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ON THE HOCHSTER DUAL
OF A TOPOLOGICAL SPACE

OTHMAN ECHI, RIYADH GARGOURI, AND SAMI LAZAAR

Abstract. This paper deals with a dual topology introduced
by M. Hochster; this duality is applied to two particular
classes of spaces related to spectral spaces: down-spectral
spaces and up-spectral spaces. Dual topological properties
are also introduced and studied.

0. Introduction

The ideas of duality in topology are due in a special case to
J. de Groot [5]. The general case has been discussed by Ralph
Kopperman in a remarkable paper [10].

We deal here with the “dual topology” on a space X introduced
by M. Hochster in [8] and [9].

Definition 0.1. Let B be a subbasis of a topological space X. By
the dual topology on X determined by B, we mean the topology
on X which has B as a subbasis for its closed sets. The resulting
topological space will be denoted by X?.

Note that throughout this paper, all topological spaces X will
be assumed to have a basis B of compact open sets, and thus, X?

will denote the dual topology of Hochster determined by B, i.e., the
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154 O. ECHI, R. GARGOURI, AND S. LAZAAR

topology which has the complement of the compact open sets as an
open basis.

The following definition is natural.

Definition 0.2. Let P and Q be two topological properties. We
say that Q is a dual property of P if for each topological space X,
the following equivalence holds: X is P if and only if X? is Q.

A property P is said to be self-dual if P is a dual of P.

The main goal of this paper is the investigation of dual properties
in spectral topology.

Before giving our main results, let us recall some elementary facts
from the theory of spectral spaces.

Recall that a closed set C of a topological space X has a generic
point if there is some x ∈ C such that C = {x}.

A subspace Y of a space X is said to be irreducible if the inter-
section of two nonempty open sets of Y is nonempty.

A topological space in which every nonempty irreducible closed
set has a unique generic point is called a sober space.

According to Hochster [8], a topology T on a set X is said to be
spectral if and only if the following axioms hold.

(i) (X, T ) is a sober space.
(ii) X is compact and has a basis of compact open sets.

(iii) The intersection of two compact open sets is compact.
Hochster has proved that a space X is spectral if and only if X?

is spectral [8]. Thus, according to our definition, “spectral” is a
self-dual property.

We will investigate duality properties for some concepts intro-
duced recently by Karim Belaid and Othman Echi in [1].

In order to obtain information concerning a longstanding (since
1976) open question about spectral sets stated by William J. Lewis
and Jack Ohm [11], Belaid and Echi have introduced the following
definitions.

Definition 0.3. Let X be a topological space.
(1) X is said to be an up-spectral space if it satisfies the axioms

of a spectral space with the exception that X is not necessarily
compact.

(2) X is said to be a down-spectral space if it satisfies the ax-
ioms of a spectral space with the exception that X does not have
necessarily a generic point when it is irreducible.
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Let C be a collection of topological spaces and D : C −→ C a
correspondence between C and C. Following [10], D is said to be a
duality if D3 = D.

The main result of this paper deals with Kopperman’s duality
on the class UD of all up-spectral spaces and down-spectral spaces:
Let ? : UD −→ UD be the correspondence which takes X to its
Hochster dual X?. Then ? is a Kopperman duality [Theorem 2.1].

1. Preliminary results

Proposition 1.1. Let X be a topological space with a basis B of
compact open sets. Then the following statements are equivalent.

(i) X? is irreducible.
(ii) For each pair of open compact sets U and V of X such that

X = U ∪ V , we have X = U or X = V .

Proof: (i) =⇒ (ii) Is straightforward, since U and V are closed
in X?.

(ii) =⇒ (i) Let V1 and V2 be two nonempty open sets of X?. We
have to prove that V1 ∩ V2 6= ∅. Since {X \ U | U is a compact
open set of X} is a basis of X?, it is enough to take the particular
case V1 = X \ U1 and V2 = X \ U2, with Ui a compact open set of
X. It is clear that V1 ∩ V2 = X \ (U1 ∪ U2) 6= ∅, since X 6= U1 and
X 6= U2. ¤

The following result shows that the property “compact” is a dual
of the property “reducible or has a generic point.”

