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SEQUENTIAL EXTENSIONS OF COUNTABLY
COMPACT SPACES

PETER NYIKOS

Abstract. The first known examples of subsequential count-
ably compact Hausdorff (T2) spaces that are not sequential
are given here, including one that is Tychonoff under CH.
The sequential extensions of such spaces cannot be T2, but
the extensions we construct are T1. The problem of whether
it is consistent for there to be a compact T2 subsequential,
non-sequential space is discussed. It is shown that an affir-
mative answer would also solve the old problem of whether
it is consistent for there to be a compact non-sequential T2

space in which every countably compact subset is closed.
We also give the first known example of an infinite sub-

sequential, countably compact T1 space with no nontrivial
convergent sequences. The main tool in all the constructions
is a base matrix tree of subsets of ω; in other words, a collec-
tion of subsets of ω whose Stone-Čech remainders form a tree
π-base in βω \ ω.

1. Introduction

A major theme in many branches of mathematics is that of exten-
sions of structures. Think of Galois field theory, analytic continua-
tion in complex analysis, and the concept of Ext in module theory,
to name but a few examples. In general topology the most exten-
sively researched example is that of Hausdorff compactifications of
Tychonoff spaces. Another example is that of connectification: the
study of how “nice” a connected space containing a given space can
be.
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Another example is the study of sequential and pseudo-radial
(a.k.a. chain-net) extensions of spaces. The latter spaces are those
in which the the closure of a set A is found by iterating the process
of adjoining limits of well-ordered nets. In the sequential case there
is an obvious restriction: the space must be countably tight; that
is, if a point p is in the closure of a subset A then there must
be a countable subset B of A such that p ∈ B. [As usual, over-
head bars stand for closure.] This is because sequential spaces
are characterized by the fact that the closure of a set is found by
iterating the process of adjoining limits of convergent sequences,
and because every subspace of a countably tight space is count-
ably tight. In contrast, Martin Sleziak [S] has shown that every
topological [resp. T0, T1] space can be embedded in a pseudo-radial
[resp. T0, T1] space. This was also shown independently by Eva
Murtinova [unpublished]. Earlier, Jinyuan Zhou [Zh] had given
a different construction under p = c, embedding any T1 space of
countable tightness in a pseudo-radial space. But not every count-
ably tight space can be embedded in a sequential space: easy ZFC
examples can be found in [FR]. The following related problem from
[FR] is still unsolved.

Problem 1. Is every subsequential compact T2 space sequential?
A space is here called subsequential if it can be embedded in a

sequential topological space. In [FR] an easy example is given of a
compact T1 subsequential space that is not sequential, but it is also
noted that any counterexample to Problem 1 would require extra
set-theoretic axioms, since the PFA implies that every compact T2

countably tight space is sequential. On the other hand, one of the
main results of this article is a ZFC construction of a subsequential
countably compact T2 space that is not sequential [Example 2.9],
answering a problem posed in [Ny1].
Definition. A space is Ti-subsequential (i = 1, 2, 3, 4) if it can be
embedded in a Ti sequential space.

Example 2.9 is T1-subsequential but not T2-subsequential, nor
can it be: in [FR] it is explained why every T2-subsequential, count-
ably compact space is sequential. So no (consistent) counterexam-
ple, if any, to Problem 1 is T2-subsequential. In contrast, there are
ZFC examples of T2-subsequential pseudocompact spaces that are
not sequential [FR].
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Since most general topologists confine themselves to Tychonoff
spaces, a few comments may be in order as to why we bother to
construct such examples. In the first place, we are only dealing
with extensions of countably compact spaces, and countably com-
pact (and especially compact) T1 spaces are much better behaved
than T1 spaces in general. Recall, for example, Gryzlov’s extension
of Arhangelskii’s celebrated theorem to T1 spaces: every compact
first countable T1 space is of cardinality ≤ c. Less well known but
still striking is Norman Levine’s theorem that every compact space
[no separation axioms assumed!] of cardinality ℵ1 is sequentially
compact. This is an obvious consequence of the second of the fol-
lowing recent theorems, which again assume no separation axioms.
Theorem A. [AW] Every countably compact space of hereditarily
Lindelöf degree < t is sequentially compact.
Theorem B. [BN] If X is a compact space with a network N
of cardinality ≤ t, such that every point of X is in fewer than t
members of N, then X is sequentially compact.
Theorem C. [BN] Every countably compact space of cardinality
< h is sequentially compact.
Theorem D. [BN] If every splitting tree has a chain of length h,
then every compact space of cardinality ≤ h is sequentially compact.

