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A NOTE ON SURLINDELÖF SPACES

O. OKUNEV AND E. REZNICHENKO

Abstract. We consider separable compact subspaces of the
spaces of continuous functions with the topology of pointwise
convergence on Lindelöf spaces and prove, in particular, that
it is consistent that all such compact subspaces are metrizable.

Introduction

An important topic in the theory of function spaces with the
topology of pointwise convergence is the description of subspaces,
in particular, compact subspaces of the spaces of the form Cp(X)
where X belongs to some class of spaces. In this article we present
a few results concerning surlindelöf spaces, that is, subspaces of
Cp(X) where X is a Lindelöf space [2].

About 1985 the second author proved (see [4])

Theorem 0.1. (MA(ω1)) If K is a separable compact space such
that Cp(K) is Lindelöf, then K is metrizable.

A few years later the first author obtained the following result[10]:

Theorem 0.2. (MA(ω1)) If X is a space whose all finite powers
are Lindelöf, and K is a separable compact subspace of Cp(X), then
K is metrizable.

In both cases the theorems were originally formulated with
the assumption of MA+¬CH, but in fact only MA(ω1) was used
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in the proofs. Note that both theorems need some set-theoretic
assumptions, because the equality b = ω1 implies the existence of a
nonmetrizable compact space X whose all finite powers are heredi-
tarily separable [13]; by the theorem of Zenor [14], all finite powers
of Cp(X) are hereditarily Lindelöf.

Theorems 0.1 and 0.2 have even more in common than it may
appear; in fact, 0.1 would be a corollary of 0.2 if we had a positive
answer to the following problem, stated many times by Arhangel’skii
(see e.g. [3]):

Problem 0.3. Is it true that if Cp(X) is Lindelöf, then Cp(X)×
Cp(X) is Lindelöf? Is this true if X is compact?

On the other hand, if K is a compact subspace of Cp(X) for some
X whose countable power is Lindelöf, then Cp(K) is Lindelöf [1], so
a version of Theorem 0.2 for subspaces of Cp(X) whose countable
power is Lindelöf can be obtained from Theorem 0.1. The natural
question that arises is

Question 0.4. Does the following statement follow from MA(ω1):
If all finite powers of X are Lindelöf and K is a compact subspace
of Cp(X), then Cp(K) is Lindelöf? Is this statement consistent with
ZFC?

Note that there is an example, under CH, of a compact, separa-
ble, zero-dimensional space K such that all finite powers of Cp(K, 2)
are Lindelöf, and Cp(K) is not Lindelöf [11]; the space K embeds
in Cp(Cp(K, 2)), so the statement in Question 0.4 is false for K.

In this article we try to find a common generalization for Theo-
rems 0.1 and 0.2; the most natural candidate would be

Question 0.5. Assume MA(ω1); must every surlindelöf, compact,
separable space be metrizable?

(This question is essentially the same as Problem IV.1.8 in [4].)
We do not know the answer to this question; in this article we

prove that the answer “yes” follows from the Proper Forcing Axiom
and is consistent with ZFC.

All spaces below are assumed to be Tychonoff (that is, completely
regular Hausdorff). We mostly use terminology and notation as in
[7], with the exception that the tightness of a space X is denoted
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by t(X). The i-weight of a space X , iw(X) is the minimum weight
of a Tychonoff space Y such that X has a continuous bijection to
Y (or, in different words, the minimum cardinality of a family of
continuous real-valued functions that separates points of X). A
space X is called ℵ0-monolithic if the closure of every countable set
in X has a countable network.

We abbreviate as MA(ω1) the Martin’s Axiom for families of
dense sets of cardinality ω1, and PFA is an abbreviation for the
Proper Forcing Axiom. A subset C of a partially ordered set P
is called centered if every two elements of C are compatible; it is
well known that MA(ω1) implies that every uncountable partially
ordered set with ccc has an uncountable centered subset.

We denote by Cp(X, Z) the space of all continuous functions from
X to Z equipped with the topology of pointwise convergence (that
is, the topology of the subspace of the set of all functions from X to
Z, ZX , with the Tychonoff product topology; see [4] for a thorough
presentation of the theory of spaces of functions equipped with this
topology). The space Cp(X, R) is denoted as Cp(X).