Proposition 1.2. Let X be a topological space with a basis B of
compact open sets. Then the following statements are equivalent.

(i) X is a compact space.
(ii) X? is reducible or has a generic point.

Proof: (i) =⇒ (ii) Suppose that X? is irreducible. Let us show
that there exists a ∈ X such that X? = {a}?

. Assume that for
each x ∈ X, there is a compact open set Ux of X distinct from X
such that x ∈ Ux. Then we have X =

⋃
[Ux : x ∈ X], and since

X is compact, there exists a finite subset Y of X such that X =⋃
[Ux : x ∈ Y ]. On the other hand, X? is irreducible; this forces

X = Ux for some x ∈ Y . It follows that there exists a ∈ X such
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that the only compact open set of X containing a is X. Therefore,
{a}?

= X?.

(ii) =⇒ (i) If X? = {a}?
, then X is the unique closed set of X?

containing a. Since X has a basis of compact open sets, X is the
unique compact open set of X containing a.

If X? is reducible, then by Proposition 1.1, there exist two com-
pact open sets U and V of X such that X = U ∪ V with U 6= X
and V 6= X. Therefore, X is a compact space. ¤
Proposition 1.3. Let X be a topological space with a basis B of
compact open sets. Then the following properties hold.

(i) If X has a generic point, then X? is compact.
(ii) If X? is compact, then X is reducible or has a generic point.

(iii) In particular, if X is irreducible, then X? is compact if and
only if X has a generic point.

Proof: (i) Suppose that X = {a}. Let (Ci, i ∈ I) be a collection
of closed sets of X? such that

⋂
[Ci : i ∈ I] = ∅. Since the compact

open sets of X constitute a basis of closed sets of X?, one may
suppose that the Ci’s are open compact in X. Since a 6∈ ⋂

[Ci :
i ∈ I], we have a 6∈ Ci for some i ∈ I, but then Ci = ∅ because
X = {a}, proving that X? is compact.

(ii) Suppose that X is irreducible. Let F be the collection of all
nonempty compact open sets of X. Since X? is compact and X is
irreducible, then the intersection

⋂
[U : U ∈ F ] is non empty. Pick

a in
⋂

[U : U ∈ F ]; we easily get X = {a}.
(iii) Follows immediately from (i) and (ii). ¤
The following example proves that “reducible or has a generic

point” is not a dual property of “compact.”

Example 1.4. A reducible topological space X such that X? is
not compact.

Let X1 and X2 be two disjoint infinite sets equipped with the
cofinite topology. Set X = X1∪X2 endowed with the disjoint union
topology.

Since X1 and X2 are closed, X is a reducible topological space.
Now {X1 \ {x} : x ∈ X1} is a collection of compact open sets of

X which do not meet, but all finite intersections of this collection
are nonempty since X1 is infinite. Thus, X? is not compact.
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Notation 1.5. Let X be a T0-space. If X is reducible or has a
generic point, set X∨ = X. If not, set X∨ = X ∪ {ω} (where
ω /∈ X) equipped with the topology whose closed sets are X∨ and
all closed sets of X distinct from X.

Remark 1.6. If X∨ = X∪{ω}, then the following properties hold.
(1) {ω}∨ = X∨; in particular X∨ is an irreducible space.
(2) For each x ∈ X, {x}∨ = {x}.
(3) Let O be an open set of X∨ containing ω. Then there exists

a nonempty open set U of X such that O = U ∪ {ω}.
(4) The nonempty irreducible closed sets of X∨ are X∨ and the

nonempty irreducible closed sets of X.

Recall that, following [7], a continuous map q : X −→ Y is said
to be a quasihomeomorphism if for each open set U of X there
exists a unique open set V of Y such that U = q−1(V ); this means
that the mapping θ(q) : O(X) −→ O(y) (where O(X) is the family
of all open sets of X) which takes an open set V of Y to q−1(V ) is
bijective.

Proposition 1.7. Let X be a T0-space. Then the canonical em-
bedding i : X ↪→ X∨ is a quasihomeomorphism.