The cardinal t is, as in [vD] and [V], the least cardinality of a
complete tower on ω. Closely related is h, the least height of a
splitting tree on ω. [These concepts are defined in Section 2.] A
good reference to h is [BPS].

The above theorems are relevant to Examples 2.4, 2.9, and 3.1,
which are sequential T1 extensions of countably compact, Hausdorff
spaces that are not sequentially compact (hence not sequential).
Examples 2.4 and 2.9 are constructed in a unified fashion along with
a T1 pseudo-radial extension of a countably compact 0-dimensional
space (Example 2.1) which has a nicer structure than the more
general constructions mentioned above.

Example 3.1 is quite different. It is a sequential scattered (hence
T1) space Z with a countably compact subspace Y which has no
nontrivial convergent sequences at all. No subsequetial Y with
this stronger property can be Hausdorff. The whole space Z is
locally countable, weakly first countable, and of scattered height
and sequential order ω1. In fact, the Cantor-Bendixson level of
each point is the same as its sequential order.
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Theorems A through D warn us not to expect the examples to
be “very small.” Even more to the point is the following theorem,
a rephrasing of Theorem 1 of [A].
Theorem E. Let Y be a subsequential T2 space and let y be a non-
isolated point of Y . If X is a countably compact T2 space containing
Y, then there is a nontrivial sequence in X converging to y.

To prove this theorem, Elena Aniskovič used a penetrating anal-
ysis of the convergence structure of a subsequential space. The
sequential extension of Y , even though it need not satisfy any of
the usual separation axioms, still exerts a strong influence on which
filters on Y converge in Y and even in X . Franklin and Rajagopalan
[FR] showed this in a somewhat different way through the use of
quotient maps.

An immediate corollary of Theorem E is that every infinite,
countably compact, subsequential T2 space contains a nontrivial
convergent sequence. This eliminates those (consistent) infinite,
compact, T2, countably tight spaces in which every convergent se-
quence is eventually constant as counterexamples to Problem 1.
Theorem E is also relevant to Example 3.1, in which a countably
compact subsequential T1 space is constructed in which every con-
vergent sequence is trivial; such an example could not be T2 by
what we have just seen. This also follows from another corollary of
Theorem E:
Corollary. In a subsequential T2 space, every countably compact
subset is closed.

This corollary is proven in Section 4, where it is also explained
how it sheds light on just how difficult Problem 1 is, unless there
is somehow an easy positive answer in ZFC.

2. A unified trio of constructions

Each of the three examples in this section features a pseudo-
radial (a.k.a. chain-net) countably compact T1 space X with a
countably compact Hausdorff subspace Y that is not sequentially
compact. In Examples 2.4 and 2.9, X is sequential as well. Each
example uses a pair of order-isomorphic trees, D and T . [A tree is
a poset in which the predecessors of each member are well-ordered.]
The relative topology on D∪T is an example of what Steve Watson
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calls a resolution of T , a generalization of the Alexandroff duplicate.
All three trees use ω ∪ D ∪ T and ω ∪ T for the underlying sets of
X and Y , respectively, with ω as the dense set of isolated points.

All examples in this paper use the concept of a splitting tree of
subsets of ω. A set S is said to split a set A if both A ∩ S and
A \ S are infinite. A splitting family on ω is a family of subsets
of ω such that every infinite subset of ω is split by some member of
the family. A splitting family is called a splitting tree if it is a tree
by reverse almost inclusion. This is the dual of the order of almost
inclusion ⊂∗, where A ⊂∗ B means that A \B is finite. While this
(and hence its dual) is not a partial order in general (A ⊂∗ B and
B ⊂∗ A together do not imply A = B), the members of splitting
trees are chosen so they are true trees under the relation of reverse
almost inclusion.

Our constructions all work for any splitting tree, but the proofs
that they do what they are designed to do are simpler if we use
a base matrix tree. This is a particular kind of splitting tree such
that every infinite subset of ω almost contains some member of the
tree. The existence of base matrix trees in ZFC is a deep result of
Balcar, Pelant and Simon [BPS].

