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CHARACTERIZATIONS OF
SOME CLASSES OF DENDRITES

WITH A CLOSED SET OF END POINTS

W LODZIMIERZ J. CHARATONIK AND EVAN P. WRIGHT

Abstract. We investigate dendrites with a closed, countable
set of end points. Such dendrites can be categorized according
to the rank of their set of end points. We show that dendrites
with a specific rank α + 1 contain some particular dendrite
Mα. As a consequence, we obtain a theorem that the rank
of the set of end points of a dendrite with a closed set of end
points cannot be increased under weakly confluent, and thus,
confluent, open, or monotone mappings.

1. Introduction

In [6], Sophia Zafiridou examined universal elements in certain
subsets of the class of dendrites with a closed set of end points of
rank no larger than some ordinal α. In particular, she examined
the subfamily of dendrites having no more than one point in the
(α − 1)-derivative of the set of end points, and the subset of this
family having all points of order no larger than some κ. In addition,
she showed that the class of dendrites with a set of end points
of rank no larger than some α, and the class of dendrites with a
closed, countable set of end points have no universal elements. In
this paper, we construct a smallest element for the complement of
the former class. More precisely, we show that for every ordinal α,
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there is a dendrite Mα that is contained in every dendrite with a
closed set of end points of rank α + 1 or more. As a consequence,
we show that the rank of the set of end points of a dendrite with a
closed set of end points cannot be increased under weakly confluent,
and thus confluent, open, or monotone mappings.

2. Preliminaries

In this paper, all spaces are assumed to be metric, and all ordinals
countable.

We use the term continuum to mean a compact, connected space.
A dendrite is a locally connected continuum that contains no simple
closed curve, and we will assume that all dendrites under consider-
ation are also nondegenerate. It is known that every subcontinuum
of a dendrite is also a dendrite [4, §51, VI, Theorem 4, p. 301].

A mapping means a continuous function. A mapping f : X → Y
between continua is said to be

• monotone if the preimage of each point is connected,
• open if the images of open sets are open,
• confluent if for each subcontinuum Q of Y , each component

of f−1(Q) maps onto Q,
• weakly confluent if for each subcontinuum Q of Y , some

subcontinuum of X maps onto Q.
The order of a point p in a dendrite X is the number of com-

ponents of X \ {p}. Points of order one are called end points, and
points of order three or more are called ramification points. The set
of end points of a dendrite X is denoted by E(X), and the set of
ramification points is denoted R(X). It is known that every point
in a dendrite with a closed set of end points is of finite order [1,
Theorem 3.3, p. 4], and that each subcontinuum of such a dendrite
also has a closed set of end points [1, Theorem 3.2, p. 3].

For an ordinal α, the Cantor-Bendixson derivative of order α of
a space E, denoted E(α), is defined inductively as

• E(0) = E,
• E(β+1) = {e ∈ E|e is a limit point in E(β)},
• E(γ) =

⋂
β<γ

E(β) for limit ordinals γ.

The Cantor-Bendixson rank of E, denoted rank(E), is defined to
be the least ordinal α such that E(α) is empty. We will also use
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the notation E(α)(X) to denote the α derivative of the set of end
points of the dendrite X.

For compact spaces X, it is known that rank(X) exists if and
only if X is countable. It is also known that if rank(X) = α, then
α is a successor ordinal and X(α−1) is finite.

3. Main results

Fix the two points p = 〈0, 0〉 and e = 〈1, 0〉 of the plane. Define
M0 to be the straight line ep between them. Also fix a sequence
pn ∈ ep such that pj ∈ (pi, e) for all i < j, and lim

n→∞
pn = e.

Let α0 > 0 be an ordinal, and suppose that we have defined Mα

for all 0 ≤ α < α0. We will now construct Mα0 .
If α0 is a successor ordinal, fix the sequence {αk0}∞k=1 to be con-

stantly α0 − 1. If α0 is a limit ordinal, fix {αk0}∞k=1 to be a strictly
increasing sequence of ordinals such that lim

k→∞
αk0 = α0. For each

k, let Mαk0
(k) be a copy of Mαk0

attaching to ep such that

(1) there is a homeomorphism h : Mαk0
→ Mαk0

(k) such that
h(p) = pk;

(2) for any i, j such that i 6= j, the intersection Mαi0
(i)∩M

αj0
(j)

is empty;
(3) lim

k→∞
diam(Mαk0

(k)) = 0.

Set

Mα0 = ep ∪

( ∞⋃
k=1

Mαk0
(k)

)
.

Clearly, Mα is a dendrite with a closed, countable set of end
points for each α. Also note that for α > 0, E(α)(Mα) = {e}, and
therefore, rank(E(Mα)) = α+ 1.