Proof: It is enough to prove the result where X∨ = X ∪ {ω}.
Since the open sets of X∨ are ∅ and U ∪ {ω}, where U is a non-

empty open set of X, it is clear that the mapping θ(i) : O(X∨) −→
O(X), which takes an open set V of X∨ to i−1(V ) = V ∩ X, is
bijective. Thus, i is a quasihomeomorphism. ¤

Let X be a topological space. We say that X is semisober if it
satisfies the following properties.

(a) X is a T0-space.
(b) Each nonempty irreducible closed set of X distinct from X

has a generic point.
The following result provides a link between sober and semisober

spaces.

Proposition 1.8. Let X be a T0-space. Then the following state-
ments are equivalent.

(i) X is a semisober space.
(ii) X∨ is a sober space.
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Proof: The result is obvious when X∨ = X. Let us suppose that
X∨ = X ∪ {ω}.

(i) =⇒ (ii) Let C be a nonempty irreducible closed set of X∨.
Following Remark 1.6(4), C = X∨ or C is a nonempty irreducible
closed set of X.

If C = X∨, then C = {ω}.
If C is an irreducible closed set of X, then necessarily C 6= X.

Hence, there exists x ∈ C such that C = {x} = {x}∨.
(ii) =⇒ (i) Let C be a nonempty irreducible closed set of X

distinct from X. Then C is a nonempty irreducible closed set of
X∨. Hence, there exists x ∈ C such that C = {x}∨ = {x}. ¤

Down-spectral spaces and spectral spaces are linked via Proposi-
tion 1.10, but first we need a technical straightforward lemma which
may be derived immediately from [7, Chap. 0, Corollaire 2.7.6].

Lemma 1.9. Let q : X −→ Y be a quasihomeomorphism and U
an open set of Y . Then the following statements are equivalent.

(i) U is compact.
(ii) q−1(U) is compact.

Now, combining Proposition 1.7, Proposition 1.8, and Lemma
1.9, we easily get the following result.

Proposition 1.10. Let X be a T0-space. Then, X is a down-
spectral space if and only if X∨ is a spectral space.

We need also some further notations.

Notation 1.11. Let X be a T0-space. If X is compact, set X∧ =
X. If not, set X∧ = X ∪ {ψ} equipped with the topology whose
open sets are X∧ and all open sets of X.

Remark 1.12. Let X be a T0-space. Then the following properties
hold.

(1) The canonical embedding i : X ↪→ X∧ is open.
(2) The open compact sets of X∧ are X∧ and the open compact

sets of X.
(3) {ψ}∧ = {ψ}, and for each x ∈ X, {x}∧ = {x} ∪ {ψ}.
(4) Let F be a nonempty subset of X∧. Then F

∧ = F ∪ {ψ}.
Hence, the closed sets of X∧ are ∅ and G ∪ {ψ}, where G is closed
in X.
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The following result shows that the property “sober” of a space
X depends uniquely on the same property of a nonempty set U of
X and its complement X \ U .

First, we need to recall a technical lemma.

Lemma 1.13 ([4, Proposition 7, p. 122]). Let X be a topologi-
cal space and U a nonempty open subset of X. Then the mapping
V 7−→ V defines a bijection from the set of irreducible nonempty
closed subsets of U onto the set of irreducible nonempty closed sub-
sets of X meeting U . The inverse bijection is Z 7−→ Z ∩ U .

Theorem 1.14. Let X be a T0-space and U a nonempty open set
of X. Then the following statements are equivalent.

(i) X is sober.
(ii) U and X \ U are sober.

Proof: (i) =⇒ (ii) Clearly, any closed set of a sober space is
sober.

