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MICHAEL SELECTION THEOREM FOR MAX-PLUS
COMPACT CONVEX SETS

MYKHAILO ZARICHNYI

Abstract. We prove a counterpart of the Michael selection
theorem for max-plus compact convex sets. The proof is based
on the properties of Milyutin map of the spaces of idempotent
probability measures.

1. Introduction

The Michael selection theorem for convex sets has many
applications not only in topology but also in convex analysis as
well as another parts of mathematics. In particular, implicitly,
selection theorems often imply softness theorems, which, in turn,
are ingredients of characterization results for maps in topology
of infinite-dimensional manifolds (see [9]). Of interest are also
selection theorems for generalized convex structures (see, also
selection theorems for generalized convex structures (see, e.g., [10]).
The aim of this note is to prove a selection theorem for the so-called
max-plus (tropical) convex sets. For reader’s convenience, we do
not formulate the result in the most general setting.

Let Rmax denote the set R ∪ {−∞} endowed with the operation
max. If a, b ∈ Rn, a = (a1, . . . , an), b = (b1, . . . , bn), then we
let a ⊕ b = (max{a1, b1}, . . . ,max{an, bn}). If λ ∈ R, then we let
λ�a = (λ+a1, . . . , λ+an). We extend the operation⊕ over Rmax by
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letting (−∞)⊕ a = (−∞, . . . ,−∞). A subset A in Rn is said to be
max-plus convex if α�a⊕β�b ∈ A for all a, b ∈ A and α, β ∈ Rmax

with α ⊕ β = 0. The max-plus convexity (or tropical convexity, in
another terminology) introduced in [12] finds many applications in
research on optimization problems [13], abstract convex analysis
[8], and phylogenetic analysis [2]. Many results of convex geometry
have their counterparts in the max-plus case (see [3], [1] and the
references therein).

2. Preliminaries

By I we denote the idempotent probability measure functor (see
[11]). Below we provide some necessary information on the proper-
ties of I for the convenience of the reader.

Let C(X) denote the set of all continuous functions defined on a
compact Hausdorff space X . A functional µ : C(X) → R is called
an idempotent probability measure (a Maslov measure) if

(1) µ(cX) = c;
(2) µ(c� ϕ) = c� µ(ϕ);
(3) µ(ϕ⊕ ψ) = µ(ϕ) ⊕ µ(ψ).

(Here cX denotes the constant function on X taking the value c, ⊕
is the pointwise maximum, and � the addition of a constant and a
function.) We endow the I(X) with the weak* topology. A base of
this topology is formed by the sets

O(µ;ϕ1, . . . , ϕn; ε) = {ν ∈ I(X) | |µ(ϕi)−ν(ϕi)| < ε, i = 1, . . . , n},

where ϕ1, . . . , ϕn run through the set C(X), n ∈ N, and ε > 0.
If f : X → Y is a continuous map of compact Hausdorff spaces,
then we define I(f) : I(X) → I(Y ) as follows: I(f)(µ)(ϕ) = µ(ϕf),
µ ∈ I(X), ϕ ∈ C(Y ).

For any x ∈ X , we denote by δx ∈ I(X) the functional acting by
the formula δx(ϕ) = ϕ(x), ϕ ∈ C(X).

Let µ ∈ I(X). The support of µ (written supp(µ)) is the minimal
closed subset A of X satisfying the condition: if ϕ, ψ ∈ C(X) and
ϕ|A = ψ|A, then µ(ϕ) = µ(ψ).

The following result is proved in [11].
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Theorem 2.1. Let X be a compact metrizable space. Then there
exists a zero-dimensional compact metrizable space X and a con-
tinuous map f : X → Y for which there exists a continuous map
s : Y → I(X) such that supp(y) ⊂ f−1(y), for every y ∈ Y .

This theorem is a counterpart in the theory of idempotent proba-
bility measures of the classical Milyutin theorem on maps admitting
averaging operators for continuous functions [5].

The following is a counterpart, for the idempotent probability
measures, of the barycenter map of probability measures in linear
topological spaces. Let A ⊂ Rn be a compact max-plus convex
subset. We denote by x1, . . . , xn the coordinate functions Rn → R.
Given µ ∈ I(A), we let β(µ) = (µ(x1), . . . , µ(xn)). It is proved
in [11] that the map β is well-defined and continuous. The point
β(µ) ∈ Rn is called the idempotent barycenter of µ.

3. Selection theorem

Theorem 3.1. Let F : X → Y be a lower semicontinuous max-plus
convex valued map of compact metrizable spaces X, Y and Y ⊂ Rn.
Then this map admits a continuous selection.

Proof. Let g : Z → X be a continuous map of a zero-dimensional
compact metric space Z for which there exists a continuous map
s : X → I(Z) with the property I(g)(s(x)) = δx, x ∈ X .

By the zero-dimensional Michael selection theorem [4], there
exists a continuous selection h : Z → Y of the multivalued map
Fg : Z → Y . The map x 7→ I(h)(s(x)) maps X into I(Y ) and we
have supp(I(h)(s(x))) ⊂ F (x), for every x ∈ X . Therefore, the
idempotent barycenter f(x) = β((I(h)(s(x))) is defined and is an
element of the set F (x). Thus, the map f is a continuous selection
of F . �

The following definition is due to E. Shchepin [7].

Definition 3.2. A map f : X → Y is said to be soft provided that
for every commutative diagram

(3.1) A� _

��

ϕ // X

f
��

Z
ψ

// Y
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such that Z is a paracompact space and A is a closed subset of Z
there exists a map Φ: Z → X such that fΦ = ψ and Φ|A = ϕ.

It is known [7] that the open maps with convex preimages are
soft. The idea of the proof works also in the max-plus convex case.

Theorem 3.3. Let X ⊂ Rn be a compact space and f : X → Y be
an open map onto a compact metrizable space with max-plus convex
preimages. Then the map f is soft.

Proof. Let A be a closed subset of a paracompact space Z and
ϕ : A→ X , ψ : Z → Y making diagram (3.1) commutative. Define
a multivalued map F : Z → X as follows

F (z) =

{
{ϕ(z)}, if z ∈ A,
f−1(ψ(z)), if z /∈ A.

It is easy to see that the map F is lower semicontinuous and max-
plus convex valued. By Theorem 3.3, there is a continuous selection
Φ: Z → X of F . Clearly, Φ is a required map. �

4. Remarks and open questions

The idea to apply Milyutin maps in order to derive the con-
vex selection theorem from the zero-dimensional selection theorem
belongs to E. Shchepin [6].

The results of this note can be generalized for max-plus
convex subsets in spaces more general than euclidean ones, e.g.,
in the spaces Rτ , for arbitrary cardinal number τ . We leave to the
reader the problem of generalization of the selection theorem over
noncompact max-plus convex sets.
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