Theorem 3.1. Let X be a dendrite with a closed, countable set of
end points. If Mα can be embedded into X, then rank(E(X)) ≥
α+ 1.

Proof: Since rank(E(X)) > 0 for any nondegenerate dendrite,
the case α = 0 is trivially true.

Let h : Mα → X be an embedding. We will show that
h(E(β)(Mα)) ⊆ E(β)(X) for all β > 0.
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Note that the case β = 1 follows directly from the proof of The-
orem 3.2 in [1], which we repeat here for convenience. Consider
an arbitrary limit end point ê of Mα, and let ên be a sequence
of endpoints of Mα such that lim

n→∞
ên = ê. We may assume that

h(ên) /∈ E(X). For each n, if h(ên) is an end point of X, then
define xn = h(ên). If not, then choose some component Cn of
X\h(Mα) such that h(ên) ∈ clCn, and choose xn ∈ Cn ∩ E(X).
Since {clCn}∞n=1 is a sequence of pairwise disjoint continua in a
hereditarily locally connected continuum, it forms a null sequence
[5, Chapter 5, (2.6), p. 92]. Thus, lim

n→∞
xn = lim

n→∞
h(ên) = h(ê),

and by closedness of E(X), we have h(ê) ∈ E(1)(X).
Let β0 be an ordinal, and suppose that h(E(β)(Mα) ⊆ E(β)(X)

for all 1 ≤ β < β0. We will show that this inclusion holds for
β = β0.

Case 1. β0 is a successor ordinal.

By induction, we have h(E(β0−1)(Mα)) ⊆ E(β0−1)(X). Let m ∈
E(β0)(Mα), and mn be a sequence of points from E(β0−1)(Mα) such
that mn → m. The points h(mn) form a sequence in E(β0−1)(X),
and by continuity of h, we have h(mn)→ h(m), so h(m) ∈ E(β0)(X).
Since m was arbitrary, we conclude that h(E(β0)(Mα) ⊆ E(β0)(X).

Case 2. β0 is a limit ordinal.

From the definition of the α-derivative for limit ordinals, and by
induction, we have

h(E(β0)(Mα)) = h

 ⋂
β<β0

E(β)(Mα)

 ⊆ ⋂
β<β0

h(E(β)(Mα)) ⊆

⋂
β<β0

E(β)(X) = E(β0)(X)

Since E(α)(Mα) is nonempty, so is h(E(α)(Mα)). Thus, by the
inclusion above, the set E(α)(X) is also nonempty, and therefore,
rank(E(X)) ≥ α+ 1. �

Theorem 3.2. For any dendrite X with a closed set of end points
such that rank(E(X)) ≥ α + 1 and for each isolated end point or
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ramification point p̂ of X, there is an embedding of Mα into X such
that p is mapped to p̂.

Proof: For α = 0, the dendrite Mα is just an arc, so the theorem
holds.

Let α0 be an ordinal, and suppose that the theorem holds for all
0 ≤ α < α0. We will show that it holds for α = α0.

Let X be a dendrite with a closed set of end points such that
rank(E(X)) ≥ α0 + 1, and let p̂ be any isolated end point or ram-
ification point of X. Choose ê ∈ E(α0)(X). Note that if p̂ is a
ramification point, then letting C be the closure of the component
of X \ p̂ that contains ê, C is a neighborhood of ê, and thus, the
rank of ê in E(C) is the same as the rank in E(X). Also note that
p̂ is an isolated end point in C. Thus, we may assume, without loss
of generality, that p̂ is an isolated end point in X.

Let {p̂n}∞n=1 be the set of ramification points in êp̂, ordered so
that p̂j ⊆ (p̂i, ê) for every i < j. For each n, denote by Xn the
union of all closures of components of X\êp̂ that contain the point
p̂n.

Let {αk0}∞k=1 be the sequence of ordinals fixed in the definition
of Mα0 . We claim that for each k, there are infinitely many Xn

such that rank(E(Xn)) ≥ αk0 . If not, then E(αk0)(Xn) is nonempty
for at most finitely many Xn. Thus, for any sequence of end points
{ên}∞n=1 ⊆ E(αk0)(X)\{ê, p̂} such that ên → e (of which at least one
exists, since ê ∈ E(α0)(X)), there must be a subsequence that lies
completely in one Xn. Since ê /∈ E(Xn) for any n, this contradicts
the fact that Xn has a closed set of end points, and the claim is
shown.

Therefore, we may fix a subsequence Xnk of Xn so that
rank(E(Xnk)) ≥ αk0 for all k.