The least cardinality of a splitting family is denoted s, while least
height of a splitting tree is denoted h. This is also the least height
of a base matrix tree [BPS]. It is easy to show that ω1 ≤ t ≤ h ≤ s.
Dordal [D] constructed models of ZFC in which t = ω1 and h is an
arbitrarily high aleph.

In models of t = h, splitting trees of height h all have the property
P that a chain with a supremum actually has a maximum mem-
ber. In other words, a chain with no greatest element also lacks
a supremum: if it is bounded above, the set of its upper bounds
has more than one minimal member. Every splitting tree has a
splitting subtree with this property P: each element has more than
one immediate successor, and so, in the subtree of elements at limit
levels, each element has c immediate successors. Consequently, the
subtree of elements at successor-of-limit-ordinal levels has property
P. In fact, the set of upper bounds of a bounded chain with no
supremum has c-many minimal members. We will assume all our
splitting trees are of this form.
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Our examples use the concept of the order-completion T̃ of a tree
T . This is defined by adding to T a supremum at the top of each
downwards closed chain that does not have a unique supremum. In
the case of the splitting trees we use, this means that we add one
element at the top of each downwards closed chain that does not
have a greatest element.

Example 2.1. Let A be a base matrix tree on ω as described above,
so that each member has c-many immediate successors. Index it by
a tree W order-isomorphic to it: A = {Aw : w ∈ W}. Let T be the
order-completion of W and let T (α) represent the αth level of T .
Then by the above remarks, W=

⋃
{T (α) :α is not a limit ordinal}.

Let D = T × {0}. We use the notation dt = d(t) = 〈t, 0〉. This
makes d an order-isomorphism from T to D, and we will use d(A)
to denote the image of a subset A of T .

If t is not on a limit level, basic neighborhoods of dt are the
sets of the form {dt} ∪At \ F where F is a finite subset of ω. Thus
{dt}∪At is the one-point compactification of At. Of course, if s > t
then As ⊂∗ At and so the space ω∪D fails to be Hausdorff in a big
way.

If t ∈ T \ W , then basic neighborhoods of dt are the sets of the
form D(s, t] = {dx : s < x ≤ t} ∪As \F , where s < t. As before, F
is a finite subset of ω. It is easy to see that this makes the relative
topology on D the interval topology it acquires as a tree.

Now we are ready to define the neighborhoods of t ∈ T in the
whole space X = ω∪D∪T . For each t ∈ T let t↑ = {t′ ∈ T : t′ ≥ t}
and let Vt(∅) = t↑∪d(t↑)∪At. For each finite set of (not necessarily
immediate) successors s1, . . . , sn of t, let

St(s1, . . . , sn) = t↑ \ (s↑1 ∪ · · · ∪ s↑n)
and let
Vt(s1, . . . , sn) = St(s1, . . . , sn)∪d(St(s1, . . . , sn))∪ [At\ (As1 ∪· · ·∪Asn)].

If t ∈ W , the basic neighborhoods of t are of the form Vt(s1, . . . , sn)\
F where F is a finite set that does not include t, and the si are
immediate successors of t.

If t is on a limit level (in other words, t /∈ W ) then its basic
neighborhooods are of the form

Vw(s1, . . . , sn) \ (F ∪ d(t↓))
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where w ∈ W , w < t, and t↓ = {t′ ∈ T : t′ ≤ t}, and the si are
immediate successors of t (not of w). It is important to omit the
members of D in d(t↓) because they are in the closure of any infinite
subset of ω that is indexed by some s on a successor level above t.
Failure to omit them would mean that s and t do not have disjoint
open neighborhoods in Y = ω ∪ T .

It follows from this description that the relative topology on T is
the coarse wedge topology. This is the topology which has as a base
the Boolean algebra generated by all wedges t↑ = {s ∈ T : t ≤ s}
such that t is not on a limit level of T .

It is easy to see that Y =ω∪T is Hausdorff (indeed,0-dimensional).
Because the As indexed by the immediate successors of t are a MAD
family of subsets mod finite of At, no sequence from ω converges to
any point of T . On the other hand, every infinite subset of ω has
uncountably many points of T in its closure: each S ∈ [ω]ω almost
contains some At and with it every As, s > t, so that the whole of
Vt(∅) is in the closure of S except perhaps for a finite subset of ω.

