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COMPOSANT STRUCTURE OF
AN INTERESTING INVERSE LIMIT SPACE

RANJITH MUNASINGHE

Abstract. We present an interesting inverse limit space on
the closed interval with one bonding map. Even though the
bonding map satisfies the property that f(x) ≥ x for all x,
we find that the composant structure of the inverse limit is
very complex and interesting. In addition to the composant
structure, we describe unstable sets of the inverse limit.

1. Introduction

Let I be the closed interval [0, 1] and f : I → I be a con-
tinuous function. Let (I, f) = {(x0, x1, x2, . . .) : f(xi+1) = xi}.
We denote elements of (I, f) by subbarred lowercase letters (i.e.,
x = (x0, x1, x2, . . .)) and utilize the metric d(x, y) =

∑∞
i=0

|xi−yi|
2i .

(I, f), which is called the inverse limit space of f , is an example
of what R. H. Bing [1] has called a snake-like continuum. In [2],
Marcy Barge and Joe Martin show that (I, f) can be realized as a
global attractor in the plane.

A continuum is a compact, connected metric space. A compact
connected subspace of a continuum is called a subcontinuum. A
continuum X is said to be snake-like if and only if, for each ε > 0,
there is a finite open cover {g1, g2, . . . , gn} of the continuum X so
that (i) diam(gi) < ε for each i = 1, 2, . . . , n and (ii) gi ∩ gj 6= φ if
and only if | i − j |≤ 1. Snake-like continua have also been called
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chainable. A proof that (I, f) is a continuum can be found in [3]. It
is easy to show that (I, f) is snake-like. For each n = 0, 1, 2, . . ., let∏

n : (I, f) → I be the nth projection map defined by
∏

n(x) = xn.
For each n,

∏
n is continuous. For x ∈ (I, f), x = (x0, x1, x2, . . .),

let the induced homeormorphism f̂ : (I, f) → (I, f) be defined by
f̂(x) = (f(x0), x0, x1, x2, . . .). It is straightforward to verify that
f̂ is a homeomorphism of (I, f) onto (I, f). The statement that
X is an arc means that X is a homeomorphic image of the closed
interval [0, 1].

Let [a, b] denote the smallest closed interval which contains both
a and b and let (a, b) denote the corresponding open interval.

The following theorem describes how to construct subcontinua
of (I, f). The proof of the theorem is easy and therefore, we omit
the proof.

Theorem 1.1. Let f : I → I be a continuous function and K be a
subcontinuum of (I, f).

(1) For each n = 0, 1, 2, . . .,
∏

n(K) is a closed interval.
(2) For each n = 0, 1, 2, . . ., f(

∏
n+1(K)) =

∏
n(K).

(3) If {Jn}∞n=0 is a sequence of closed intervals so that f(Jn+1) =
Jn for each n = 0, 1, 2, . . ., then there is a unique subcontin-
uum H of (I, f) with

∏
n(H) = Jn for each n = 0, 1, 2, . . ..

(4) If there is a positive integer N so that f maps
∏

n+1(K)
homeomorphically onto

∏
n(K) whenever n ≥ N , then K is

an arc.
(5) Let x, y ∈ (I, f) and let K be the smallest subcontinuum of

(I, f) which contains both x and y. (That is, if x, y ∈ H,
a subcontinuum of (I, f), then K ⊆ H.) Then, for each
k = 0, 1, 2, . . .,

∏
k(K) = cl{∪∞n=kf

n−k([xn, yn])}.
(6) If f is onto, then K = (I, f) if and only if

∏
n(K) = I for

each n = 0, 1, 2, . . ..

2. Composants and unstable sets

Definition 2.1. Let X be a continuum and x ∈ X. Then the com-
posant of x, denoted C(x), is the union of all proper subcontinua
of X containing x.
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Definition 2.2. Suppose that f : I → I is continuous and that
x ∈ (I, f). Then the unstable set of x, denoted U(x), is the set

{y ∈ (I, f) : lim
n→∞ d(f̂−n(x), f̂−n(y)) = 0}.