Since each p̂n is a ramification point of X and since X has a
closed set of end points, p̂n is not a limit end point of Xn for any
n. Thus, by induction, there is an embedding hk : Mαk0

→ Xnk for
each k such that hk(p) = p̂n. Let h : Mα0 → X be such that h|ep is
a homeomorphism with êp̂ and h(p) = p̂. Also define h|M

αk0
(k) = hk

for all k. Clearly, h is the required embedding. �

Combining theorems 3.1 and 3.2, we have the following charac-
terization.
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Corollary 3.3. Let X be a dendrite with a closed set of end points.
Then rank(E(X)) ≥ α+1 iff X contains a copy of the dendrite Mα.

Theorem 3.4. If X, Y are dendrites with a closed set of end points
and f : X → Y is a weakly confluent surjection, then rank(E(Y )) ≤
rank(E(X)).

Proof: Let ê be an arbitrary point of E(1)(Y ), and let p̂n be a
sequence of points of R(Y ) such that p̂n → ê. By [3, Theorem
II.1], we may choose xn ∈ cl(R(X)) such that f(xn) = p̂n for
each n. Possibly taking a subsequence, we may assume that xn is
convergent and set x = lim

n→∞
xn. By [1, Corollary 3.5], we have

cl(R(X)) ⊆ E(X)∪R(X), so x is either a limit point of R(X) or of
E(X). In either case, the point x is in E(1)(X). By continuity of
f , the sequence f(xn) converges to f(x), but by construction, the
limit of f(xn) is ê. Thus, f(x) = ê, and since ê was arbitrary, we
conclude that E(1)(Y ) ⊆ f(E(1)(X)).

Suppose that rank(E(X)) = α+ 1 for some ordinal α.
Case 1. α < ω.

By (4.11) and (4.12) in [2] and from the inclusion above, we have

E(α+1)(Y ) = [E(1)(Y )](α) ⊆ [f(E(1)(X))](α) ⊆ f(E(α+1)(X)).

Case 2. α ≥ ω.
For a transfinite ordinal γ, it is clear from the definition that
(E(1))(γ) = E(γ). Thus, similar to case 1, we have

E(α+1)(Y ) = [E(1)(Y )](α+1) ⊆ [f(E(1)(X))](α+1) ⊆ f(E(α+1)(X)).

Since E(α+1)(X) is empty, so is f(E(α+1)(X)), and therefore by
the two cases above, E(α+1)(Y ) is empty. Thus, we conclude that
rank(E(Y )) ≤ α+ 1 = rank(E(X)). �

Corollary 3.5. The rank of the set of end points of a dendrite with
a closed set of end points cannot be increased by

(1) taking subdendrites,
(2) open mappings,
(3) monotone mappings,
(4) confluent mappings.

Proof: Item (1) follows from the fact that each subcontinuum of a
dendrite is a retract of that dendrite, and every retraction is weakly
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confluent. All open mappings on compact spaces [5, Theorem 7.5,
p. 148], all confluent mappings, and all monotone mappings are
weakly confluent, confirming items (2), (3), and (4). �

4. The hierarchy of weakly confluent mappings

In [2], J. J. Charatonik, W. J. Charatonik, and J. R. Prajs stud-
ied mapping hierarchies for dendrites. Let us recall basic definitions
and some facts established in that paper.

Given a class F of mappings and two dendrites X and Y , we
say that Y ≤F X if there is a surjection f ∈ F mapping X onto
Y . If the class F contains homeomorphisms and is closed under
compositions, then the relation ≤F is a quasi-ordering on the class
of dendrites, i. e., it is reflexive and transitive. Denote by M the
class of monotone maps, by C the class of confluent maps, and by
W the class of weakly monotone maps. The authors show, among
many other things, that the quasi-orders ≤M and ≤C are identical
[2, Corollary 5.7], and they ask if the quasi-order ≤W is identical
with the previous two (see [2, Question 5.12]). Here, we answer the
question in the negative by showing an example of two dendrites
X and Y such that there is no monotone (equivalently, confluent)
map from X onto Y , but there is a weakly confluent one.

Example 4.1. There are dendrites X and Y such that there is no
confluent mapping from X onto Y , but there is a weakly confluent
one.

Proof: The continua X and Y are shown in the figure below.
Points in X are labeled according to their image in Y , and the
mapping is linear between labeled points. To see that the mapping
is weakly confluent, consider a subcontinuum Q of Y . If Q is right
of the point p, there is a subcontinuum in the upper right corner
of X that maps onto Q. A typical continuum containing the point
p and a continuum in X that is mapped onto it are highlighted in
the figure.

To see that there is no monotone map from X onto Y , observe
that Y is precisely the dendrite W defined in [1, p. 3], while X
does not contain a copy of W . The existence of such a map would
contradict Theorem 6.1 in [1, p. 12]. �
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