For every x̄ = (x1, . . . , xn) ∈ Xn and an open set U ⊂ Rn, we
denote

O(x̄, U) = { f ∈ Cp(X) : (f(x1), . . . , f(xn)) ∈ U }.
Note that if for every n ∈ ω, Bn is an open base for Rn, then the

family of all sets of the form O(x̄, U), x̄ ∈ Xn, U ∈ Bn, n ∈ ω, is
an open base for the topology of Cp(X).

The dual mapping p∗ : Cp(Y ) → Cp(X) of a continuous mapping
p : X → Y is defined by the rule: p∗(g) = g ◦ p for all g ∈ Cp(Y ).
It is well known (see e.g., [4]) that p∗ is always continuous, that
it is an embedding of Cp(Y ) into Cp(X) if p(X) = Y , and that
p∗(Cp(Y )) is closed in Cp(X) if p is quotient.

For a subset A of Cp(X), the reflection mapping ΨXA : X →
Cp(A) is defined by the rule:

ΨXA(x)(a) = a(x) for all x ∈ X and a ∈ A.

It is easy to verify that the mapping ΨXA coincides with the
diagonal product ∆A : X → RA. Thus, ΨXA is always continuous,
and is one-to-one if and only if A separates points of X . In partic-
ular, if X is compact and A separates points of X , then ΨXA is an
embedding of X into Cp(A).
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For every point x ∈ X , x̂ is the evaluation function on Cp(X)
defined by the rule: x̂(f) = f(x) for all f ∈ Cp(X). Obviously, for
every x ∈ X and A ⊂ Cp(X), ΨXA(x) = x̂|A.

A space Z is called an Eberlein-Grothendieck space (or,
shortly, an EG-space) if Z is homeomorphic to a subspace of Cp(K)
for some compact space K. As we already mentioned, Z is a
surlindelöf space if it is homeomorphic to a subspace of Cp(X)
for some Lindelöf space X .

1. Surlindelöf, separable compact spaces

Theorem 1.1. (MA(ω1)) Let K be a separable, compact space.
Then every Lindelöf subspace of Cp(K) is hereditarily Lindelöf.

Proof. Let X be a Lindelöf subspace of Cp(K); assume for con-
tradiction that X is not hereditarily Lindelöf. By the Baturov
Theorem [5], then X contains a discrete subspace S of cardinality
ω1; we may assume without loss of generality that S is dense in X .

For every n ∈ ω let Bn be a countable open base for Rn. Then
for every s ∈ S there are an ns ∈ ω, ȳs ∈ Kns and Us, Vs ∈ Bns

such that Us ⊂ Vs, s ∈ O(ȳs, Us) and O(ȳs, Vs) ∩ X = {s}.
By the standard uncountability argument, we may assume with-

out loss of generality that there are n ∈ ω and U, V ∈ Bn such that
ns = n, Us = U and Vs = V for all s ∈ S.

Let h : Rn → R be a continuous function such that h(U) = {1}
and h(Rn \V ) = {0}. The induced mapping h∗ : Cp(X)n → Cp(X)
defined by the rule h∗(g) = h◦g for every g ∈ Cp(X)n = Cp(X, Rn)
is continuous, because it is the restriction to Cp(X, Rn) of the prod-
uct of |X | copies of the continuous mapping h.

Let K̂ = ΨKX(K) ⊂ Cp(X) and K0 = h∗(K̂n); for every
s ∈ S put zs = h∗(ȳs). Then K0 is a separable compact sub-
space of Cp(X), and for every s ∈ S, zs ∈ K0, zs(s) = 1 and
zs(X \ {s}) = {0}. Let M be a dense, countable subset of K0,
Z = { zs : s ∈ S } \M , S0 = { s ∈ S : zs ∈ Z }, and F the closure of
Z in K0. Note that Z is an uncountable discrete subset of Cp(X)
(because ŝ(zs) = 1 and ŝ(zt) = 0 if t 6= s), and F is a nowhere
dense, compact subspace of K0.