Let us prove that U is sober. In fact, this has been done in [1,
Lemma 5.3], but, for the sake of completeness, we provide a proof.
Let F be a nonempty irreducible closed subset of U . According to
Lemma 1.13, F is an irreducible closed subset of X. Hence, F has
a generic point x. Let us write F = {x}X

and note that x ∈ U .
We have x ∈ F = F ∩ U , and thus F = {x}U

.
(ii) =⇒ (i) Let C be a nonempty irreducible closed set of X.
We consider two cases.
Case 1. Suppose that C ∩ U 6= ∅. Then C ∩ U is a nonempty

irreducible closed set of U . Hence, there exists x ∈ C ∩U such that
C ∩ U = {x}U

.
Let us prove that C = {x}. Of course, {x} ⊆ C.
Conversely, let y ∈ C and V be an open set of X containing y.
Since C is irreducible (in X), C∩U∩V 6= ∅. Thus, {x}∩U∩V 6=

∅. Therefore, x ∈ V .
Case 2. Suppose that C ∩ U = ∅.
In this case, C is a nonempty irreducible closed set of the sober

closed set X \ U . Thus, C has a generic point in X \ U ; i.e, there
exists x ∈ C such that C = {x}. ¤

If X is a T0-space, then X is open in X∧ and X∧ \X is sober.
Then, according to Theorem 1.14, we get the following corollary.
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Corollary 1.15. Let X be a T0-space. Then the following state-
ments are equivalent.

(i) X is a sober space.
(ii) X∧ is a sober space.

Proposition 1.16. Let X be a T0-space. Then the following state-
ments are equivalent.

(i) X is an up-spectral space.
(ii) X∧ is a spectral space.

Proof: According to Corollary 1.15 and the fact that X∧ is a
compact space, it suffices to show that X has a basis of compact
open sets if and only if X∧ has a basis of compact open sets.

Indeed, let B (B′, respectively) be a basis of compact open sets of
X (X∧, respectively) closed under finite intersections. Then, using
Remark 1.12(2), B∞ = B∪{X∧} (B′1 = B′ \ {X}, respectively) is a
basis of compact open sets of X∧ (X, respectively). ¤

2. Duality

We are in a position to state the main result of this paper.

Theorem 2.1. Let UD be the class of all up-spectral spaces and
down-spectral spaces. Let ? : UD −→ UD be the correspondence
which takes X in UD to its Hochster dual X?. Then ? is a duality
(in the sense of Kopperman).

In order to prove this result, we need a sequence of lemmata.

Lemma 2.2. Let X be a topological space with a basis of compact
open sets closed under finite intersections. Then (X?)∨ and (X∧)?

are homeomorphic.

Proof: There are two cases to be discussed.

Case 1. If X is compact, then by Proposition 1.2, X? is reducible
or has a generic point. Thus, (X∧)? = (X?)∨ = X?.

Case 2. If X is not compact, then X? is irreducible with no
generic point, by Proposition 1.2. Set (X?)∨ = X ∪ {ω} and X∧ =
X ∪ {ψ}, and consider the map f : (X∧)? −→ (X?)∨ which takes
x to x for x ∈ X and ψ to ω.

Let us show that f is a homeomorphism.
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(1) f is a continuous map.
Let O be a nonempty open set of (X?)∨. Then ω ∈ O,

and there exists a nonempty open set U of X? such that
O = U ∪ {ω}. Hence, there exists a family (Vi : i ∈ I) of
compact open sets of X such that U =

⋃
[X \ Vi : i ∈ I].

Thus,
f−1(O) =

⋃
[X \ Vi : i ∈ I] ∪ {ψ} =

⋃
[X∧ \ Vi : i ∈ I].

Now, by Remark 1.12(2), each Vi is a compact open set
of X∧. It follows that f−1(O) is open in (X∧)?.

(2) f is an open map.
Let O be a nonempty open set of (X∧)?. Then there

exists a family (Ui : i ∈ I) of compact open sets of X∧
such that O =

⋃
[X∧ \ Ui : i ∈ I]. By Remark 1.12(2), Ui

is either X∧ or a compact open set of X. Thus, f(O) =⋃
[(X \ Ui) ∪ {ψ} : i ∈ I] is an open set of (X?)∨.

Therefore, f is a homeomorphism.
And the proof is complete. ¤

Lemma 2.3. Let X be an irreducible space with no generic point,
then (X?)∧ and (X∨)? are homeomorphic.