Notice that (1) x ∈ U(x), (2) y ∈ U(x) if and only if x ∈ U(y),
and (3) if x ∈ U(y) and y ∈ U(z), then x ∈ U(z). Therefore,
the relation defined by the statement that x ∼ y if and only if
x ∈ U(y) is an equivalence relation. That is, the unstable sets of
(I, f) partition (I, f).

We will use the following characterization of unstable sets of
(I, f) which is easy to establish.

Lemma 2.3. Let x = (x0, x1, x2, . . .) and y = (y0, y1, y2, . . .) be
points of (I, f). x and y are in the same unstable set if and only if
limn→∞ | xn − yn |= 0.

The proofs of theorems 2.4 and 2.5 are found in [4].

Theorem 2.4. If f : I → I is continuous and U is an unstable set
in (I, f), then U is connected.

Unstable sets of (I, f) partition (I, f) into connected subsets,
while, in general, composants tend to intersect with each other.
When the bonding map has interesting dynamics, the composants
of (I, f) tend to align with unstable sets of (I, f) to some extent.

Theorem 2.5. Suppose that f : I → I is continuous and f2 has a
dense orbit. Then for each x ∈ (I, f), C(x) ⊆ U(x).

The reverse inclusion, U(x) ⊆ C(x), need not hold even if f2

has a dense orbit. For example, it is shown in [4] that the inverse
limit of the full tent map has two composants that lie in the same
unstable set.

In the next section, we define a map f that has the following
properties: f2 does not have a dense orbit, (in fact, f(x) ≥ x for
each x ∈ I); (I, f) has an unstable set that contains all but one
of its uncountably many composants; and (I, f) has a composant
that contains all but one of its countably many unstable sets.
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3. An interesting inverse limit space

For each n = 0, 1, 2, . . ., let pn = 1
2n and qn = 3

2n+2 . Let f : I → I
be the continuous function which is linear on the intervals [p0, q0],
[q0, p1], [p1, q1], [q1, p2], . . ., [pn, qn], [qn, pn+1], . . ., with the values
f(0) = 0, f(q0) = p0, and for each n = 1, 2, 3, . . ., f(pn−1) = pn−1

and f(qn) = pn−1 at the end points of the intervals.
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Graph of the function f

Let p∞ = (0, 0, 0, . . .) and for each n = 0, 1, 2, . . ., let pn =
(pn, pn, pn, . . .). Let In = [pn, pn−1) for n = 1, 2, 3, . . ., and let
I0 = {1}, I∞ = {0}. For each x ∈ (I, f), x = (x0, x1, x2, . . .), and
for each nonnegative integer i, let si(x) = ni where xi ∈ Ini . Notice
that ni = ∞ for some nonnegative integer i if and only if x = p∞.
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We notice that pn and p∞ are points of (I, f) and that for each
n ≥ 0, {si(pn)}∞i=0 is the constant sequence with every term equal
to n.

The following theorem describes the unstable sets of (I, f) for
the function f .

Theorem 3.1. Let f : I → I be the function defined above. Then,
for each x ∈ (I, f), {si(x)}∞i=0 is a nondecreasing sequence. More-
over,

(1) if limi→∞ si(x) = k, then x ∈ U(pk), and
(2) if {si(x)}∞i=0 does not converge (i.e., increases without a

limit), then x ∈ U(p∞).

Proof: Suppose that x = (x0, x1, x2, . . .) ∈ (I, f). Since for each
x ∈ I, f(x) ≥ x for each i = 0, 1, 2, . . ., we have f(xi+1) = xi ≥
xi+1. Therefore, for each i = 0, 1, 2, . . ., si+1(x) ≥ si(x); that is,
{si(x)}∞i=0 is a nondecreasing sequence.

To see (1), suppose that limi→∞ si(x) = k. If k = 0, then x = p0,
and therefore, x ∈ U(p0). If k > 0, then there is a positive integer
M so that if i ≥ M , then si(x) = k. That is, if i ≥ M , then
xi ∈ [pk, pk−1). This implies that limi→∞ xi = pk, and therefore,
x ∈ U(pk).

Next, to see (2), suppose that limi→∞ si(x) does not exist. Then,
for each positive integer M , there is a positive integer i so that
xi ∈ [0, pM−1). Therefore, limi→∞ xi = 0 which implies that x ∈
U(p∞). ¤

The following theorem describes the composant structure of (I, f).