Since X has the discrete dense subset S of cardinality ω1, we
have iw(Cp(X)) = d(X) = ω1 (see [9]) or Theorem I.1.5 in [4]),
and therefore, the weight of K0 is equal to ω1.
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By Reznichenko’s Lemma (see Lemma IV.8.9 in [4]) we can find a
countable discrete subset D = { di : i ∈ ω } of M so that F = D\D;
note that every neighborhood of F contains all but finitely many
elements of D.

Put T = S0 \ S0, and for every i ∈ ω,

Pi = { x ∈ X : |di(x)| ≥ 1/2 }
and

P =
⋂

k∈ω

⋃

i≥k

Pi.

Obviously, P is a Fσδ-set in X .
For every t ∈ T , the evaluation function t̂ is continuous, and

t̂(z) = z(t) = 0 for all z ∈ Z; it follows that there is a k ∈ ω such
that t /∈ Pi for all i ≥ k, so t /∈ P .

On the other hand, if s is in S0, then zs(s) = 1, so di(s) ≥ 1/2
for infinitely many elements of D. Thus,

S0 ⊂ P and T ∩ P = ∅.
It follows that S0 is an Fσδ-set in its closure, and hence in X . The
contradiction now follows from the next observation:

Lemma 1.2. (MA(ω1)) If X is a Lindelöf EG-space, then every
Fσδ-subspace of X is Lindelöf.

For a proof, see, e.g., Lemmas 2 and 3 in [10]. �

Corollary 1.3. (MA(ω1)) If K is a separable, compact surlindelöf
space, then there is a hereditary Lindelöf subspace X of Cp(K) such
that K is homeomorphic to a subspace of Cp(X).

Proof. Let X0 be a Lindelöf space such that K ⊂ Cp(X0); put
X = ΨX0K(X0). Then X is a Lindelöf subspace of Cp(K), and
by Theorem 1.1, X0 is hereditarily Lindelöf. Since K ⊂ Cp(X0),
the set X separates points of K, so the reflection mapping ΨKX

embeds K in Cp(X). �

Recall that a space X is called an L-space if X is hereditarily
Lindelöf and not separable. A space S is called left-separated if
there is a well-ordering ≤ on S such that for every s ∈ S, the set
{ t ∈ S : s ≤ t } is open in S. It is well-known that every L-space
contains a left-separated subspace of cardinality ω1.
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Corollary 1.4. (MA(ω1)) If K is a separable, non-metrizable,
compact surlindelöf space, then there is an L-subspace X of Cp(K)
such that K is homeomorphic to a subspace of Cp(X).

Indeed, let X be as in Corollary 1.3. Then X is hereditarily
Lindelöf and non-separable; otherwise we would have w(K) =
iw(K) ≤ iw(Cp(X)) = d(X) = ω, and K would be metrizable.

Theorem 1.5. (MA(ω1)) Let K be a compact space of countable
tightness. Then Cp(K) contains no L-subspaces.

Proof. Suppose X is an L-subspace of Cp(K). Then X has a left-
separated hereditarily Lindelöf subspace S = { sα : α < ω1 } where
for every α < ω1, the set { sβ : α ≤ β } is open in S. For every
n ∈ ω fix a countable open base Bn for Rn. Then for every α < ω1

there are nα ∈ ω, ȳα ∈ Knα and Uα, Vα ∈ Bnα such that Uα ⊂ Vα,
sα ∈ O(ȳα, Uα), and the set Wα = O(ȳα, Vα) ∩ S is contained in
{ sβ : α ≤ β }. By a standard uncountability argument, we may
assume (taking an uncountable subspace of S instead of S) that
nα = n, Uα = U and Vα = V for all α ∈ ω1. Let h : Rn → R
be a continuous function such that h(U) = {1} and h(Rn \ V ) =
{0}, and let h∗ : Cp(S, Rn) = Cp(S)n → Cp(S) be the induced
mapping. Put K̂ = ΨKS(K) and K1 = h∗(K̂n); for every α < ω1

put zα = h∗(x̄α). Then K1 is a compact subspace of Cp(S); we have
t(K1) ≤ ω, because the tightness of compact spaces is not raised
by finite products and continuous mappings [8], [4]. Obviously,
zα(sβ) = 0 whenever β < α, and zα(sβ) = 1 if sβ ∈ Wα.