Proof: According to Proposition 1.3, X? is not compact. Set
(X?)∧ = X ∪ {ψ} and X∨ = X ∪ {ω}, and consider the map
f : (X∨)? −→ (X?)∧ which takes x to x for x ∈ X and ω to ψ.

(1) f is a continuous map.
Let O be a nonempty open set of (X?)∧ distinct from

(X?)∧. Then there exists a family (Ui, i ∈ I) of compact
open sets of X such that O =

⋃
[X \ Ui : i ∈ I]. Thus,

f−1(O) =
⋃

[X∨ \ (Ui ∪ {ω}) : i ∈ I].

By Proposition 1.7 and Lemma 1.9, (Ui ∪ {ω} : i ∈ I) is a
family of compact open sets of X∨. Consequently, f−1(O)
is an open set of (X∨)?.

(2) f is an open map.
Let O be a nonempty open set of (X∨)? distinct from

(X∨)?. Then there exists a family (Ui, i ∈ I) of compact
open sets of X such that

O =
⋃

[X∨ \ (Ui ∪ {ω}) : i ∈ I] =
⋃

[X \ Ui : i ∈ I].
Hence, f (O) =

⋃
[X \Ui : i ∈ I] is an open set of (X?)∧.
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Therefore, f is a homeomorphism.
And the proof is complete. ¤

Lemma 2.4. Let X and Y be two T0-spaces. Then the following
properties hold.

(1) If X and Y are homeomorphic, then X∧ and Y ∧ are home-
omorphic.

(2) If X and Y are both not compact, then the following state-
ments are equivalent.

(i) X and Y are homeomorphic.
(ii) X∧ and Y ∧ are homeomorphic.

Proof: (1) Straightforward.
(2) It is sufficient to show (ii) =⇒ (i).
Indeed, since X and Y are not compact, set X∧ = X ∪ {ω},

Y ∧ = Y ∪ {ψ}, and g : X∧ −→ Y ∧ a homeomorphism between X∧
and Y ∧. Thus, g({ω}) = {g(ω)} is a closed set of Y ∧; and since
{ψ} is the unique closed point of Y ∧, we get g(ω) = ψ. Therefore,
the map f : X −→ Y , such that f(x) = g(x) for each x ∈ X, is a
homeomorphism. ¤
Lemma 2.5. Let X and Y be two T0-spaces. Then the following
properties hold.

(1) If X and Y are homeomorphic, then X∨ and X∨ are home-
omorphic.

(2) If X and Y are both irreducible with no generic point, then
the following statements are equivalent.

(i) X and Y are homeomorphic.
(ii) X∨ and Y ∨ are homeomorphic.

Proof: (1) Straightforward.
(2) It is sufficient to prove (ii) =⇒ (i). Let X and Y be two

irreducible spaces with no generic point. Set X∨ = X ∪{ω}, Y ∨ =
Y ∪ {ψ}, and g : X∨ −→ Y ∨ a homeomorphism. We get g (X∨) =
g

(
{ω}∨

)
= {g(ω)}∨ = Y ∨ = {ψ}∨ and thus, g(ω) = ψ. Therefore,

it is easily seen that the map f : X −→ Y , such that f(x) = g(x)
for each x ∈ X, is a homeomorphism. ¤

Proof of Theorem 2.1: We break the proof into four steps.
Step 1. X is an up-spectral space if and only if X? is a down-

spectral space.
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Proof of Step 1 : Let X be an up-spectral space. By Proposi-
tion 1.16, X∧ is a spectral space and thus, by [8], (X∧)? is spectral.
Hence, (X?)∨ is also spectral, by Lemma 2.2. Therefore, Proposi-
tion 1.10 shows that X? is down-spectral.

Conversely, suppose that X? is down-spectral. Then by Propo-
sition 1.10, (X?)∨ is a spectral space and thus, Lemma 2.2 shows
that (X∧)? is spectral. Therefore, X∧ is spectral [8]. Proposition
1.16 completes the proof of this step.

Step 2. If X is a down-spectral space, then X? is an up-spectral
space.