Compactness of T is part of the basic theory of the coarse wedge
topology [Ny1, Theorem 3.4], and compactness of ω ∪ T is an easy
consequence given the above description of the basic nbhds of points
of T . The rest follows quickly from two lemmas:
Lemma 2.2. D ∪ T is radial; that is, if x ∈ A then there is a
well-ordered net in A converging to x.

Lemma 2.3. If t ∈ T, S ⊂ ω and t ∈ S, then t ∈ (S ∩ D).
From these two lemmas it follows that X is pseudo-radial, of or-

der 2. In fact, if S ⊂ ω and t ∈ S then there is a well-ordered net
from S∩D converging to t, while dt ∈ S ⇐⇒ S∩At is infinite ⇐⇒
any sequence that lists S ∩ At converges to dt.

Proof of Lemma 2.2. For D this is trivial: the neighborhood
{ds : s ∈ t↓} is a copy of an ordinal. In [Ny1] it is shown that
every tree is radial in the split wedge topology, which coincides
with the coarse wedge topology for trees that are order-complete.
A minor adaptation of this proof shows that every point t ∈ T in
the closure of a subset S of D is the limit of a well-ordered net from
D. Specifically, if t is not on a limit level, then t is in the closure
of S iff S meets infinitely many basic Vx(∅) based on immediate
successors of t; and then every choice function with domain ω for
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infinitely many of these Vx(∅) converges to t. If t is on a limit level,
then either the same thing occurs, or else there is a well-ordered
net 〈xξ : ξ < α〉 in T converging up to t from below, such that
S \ (t↑ ∪ t↓) meets Vxξ

for all ξ. But every neighborhood of t con-
tains Vxξ

\ t↑ for cofinally many ξ < α. So another choice function
gives a well-ordered net from S converging to t. �

Proof of Lemma 2.3. The preceding proof can be modified to char-
acterize those S ⊂ ω that have t in their closure. Simply replace
“meets” with “hits,” i.e., “meets in an infinite set.” Then we get a
family of appropriately situated dx having t in their closure, with
each dx in the closure of S. The only part that needs special
attention is the last case, where S hits only sets of the form Vxξ

\ t↑.
But in this case, if Ax ⊂ S then x /∈ t↓. The sets Ax come from a
base matrix tree and so there are enough well situated dx in this
case too. �

Examples 2.4 and 2.9 use a subset of Example 2.1 formed by
removing the topmost points (“leaves”) of T and D. In the relative
topology, this gives us a countably compact pseudo-radial space. If
T is of height ω1 + 1 the resulting subspace of X is sequential; this
is our second example.

Example 2.4. Let T be the full c-ary tree of height ω1 +1, and let
Λ(T ) denote the points of T on limit levels. We invoke CH to index
a base matrix tree by T \ Λ(T ). It is clear from what follows that
CH can be replaced by the axiom h = ω1. The individual levels of
T \ Λ(T ) then index MAD families of subsets of ω.

In the particular case of Example 2.1 that results from T , we let
X be the subspace ω ∪ S ∪ d(S) where S is the full binary tree of
height ω1, and let Y be the subspace ω∪S. Removal of the topmost
points of D and T does not affect the argument that every point of
ω has a cluster point in Y , nor the argument that no sequence in
ω can converge to a point in Y .
Theorem 2.5. X is sequential of order 2 and countably compact,
and Y is countably compact.

This theorem is an easy consequence of the foregoing remarks
and of the following lemma.
Lemma 2.6. S ∪ d(S) is countably compact and Fréchet-Urysohn.
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This lemma in turn follows easily from the next two:
Lemma 2.7. A rooted tree is Hausdorff in the coarse wedge topol-
ogy iff it is a semilattice (equivalently, a complete semilattice) with
respect to greatest lower bound.
Lemma 2.8. A Hausdorff tree is countably compact in the coarse
wedge topology iff it has finitely many minimal elements, and every
branch (i.e., maximal chain) of countable cofinality has a greatest
element.

