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MUTUAL APOSYNDESIS AND
PRODUCTS OF SOLENOIDS

JANUSZ R. PRAJS

Abstract. This article is about the topological structure of
the products of solenoids. It provides a characterization of the
pairs of solenoids whose products are mutually aposyndetic.

The focus of this study is the topological structure of the prod-
ucts of solenoids. These products are fundamental spaces in the
classification of compact (abelian) topological groups and impor-
tant examples of homogeneous continua.

The concept of mutual aposyndesis was introduced by Charles
Hagopian in [3]. Mutual aposyndesis, together with local connect-
edness, aposyndesis, indecomposability, and semi-indecomposability,
belongs to the class of properties that differentiate spaces with re-
spect to their subcontinua with interiors and the way these subcon-
tinua separate points and sets. The structure of all solenoids with
respect to these properties is the same. All solenoids are indecom-
posable and have only arcs for proper subcontinua. The product
of two non-degenerate continua is aposyndetic, and the product of
three non-degenerate continua is mutually aposyndetic [3, Theorem
2]. The question whether the product of two solenoids is mutually
aposyndetic was partly answered in the affirmative by Alejandro
Illanes in [4] for the product of p-adic and q-adic solenoids, where
p and q are relatively prime integers.
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In a recent study [6], the author has shown that a Kelley con-
tinuum has a unique, minimal decomposition, called the mutually
aposyndetic decomposition, such that the quotient space is a mutu-
ally aposyndetic continuum. Using this result, it has been proven
in [6] that a homogeneous continuum with dense arc components
is either mutually aposyndetic or semi-indecomposable. Since the
product of (two) solenoids has dense arc components and is ho-
mogeneous, it belongs to exactly one of the two extreme classes of
mutually aposyndetic or semi-indecomposable continua. Accord-
ing to Illanes’s result, there are pairs of solenoids having mutu-
ally aposyndetic products. Here we show there also exist pairs of
solenoids with semi-indecomposable products. Thus, even though
all solenoids have the same structure in the sense discussed above,
their products can manifest extremely opposite properties in that
sense. The main result of this paper is a characterization of the class
of pairs of solenoids having semi-indecomposable products. Using
this characterization, we can easily identify the pairs with mutu-
ally aposyndetic products and the ones with semi-indecomposable
products.

1. Preliminaries

All spaces are assumed to be metric and maps, continuous. The
following concepts have been introduced in [7] and further studied
in [8], [9], [10]. If X is a space, a subcontinuum K is called a filament
continuum (in X) provided there exists a neighborhood N of K
such that the component of N containing K has empty interior. A
subcontinuum A of X is called ample if for every neighborhood U
of A there is a continuum B such that A ⊂ IntB ⊂ B ⊂ U .

A space X is said to be homogeneous if for every x, y ∈ X there
is a homeomorphism h : X → X such that h(x) = y. In [7, Lemma
2.1 and Proposition 2.3], the following result was shown.

Theorem 1.1. A subcontinuum K of a homogeneous continuum is
ample if and only if K is non-filament.

A continuum X is said to be decomposable if it has proper sub-
continua Y and Z such that X = Y ∪ Z. Continua that are not
decomposable are called indecomposable.
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The following concepts of mutual aposyndesis and semi-indecom-
posability1 were introduced by Hagopian in [3]. A continuum X is
mutually aposyndetic at points x and y, provided there are disjoint
continua K and L in X containing x and y in their corresponding
interiors. It is mutually aposyndetic if it is mutually aposyndetic at
each pair of its distinct points. If X is not mutually aposyndetic
at any pair of its distinct point, then X is called semi-indecom-
posable. Note that mutual aposyndesis and semi-indecomposability
are properties opposite to each other, and a non-degenerate space
cannot be simultaneously mutually aposyndetic and semi-indecom-
posable.

In a homogeneous continuum X (or, more generally, in Kelley
spaces [6]), we can equivalently express mutual aposyndesis using
ample continua. Indeed, X is mutually aposyndetic at x and y
if and only if there are disjoint ample continua K and L in X
containing x and y, respectively. Also, X is semi-indecomposable
if and only if each two ample subcontinua of X have non-empty
intersection.

If, for positive integers n, Xn are spaces and gn : Xn+1 → Xn are
maps, the symbol ({Xn}, {fn}) denotes the corresponding inverse
system. We let (X, {fn}) = ({Xn}, {fn}) provided that Xn = X
for each n.