Proof of Step 2 : First, let us remark that if X is reducible or
has a generic point, then X is spectral and thus, X? is spectral. In
particular, X? is up-spectral.

Now, let X be an irreducible down-spectral space with no generic
point. It follows from Proposition 1.10 that X∨ is a spectral space;
hence, (X∨)? is also spectral [8]. By Lemma 2.3, (X?)∧ is a spectral
space. Consequently, X? is an up-spectral space, by Proposition
1.16.

Step 3. If X is an up-spectral space, then X?? = X.

Proof of Step 3 : First, let us remark that the result is straight-
forward when X is compact.

Suppose that X is not compact. Then X? is irreducible with
no generic point (see Proposition 1.2). By Proposition 1.16, X∧
is spectral and thus, (X∧)?? = X∧ [8]. Therefore, according to
Lemma 2.2 and Lemma 2.3, (X??)∧ and X∧ are homeomorphic.

Remark that X?? is not compact. Indeed, if not, X?? would be
spectral, as would X, by Hochster, contradicting the fact that X is
not compact. Therefore, using Lemma 2.4 and its proof, X?? = X.

Step 4. If X is a down-spectral space, then X?? = X.

Proof of Step 4 : If X is reducible or has a generic point, then
X is spectral and thus, X?? = X.

If X is an irreducible space with no generic point, then X is
not spectral and consequently, X?? is not spectral. Since X?? is
a down-spectral space, it is an irreducible space with no generic
point.

On the other hand, by Proposition 1.10, X∨ is a spectral space
and thus, (X∨)?? = X∨ [8].
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Combining lemmas 2.2 and 2.3, it is easily seen that (X??)∨ and
X∨ are homeomorphic.

Finally, Lemma 2.5 and its proof show that X?? = X.
And the proof is complete. ¤

Example 2.6. If X? is up-spectral, then X need not be down-
spectral.

Let Y be an infinite set and ω /∈ Y . Set X = Y ∪ {ω}. Equip X
with the topology whose closed sets are X, C, Y , and C∪{ω}, where
the sets C are all finite subsets of Y . Clearly, X is a Noetherian
space (i.e., each open set of X is compact).

We claim that X? is up-spectral; however, X is not down-spectral.

Proof: Clearly, X is not semisober, since Y is an irreducible
closed set of X with no generic point. Thus, X is not down-spectral.

Let us prove that X? is endowed with the discrete topology.
Indeed, we have {ω} = X \ Y , and Y is an open compact set of

X. Hence, {ω} is an open set of X?.
Now let y ∈ Y ; then {y} = X\((Y \{y})∪{ω}) and (Y \{y})∪{ω}

is an open compact set of X. Thus, {y} is open in X?. It follows
that X? is a discrete space.

Of course, X? satisfies the following properties.
(a) X? is sober (since it is Hausdorff).
(b) B = {{t} | t ∈ X} is a basis of compact open sets of X?.
(c) The intersection of two compact open sets of X? is compact.
Therefore, X? is up-spectral. ¤
The following result gives a class of topological spaces in which

“up-spectral” is a dual property of “down-spectral.”

Theorem 2.7. Let X be an irreducible T0-space. Then the follow-
ing statements are equivalent.

(i) X is down-spectral.
(ii) X? is up-spectral.

Proof: (i) =⇒ (ii) See Step 2 of the Proof of Theorem 2.1.
(ii) =⇒ (i) Let X be an irreducible T0-space such that X? is

up-spectral.
Case 1. X has a generic point. In this case, by Proposition 1.3,

X? is compact. Since X? is an up-spectral space, X? is spectral.
Thus, X is spectral [8]. In particular, X is down-spectral.
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Case 2. X has no generic point. According to Lemma 2.3, (X?)∧
and (X∨)? are homeomorphic. Since X? is an up-spectral space,
by Proposition 1.16, (X?)∧ is spectral and so is (X∨)?. Hence,
X∨ is spectral [8], and finally, Proposition 1.10 shows that X is
down-spectral. ¤

Acknowledgment. We thank the referee for his/her concrete sug-
gestions that helped to improve the presentation of the paper.
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