Theorem 3.2. Let f : I → I be the function defined above. Sup-
pose that the two points x = (x0, x1, x2, . . .) and y = (y0, y1, y2, . . .)
are in (I, f). Then x and y are in the same composant if and
only if there is a positive integer N such that one of the following
conditions is satisfied.

(1) If i ≥ N , then si(x) = si+1(x) and si(y) = si+1(y).
(2) If i ≥ N , then si+1(x) = si(x) + 1 and si+1(y) = si(y) + 1.
(3) If i ≥ N , then si(x) = si(y) = ni and qni−1 is not in [xi, yi].

We prove the theorem by establishing the following propositions,
which imply the conclusion of the theorem.

The first proposition describes the composant of p0.
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Proposition 3.3. Suppose that a = (a0, a1, a2, . . .) ∈ (I, f). Then,
a ∈ C(p0) if and only if there exists a positive integer k so that
limi→∞ si(a) = k.

Proof: First, we show that if limi→∞ si(a) = k, then a ∈ C(p0).
If limi→∞ si(a) = k, then for each positive integer i = 0, 1, 2, . . .,
ai ∈ [pk, p0]. Also, we have that f([pk, p0]) = [pk, p0], which implies
that there exists an H, a proper subcontinuum of (I, f), so that
for each i = 0, 1, 2, . . .,

∏
i(H) = [pk, p0]. Clearly, p0, a ∈ H, and

therefore, a ∈ C(p0).
Next, we show that if limi→∞ si(a) is not equal to a positive inte-

ger, then a is not in C(p0). Notice that if limi→∞ si(a) 6= k for some
positive integer k, then limi→∞ si(a) = ∞; that is, limi→∞ ai = 0.
Now, let K be a subcontinuum of (I, f) that contains both a
and p0. Then, for each i = 0, 1, 2, . . ., p0 = 1 ∈ ∏

i(K). We
want to show that for each i = 0, 1, 2, . . ., 0 ∈ ∏

i(K), which im-
plies that K = (I, f), and that would complete the proof. Since
limk→∞ pk = 0, it suffices to show that for each j = 0, 1, 2, . . . and
each m = 0, 1, 2, . . ., pm ∈ ∏

j(K). Let integers j, m ≥ 0 be given.
Since limi→∞ ai = 0, we have an integer mi ≥ j so that ami ≤ pm,
which implies that pm ∈ ∏

mi
(K). But f(pm) = pm and therefore,

pm ∈ ∏
j(K). ¤

Notice that Proposition 3.3 implies that if a = (a0, a1, a2, . . .) and
b = (b0, b1, b2, . . .) are such that limn→∞ an 6= 0 and limn→∞ bn 6= 0,
then they are in the same composant.

The next proposition describes the composant of p∞.

Proposition 3.4. Suppose that a = (a0, a1, a2, . . .) ∈ (I, f). Then
a ∈ C(p∞) if and only if there is a positive integer N so that if
i ≥ N , then si+1(a) = si(a) + 1.

Proof: First, we suppose that there is a positive integer N so that
if i ≥ N , then si+1(a) = si(a) + 1, and we show that a ∈ C(p∞).
We define {Ji}∞i=0, a sequence of closed intervals, as follows. For
each i = 0, 1, 2, . . . , N , let Ji = [0, 1], and for each i = N + 1, N +
2, N + 3, . . ., let Ji = [0, 1

2i−N ]. Clearly, f(Ji+1) = Ji for each
i = 0, 1, 2, . . . and therefore, there exists a proper subcontinuum
K of (I, f) so that for each i = 0, 1, 2, . . .,

∏
i(K) = Ji. Clearly,

p∞ ∈ K. Now, in order to show that a ∈ K, we notice that



COMPOSANTS OF AN INTERESTING INVERSE LIMIT 43

since for each i ≥ N , si+1(a) = si(a) + 1, we have sN+1(a) =
sN (a) + 1 ≥ 1 sN+2(a) = sN+1(a) + 1 ≥ 2, . . ., and inductively,
for each i = 0, 1, 2, . . ., sN+i+1(a) = sN+i(a) + 1 ≥ i + 1. Now it
is easy to see that for each i = 0, 1, 2, . . ., ai ∈ Ji and therefore,
a ∈ K. This completes the proof that if a satisfies the condition in
the proposition, then a ∈ C(p∞).

