2, a2b−1c}

four of which are adjacent. These are given by

A = {ac, ac2, bc2, ab−1c}.

Thus the adjacency graph has a drawing as in Figure 7. The neigh-
bor graph GN is exactly the derived graph of the drawing of GA in
Figure 7. In this case, T satisfies all the conditions in Theorem 2.4
because the digit set D is A-connected. Hence it is disk-like.

We will provide a few open questions which in some sense ex-
tend the idea of the Bandt-Wang Theorem. Before stating these
questions, we recall some concepts from tiling theory. For further
details, we refer to [8].

Let T be a tiling of Rn. A symmetry of T is an isometry which
maps each element of T onto another element of T . The collection
of all the symmetries of a tiling T is called the symmetry group of
T , denoted by S(T ).

If T is a tiling of R2 and T is disk-like, the symmetry group has
only 24 possibilities [8], 17 of which are the planar crystallographic
groups.

It is known (cf. [7]) that a crystallographic tiling using a single
disk-like prototile is normal in the sense that

(N.1) each tile of the tiling is disk-like,
(N.2) the intersection of two tiles is either empty or a connected

set, and
(N.3) there exists two positive numbers R and r such that each

tile is covered by a closed disk with radius R and contains
a disk with radius r.
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Assume that T is a disk-like reptile with respect to a 2-dimen-
sional crystallographic group Γ. It can be shown that the corre-
sponding tiling T = {γ(T ) : γ ∈ Γ} is a normal tiling. From the
whole list of valence-types (i.e., types of vertex constellations, see
[8, p. 176] for an exact definition) given in [8, Theorem 4.3.1], one
can easily check all the possible number of neighbors for the tile T .
In particular, T has at least 6 neighbors.

Question 4.4. Let T be a connected crystile with respect to the
group Γ. Suppose that each tile of the tiling

T = {γ(T ) : γ ∈ Γ}

has exactly 6 neighbors. Does this imply that T is disk-like?

Essentially the Bandt-Wang Theorem says that if T has a “small”
number of neighbors, and if the neighbor set is of a particularly
“good” form, then T is disk-like. Therefore, for a connected crystile
T which has 6 or more neighbors, it is of natural interest to find
out the “good” forms of neighbor sets so that T is disk-like. All in
all, we pose the following question.

Question 4.5. Let Γ be an arbitrary planar crystallographic group.
Can one give a complete list of all the forms of neighbor sets and
adjacency graphs so that the crystile T (w.r.t. Γ) is disk-like?
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