Since S satisfies all the hypotheses in these two lemmas, it is
countably compact. Lemma 2.7 is trivial, while the second conclu-
sion in Lemma 2.6 is clear from Lemma 2.2 and the fact that every
point of S has only countably many predecessors.
Proof of Lemma 2.8. Necessity is clear. Conversely, let A be an
infinite subset of S. If A has an infinite chain, then its supremum
is a limit point of A. If not, let s be the g.l.b. of A. There are two
elements a0, b0 in A whose g.l.b. is s [Ny1, Theorem 3.2]. If there
is an an infinite subset B of A such that all pairs in B have s as
their g.l.b., then any 1-1 sequence in B converges to s. If not, we
can inductively define elements sn+1 > sn beginning with s0 = s,
and infinite subsets An+1 ⊂ An with A0 = A and an ∈ An such
that g.l.b.(an, am) = sn whenever n < m. Then an → supnsn.
This supremum exists since the sn are bounded above, and S is
Hausdorff. �

Lemma 2.6 now follows by applying the same argument to sub-
sets of D, to get every infinite subset A of D a limit point in T
unless A has an infinite chain. In this case, A has a limit point in
D itself.
Example 2.9. If h > ω1 then something needs to be done about
the points of D and T on limit levels of uncountable cofinality. The
ones in D can be omitted without affecting the countable compact-
ness argument, as can the leaves of T . However, the others cannot
be removed without destroying countable compactness: each t like
this has uncountably many immediate successors, and these would
no longer have a limit point. What we do instead is to refine the
topology by adding sets defined like Vt(s1, . . .sn)\ω to the topology
as a weak base at these problematic points. That is, if cf(ht(t)) > ω
we let Z(t) be the collection of sets of the form
Zt(s1, . . . sn; F ) = St(s1, . . . , sn)∪d(St(s1, . . . , sn))\F (F finite, t /∈ F )

where, as before, St(s1, . . . , sn) = [t↑\(s↑1∪· · ·∪s↑n)]; and we declare
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a set U to be open iff it contains a member of Z(t) for each t in U
at a limit level of uncountable cofinality and is a neighborhood (in
the original topology) of every other point it contains.

A point t ∈ T is in the closure of H ⊂ X\{t} in this finer topology
iff it is in the original closure of the members of Zt(s1, . . .sn; F )\{t}
that are themselves in the original closure of H . In particular,
all points of Zt(s1, . . .sn; F ) except t have neighborhoods in the
original topology that meet X \ ω in a subset of Zt(s1, . . .sn; F )
itself. Thus we need only add points of ω to expand Zt(s1, . . .sn; F )
to make an open neighborhood of t in the finer topology. Now
Lemma 2.3 continues to hold in this finer topology (in fact, there
are fewer cases to consider) and so it follows as with Example 2.4
that X is sequential. The proof that Y is countably compact in
this topology is substantially the same as with Example 2.4.

In the (very common!) models where t = h, each t on a limit level
of uncountable cofinality in T has sets of the form Zt(s1, . . .sn; F )∪
Ax as a base for its neighborhoods. This is because, if a subset I
of ω meets Ax for all x < t, then I will also hit infinitely many sets
of the form As where s is an immediate successor of t: were it not
so, we could subtract off finitely many As from I , and then the sets
Ax would trace a complete tower of cofinality ≥ t on what is left
of I , contradicting t = h = ht(T ). And now it follows that every
neighborhood of t meets I .

Similarly, if I ⊂ ω and t ∈ I, then t has infinitely many immedi-
ate successors s such that I has a subsequence converging to ds′ for
some s′ ≥ s. If t < h then the neighborhoods of t are more compli-
cated, but if t does not have infinitely many successors as described
just now, then some set of the form Zt(s1, . . .sn; F )∪ (ω \ I) is an
open neighborhood of t missing I .

3. An example with no nontrivial convergent sequences

Example 3.1. This example is built by transfinite induction on
the countable ordinals, one level at a time, levels alternating in
their basic description. Begin with ω = Y−1 and let T index a base
matrix tree on ω. Let D0 = T×{0} and let a base of neighborhoods
for each 〈t, 0〉 = dt be defined as before: it consists of all sets of the
form {dt}∪At\F where F is a finite subset of At. Let Y0 = T ×{1}.
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For each yt =: 〈t, 1〉 we pick a set St of denumerably many ds

indexed on the level of T immediately above t, and let a weak base
at yt consist of all sets of the form {yt} ∪ St \ F where F is a finite
subset of St.