Next, we suppose that, for each positive integer N , there is an
m ≥ N so that sm+1(a) 6= sm(a) + 1, and we show that a is not in
C(p∞). If m is any positive integer such that sm+1(a) 6= sm(a)+1,
then either sm+1(a) = sm(a) or sm+1(a) = sm(a) + 2. Notice
that the latter is possible for at most one value of m. It follows
that, for each positive integer N , there is an m ≥ N so that
sm+1(a) = sm(a). Let H be a subcontinuum of (I, f) with a,
p∞ ∈ H. First, we show that

∏
0(H) = [0, 1]. Clearly, 0 ∈ ∏

0(H).
Suppose that s0(a) = l. Then pl+1 ∈

∏
0(H). Find positive integers

m,m1,m2, . . . , ml+1 so that for each i = 1, 2, . . . , l + 1,

(1) mi ≤ m;
(2) i 6= j, then mi 6= mj ; and
(3) smi(a) = smi−1(a).

Now we claim that sm(a) ≤ l + m − (l + 1) = m − 1. To see this,
notice that for each j = 0, 1, 2, . . ., sj+1(a) ≤ sj(a) + 1 and that for
each j = m1− 1,m2− 1, . . . , ml+1− 1, sj+1(a) = sj(a). Recall that
{si(a)}∞i=0 is nondecreasing. But sm(a)− s0(a) ≤ m− (l + 1) since,
for at least l + 1 values of j that are less than m, we have that
sj+1(a) = sj(a). Therefore, sm(a) ≤ m − 1, as we claimed. Since
sm(a) ≤ m−1 and 0 ∈ ∏

m(H), pm ∈ ∏
m(H). But fm(pm) = p0 =

1, which implies that 1 = p0 ∈
∏

0(H). Therefore,
∏

0(H) = [0, 1].
Next, we let n be any positive integer and show that

∏
n(H) =

[0, 1], which completes the proof. We consider the subcontinuum
f̂−n(H) and the point f̂−n(a). Clearly, p∞, f̂−n(a) ∈ f̂−n(H), and
it is easy to see that f̂−n(a) satisfies the condition that for each
positive integer N , there is an m ≥ N so that sm+1(f̂−n(a)) =
sm(f̂−n(a)). Therefore,

∏
0(f̂

−n(H)) =
∏

n(H) = [0, 1]. (The
proof of this is similar to the proof that

∏
0(H) = [0, 1].) ¤

Notice that for each x ∈ (pk, pk−1), where k is a positive integer,
f−1(x) has two elements in [pk+1, pk). But if a ∈ (I, f) satisfies
the condition in Proposition 3.4, regardless of the choice of inverse
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image an+1 of an for any n = 0, 1, 2, . . ., we have that a ∈ C(p∞).
Proposition 3.5 shows that the other composants are sensitive to
this choice.

Proposition 3.5. Suppose that both points a = (a0, a1, a2, . . .) and
b = (b0, b1, b2, . . .) are in (I, f) and that both a and b are not in
either C(p∞) or C(p0). Then a and b are in the same composant
if and only if there is a positive integer N so that if i ≥ N , then
ni = si(a) = si(b) and qni−1 is not in [ai, bi].

Notice that if x is not in C(p0), then limi→∞ si(x) = ∞; that is,
limi→∞ xi = 0.

We prove Proposition 3.5 by establishing the following three lem-
mas.

Lemma 3.6. Let a = (a0, a1, a2, . . .) and b = (b0, b1, b2, . . .) be
points of (I, f). Suppose that both a and b are not in either C(p∞)
or C(p0), and that for each positive integer N , there is an m ≥ N
so that | sm(a) − sm(b) |≥ 1. Then a and b are not in the same
composant.