For every m ∈ ω let φm : Cp(S)m → Cp(S) be the mapping
defined by the rule φm(f1, . . . , fm) = max(f1, . . . , fm) and let Km =
φm(Km

1 ). Since φm is continuous, Km is a compact subspace of
Cp(S) and t(Km) ≤ ω. For every finite subset p of ω1 denote
Wp =

⋃
{Wα : α ∈ p } and zp = max{ zα : α ∈ p }. Then zp ∈ K|p|,

zp(sβ) = 0 for all β < min p, and zp(sα) = 1 if sα ∈ Wp.
We now use the argument as in [12]. Let P be the set of all finite

subsets p of ω1 such that whenever α, β ∈ p and α < β, we have
sβ /∈ Wα, ordered by the inverse inclusion. Then P is a partially
ordered set of cardinality ω1.

If P satisfied the countable chain condition, then by MA(ω1),
it would have an uncountable centered subset C; then

⋃
C would

be an uncountable discrete subspace of S, in contradiction with S
being hereditarily Lindelöf.
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Thus, P must have an uncountable antichain. By the standard
∆-lemma argument, we can find an uncountable antichain T =
{ pi : i ∈ ω1 } in P so that all elements of T have the same cardinality
m, and α < β whenever α ∈ pi, β ∈ pj and i < j. By the
incompatibility, we have pi ∩ Wpj 6= ∅ whenever j < i.

Put
A = { zpi : i < ω1 }.

Then A is an uncountable set in Km, and for every α ∈ ω1 all
but countably many elements of A are equal to 0 at sα. It follows
that every neighborhood of the zero function 0 in Cp(S) contains
all but countably many points of A, so 0 is a limit point for A; in
particular, 0 ∈ Km. On the other hand, if B is a countable subset
of A, then there is an ordinal l < ω1 such that B ⊂ { zpi : i < l },
so pl ∩Wpi 6= ∅, and hence max{ zpl

(sα) : α ∈ pi } = 1 for all i with
zpi ∈ B. Let x̄ be a point of Sm whose set of coordinates is equal
to pl; then we have

O
(
x̄, (−1/2, 1/2)m

)
∩ B = ∅,

so 0 is not a limit point of B. Thus, Km has uncountable tightness
at the point 0, a contradiction that completes the proof. �

Corollary 1.6. (MA(ω1)) Every separable, surlindelöf compact
space of countable tightness is metrizable.

Remark 1.7. Corollary 1.4 can be viewed as a common general-
ization of Theorems 0.1 and 0.2. Indeed, each of the conditions
“Cp(K) is Lindelöf” and “K is a subspace of Cp(X) where all finite
powers of X are Lindelöf” implies the countability of the tight-
ness of K (see Arhangel’skii-Pytkeev Theorem II.1.1 and Asanov
Theorem I.4.1 in [4]).

It is proved in [2] that PFA implies that every surlindelöf com-
pact space has countable tightness. Thus,

Theorem 1.8. (PFA) Every surlindelöf separable compact space is
metrizable.

Theorem 1.9. (PFA) Every surlindelöf compact space is ℵ0-mo-
nolithic.
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The consistency of PFA with ZFC depends on the existence of
large cardinals; it was noted in [2] that in fact the countability
of tightness of every surlindelöf compact space follows from the
following statement:

(*) Every compact space of weight ω1 and uncountable tightness
contains a homeomorphic copy of ω1 + 1.

It is easy to see that (*) follows from the next statement:
(**) If Z is a closed preimage of ω1, and the character of Z is at

most ω1, then Z contains a homeomorphic copy of ω1.
Indeed, let X be a compact space with w(X) = t(X) = ω1. Then

X contains a free sequence S = { sα : α < ω1 }; it is easy to see
that the set Z = { sα : α < ω1 } has a closed continuous mapping
onto ω1 + 1. By (**), Z must contain a homeomorphic copy of ω1.
Since ω1 + 1 is the only compactification of the space ω1, X must
contain a homeomorphic copy of ω1 + 1.

It is shown in [6] that there is a model of ZFC where both (**)
and MA(ω1) hold. Thus,

Theorem 1.10. It is consistent with ZFC that every surlindelöf
compact space is ℵ0-monolithic.
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