After this, if Yβ has been defined, and α = β +1, we let Mα be a
MAD family of countable subsets of Yβ, while if α is a limit ordinal
and Dξ and Yξ have been defined for all ξ < α, we let Mα be a MAD
family of countable closed discrete subspaces of

⋃
{Yξ : ξ < α}. In

either case, for each M ∈ Mα, let TM index a base matrix tree on
M , and let TM be the union of all the TM (M ∈ Mα) with the
direct sum order. Let Dα = {dt : t ∈ TM} and let a weak base for
each dt be defined as the base was defined for dt ∈ M0. Yα and the
weak bases of its points are defined just as they were for α = 0,
with TM replacing T .

Let Y =
⋃
{Yα : −1 ≤ α < ω1} and let Z = Y ∪

⋃
α<ω1

Dα. Since
Z is weakly first countable, it is sequential. It is T1 and scattered;
in fact, it has ω as a dense set of isolated points, and it is easy to
see that Zα =

⋃
{Dξ ∪ Yξ : ξ < α} is open in Z for all α ∈ ω1 and

that each Yα and Dα is discrete in its relative topology, with Yα

closed in Zα+1 and Dα closed in Zα ∪ Dα. As defined here, Z is
not countably compact, but it is easy to extend it to a weakly first
countable (hence sequential), countably compact T1 space.

Lemma 3.2. Y is a countably compact subspace in which every
convergent sequence is eventually constant.

Proof. Countable compactness is proven similarly to the previous
examples, as follows. Let {yn : n ∈ ω} be an infinite subset of Y .
We may assume that either there exists α such that yn ∈ Yα for all
n or else that yn+1 is in a later Yα than is yn. In the latter case,
{yn : n ∈ ω} is a closed discrete subspace in the relative topology of
Zγ where γ is the supremum of the α involved, and so there exists
M ∈ Mγ that meets {yn : n ∈ ω} in an infinite set. In the former
case, there trivially exists such an M in Mα.

In either case, there exists At, t ∈ TM , almost contained in the
set of all yn ∈ M ; so too As ⊂∗ {yn : n ∈ ω} ∩ M for every
s immediately succeeding t in TM ; and so yt is a limit point of
{yn : n ∈ ω}. �
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Although it is not strictly needed for showing that Y has only
trivial convergent sequences, it is convenient to show that Z1 is
locally countable and locally paracompact. Each basic neighbor-
hood of dt ∈ D0 is the one-point compactification of a countable
discrete space. This is also true of every weak basic neighborhood
of yt ∈ Y0. The points of St are all on the same level of T, so their
basic neighborhoods are almost disjoint. There thus exist basic
neighborhoods, one for each point of St, that form a disjoint col-
lection. The union of this collection, together with yt, is an open
neighborhood of yt that is homeomorphic to the well-known Arens
space S2; this is a regular space and, being countable, it is para-
compact. No sequence of isolated points of U can converge to yt:
the corresponding fact about S2 is well known. Since U is open,
there is no sequence of distinct points of Y converging to yt.

Let 1 < α < ω1 and suppose that, for all β < α, no sequence of
points in Y can converge to any point of Yβ . Each point of Yα has
a weak neighborhood W in Z homeomorphic to S2, constructed in
the same way as an actual neighborhood of a point of Y0. List the
relatively isolated points of W as {yn : n ∈ ω}. If α = β + 1 then
yn ∈ Yβ for all n, while if α is a limit ordinal, then yn ∈ βn for some
βn < α, and the βn converge to α. To make an actual neighborhood
for y, we attach neighborhoods to each yn. Let Vn be an open
neighborhood of yn with all other points taken from Zβ [resp Zβn ].
Let U = Y ∩

⋃
n∈ω Vn. Then U is a Y -open neighborhood of y, and

it is enough to show that no sequence from U \ W converges to y.
The rest of the proof is a faint echo of the proof of [Ny2, Theorem

1.1]. Let 〈pn : n ∈ ω〉 be a 1-1 sequence of points of U \ W with
y in its closure. Since the sequence does not converge to y0, there
is an infinite C0 ⊂ ω such that {pn : n ∈ C0} does not have y0

in its closure. Continue to inductively define Ck+1 ∈ [Ck]ω so that
{pn : n ∈ Ck+1} does not have yk+1 in its closure. Finally, let C be
an infinite set almost contained in Ck for all k. Then {pn : n ∈ C}
does not have any yn in its closure, so U \ {pn : n ∈ C} is a
neighborhood of y witnessing that {pn : n ∈ ω} does not converge
to y. �

4. More about subsequential T2 spaces

Now we will show the corollary of Theorem E mentioned in the
introduction. Here they are again.