Proof: Let H be a subcontinuum of (I, f) with a, b ∈ H. It
suffices to show that 0 ∈ ∏

0(H). To see that it is sufficient, first
notice that for any positive integer n, f̂−n(a), f̂−n(b) ∈ f̂−n(H),
which is a subcontinuum of (I, f), and that f̂−n(a) and f̂−n(b)
satisfy the same conditions that a and b do. Therefore, any argu-
ment which proves that 0 ∈ ∏

0(H) can be used to establish that
0 ∈ ∏

0(f̂
−n(H)) =

∏
n(H). Hence, if 0 ∈ ∏

0(H), then for each
n = 0, 1, 2, . . ., 0 ∈ ∏

n(H), and that implies p∞ ∈ H. This is
impossible if H is proper since a ∈ H and a is not in C(p∞). This
establishes our claim that it suffices to show that 0 ∈ ∏

0(H).
In order to show that 0 ∈ ∏

0(H), suppose that n is a given
positive integer and find nk, a positive integer so that snk

(a) ≥
n + 1. It is possible to find such an nk since a 6∈ C(p0) implies that
limi→∞ si(a) = ∞. Now we find an mk ≥ nk so that | smk

(a) −
smk

(b) |≥ 1. Now, since mk ≥ nk, smk
(a) ≥ snk

(a) ≥ n + 1.
Let lm = smk

(a). Then either plm or plm−1 is in [amk
, bmk

] and
therefore in

∏
mk

(H). In either case, we have an m ≥ n so that
pm ∈ ∏

mk
(H). But f(pm) = pm, and therefore, pm ∈ ∏

0(H).
Since n is arbitrary and limi→∞ pi = 0, 0 ∈ ∏

0(H). ¤
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Lemma 3.7. Let a = (a0, a1, a2, . . .) and b = (b0, b1, b2, . . .) be
points of (I, f). Suppose that both a and b are not in either C(p∞)
or C(p0), and that there is a positive integer N so that if i ≥ N ,
then si(a) = si(b). Also, suppose that for each positive integer
M ≥ N , there are positive integers u and v so that u ≥ M , su(a) =
su(b) = v, and qv−1 ∈ [au, bu]. Then a and b are not in the same
composant.

Proof: Let H be a subcontinuum of (I, f) with a, b ∈ H. It
suffices to prove that 0 ∈ ∏

0(H). The proof that it is sufficient
is similar to the argument in the proof of Lemma 3.6. As in the
proof of Lemma 3.6, we show that for any positive integer n, there
is an m ≥ n so that pm ∈ ∏

0(H). Let n, a positive integer, be
given. Since a 6∈ C(p0) implies that limi→∞ si(a) = ∞, we can find
an nk ≥ N so that snk

(a) ≥ n + 2. Also, there is an nl ≥ nk so
that qnt ∈ [anl

, bnl
], where nt = snl

(a) − 1. Since qnt ∈ [anl
, bnl

],
pnt−1 ∈ f([anl

, bnl
]). Therefore, pnt−1 ∈

∏
nl−1(H). Also, we have

that nt − 1 = snl
(a) − 2 ≥ snk

(a) − 2 ≥ n. Now, set m = nt − 1
and notice that f(pm) = pm, which completes the proof that there
is an m ≥ n so that pm ∈ ∏

0(H). ¤
Lemma 3.8. Suppose that both points a = (a0, a1, a2, . . .) and b =
(b0, b1, b2, . . .) are in (I, f) and that there is a positive integer N so
that if i ≥ N , then si(a) = si(b) = ni and qni−1 6∈ [ai, bi]. Then a
and b are in the same composant of (I, f).

Proof: Assume that a = (a0, a1, a2, . . .) and b = (b0, b1, b2, . . .)
satisfy the conditions in the lemma. We define {Ji}∞i=0, a sequence
of closed intervals, as follows. For each i = N, N + 1, N + 2, . . .,
Ji = [ai, bi], and for each i = 0, 1, 2, . . . N − 1, Ji = fN−i(JN ). It
is easy to see that for each i = 0, 1, 2, . . ., f(Ji+1) = Ji. There is
a proper subcontinuum K of (I, f) so that for each i = 0, 1, 2, . . .,∏

i(K) = Ji, and clearly, a, b ∈ K. This implies that a and b are
in the same composant. ¤

This completes the proof of Theorem 3.2. ¤
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