SEQUENTIAL EXTENSIONS OF COUNTABLY COMPACT SPACES 663

Theorem E. Let Y be a subsequential T2 space and let y be a non-
isolated point of Y . If X is a countably compact T2 space containing
Y, then there is a nontrivial sequence in X converging to y.
Corollary. In a subsequential T2 space, every countably compact
subset is closed.

Proof. Let S be T2 and let Z be a countably compact subset of
S. If y ∈ Z \ Z, then Y = Z ∪ {y} is countably compact and y is
nonisolated in Y but there is no sequence in Y converging to y. By
Theorem E, Y cannot be embedded in a sequential space, and so
neither can S. �

In the terminology of [IN], this corollary says every subsequential
T2 space is C-closed:
Definition 4.1. A topological space is called C-closed [resp. a
KC-space] iff every countably compact [resp. compact] subset is
closed.

A well-known elementary fact is that every T2 space is a KC-
space, while every KC-space is clearly T1. The property of being
C-closed is much more restrictive. For instance, in [IN] it was shown
that a sequentially compact T2 space is sequential iff it is C-closed.
The proof obviously extends to:
Theorem F. A countably compact KC-space is sequential iff it is
sequentially compact and C-closed.

The following simple examples show that “KC-space” cannot be
weakened to “T1-space”.

Example 4.2. Let S2 be the Arens space mentioned in the preced-
ing section, with underlying set {x}∪(ω×(ω+1)), with the product
topology on ω× (ω + 1) and the cofinite subsets of {x}∪ (ω ×{ω})
containing x forming a weak base for the neighborhoods of x.

Let Z be the one-point compactification of ω×(ω+1) with ∞ as
the extra point. Let X be the quotient space of S2 and Z formed by
identifying the two copies of ω × (ω + 1). X is sequential, because
sequentiality is preserved by quotient maps, and S2 is sequential.
Any infinite subset of X meets either the top row or ω × ω in an
infinite set, and so either x or ∞ is an accumulation point, so X is
countably compact (and countable, hence compact).
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However, X is not a KC-space, and a fortiori not C-closed, be-
cause X \ {x} is compact but not closed.

Example 4.3. This time, let Z be the one-point compactification
of ω×ω with ∞ as the extra point. Let X be the quotient space of
S2 and Z formed by identifying the two copies of ω×ω. This space
has all the properties listed for the preceding one, except that it
is (ω × ω) ∪ {x} that is compact but not closed: each column is a
sequence converging to two points, one of which is ∞. However, X
is T1.

Example 4.3 has a subspace relevant to the following rephrasing
of Theorem F:

Theorem F′. A countably compact, KC-space is sequential ⇐⇒
it is sequentially compact and every countably compact subset is
compact.

Here, even weakening “KC-space” to “convergent sequences have
unique limits” results in a false statement, but in the opposite di-
rection from Example 4.2, even for subsequential spaces.

Example 4.4. Let Y be the subspace of Example 4.3 obtained by
removing ω × {ω}. Convergent sequences in Y have unique limits,
and Y is sequentially compact and countable, so every countably
compact subset (including Y itself) is compact. Also, Y is subse-
quential since it is a subspace of Example 4.3, but it is not sequential
because x is in the closure of ω ×ω while every sequence in Y that
converges to x is eventually constant.

The following problem, first posed at the 1980 Spring Topology
Conference, remains unsolved:

Problem 2. Is every C-closed compact T2 space sequential?

In any model where the answer to Problem 2 is Yes, so is the
answer to Problem 1: see the Corollary. These models include those
where MA or 2ω < 2ω1 [IN] holds. More generally:

Theorem G. [vD, Corollary 6.4] If 2ω < 2t then every C-closed
compact T2 space is sequentially compact, hence sequential.
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