Two paths p1, p2 : [0, 1] → X are called path-homotopic if there
is a homotopy H : [0, 1]× [0, 1] → X with H(t, 0) = p1(t), H(t, 1) =
p2(t), H(0, s) = p1(0) = p2(0), and H(1, s) = p1(1) = p2(1) for all
s, t ∈ [0, 1].

Throughout the paper, the symbol S1 denotes the unit circle in
the complex plane, and fn : S1 → S1 denotes the function fn(z) =
zn, for each positive integer n.

2. The torus and covering maps

In this section, we collect some old and new results about the
2-dimensional torus T2 = S1 × S1. Let π1, π2 : T2 → S1 be the
projection maps onto the first and second coordinates, respectively.

1Originally, Hagopian used the name strictly non-mutually aposyndetic. We
use the name semi-indecomposable for brevity and also because the continua
in question manifest properties similar to the properties of indecomposable
continua.



342 J. R. PRAJS

First, we review some results about simple closed curves in the torus
T2. A simple closed curve S ⊂ T2 can have exactly two different
positions: (1) separating, meaning T2 − S is disconnected, and (2)
non-separating, with connected T2 − S [11, Theorem 13, Exercise
14, and Exercise 25]. More precisely, we have the following.

Theorem 2.1. Let S1 and S2 be simple closed curves in a torus T2.
There exists a homeomorphism h : T2 → T2 such that h(S1) = S2

if and only if S1 and S2 are either both separating or both non-
separating simple closed curves in T2.

These two classes can also be characterized as the classes of
(1) inessential and (2) essential simple closed curves in T2, that
is, curves having the embedding map into T2 nulhomotopic and
non-nulhomotopic, respectively.

Proposition 2.2. If K and L are two disjoint continua in the torus
T2, then either T2−K or T2−L contains a non-separating simple
closed curve.

Proof: Let K1 be the union of K and all components of T2 −K
except the one containing L and let L1 be the union of L and all
components of T2 − L except the one containing K. The sets K1

and L1 are disjoint continua in T2 with connected complements. It
suffices to show the conclusion for K1 and L1. Suppose T2 − K1

contains only separating simple closed curves.
Case 1. There is a simple closed curve S ⊂ T2 − K1 that is

essential in T2 −K1.
By the assumption, T2 − S has two components: simply con-

nected, C1, and non-simply connected, C2. In this case, C1 is not
contained in T2 − K1, so C1 ∩ K1 6= ∅. Since S is the bound-
ary of C1 and S ∩ K1 = ∅, we have K1 ⊂ C1. Consequently,
C2 ⊂ T2 − K1. Since C2 contains non-separating simple closed
curves, so does T2 −K1, a contradiction.

Case 2. All simple closed curves in T2 − K1 are inessential in
T2 −K1.

Then T2 − K1 is a simply connected, non-compact 2-manifold,
which is homeomorphic to R2. Consequently, there is a simple
closed curve S0 in T2 −K1 such that L1 is contained in the simply
connected component C0,1 of T2 − S0. The other component, C0,2,
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of T2 − S0 contains simple closed curves that are essential in T2,
and C0,2 ⊂ T2 − L1. The conclusion follows. ¤
Proposition 2.3. If f = fn × fn : T2 → T2 for some positive
integer n and S is a simple closed curve in T2, then f−1(S) has at
least n components.

Proof: Let y = (y1, y2) ∈ S and h : S1 → S be a home-
omorphism with h(1) = y. Let gk : [0, 1] → S1 be the loop
gk(t) = (cos 2πkt, sin 2πkt) for each positive integer k, and note
that gk is the product of k maps g1 (in the sense of the prod-
uct of paths, as in the definition of the fundamental group). De-
fine αk, βk : [0, 1] → S1 and γk : [0, 1] → T2 to be the loops
αk = π1 ◦ h ◦ gk, βk = π2 ◦ h ◦ gk, and γk(t) = (h ◦ gk)(t). Given an
x = (x1, x2) ∈ f−1(y), we note x1 ∈ f−1

n (y1) and x2 ∈ f−1
n (y2). Let

α̂n, β̂n : [0, 1] → S1 be the corresponding lifted paths of αn and βn

with respect to fn such that α̂n(0) = x1 and β̂n(0) = x2. In other
words, α̂n and β̂n are the paths that begin at x1 and x2, respec-
tively, and satisfy fn◦α̂n = αn and fn◦β̂n = βn. Since fn : S1 → S1

is the n-fold covering fn(z) = zn, and αn and βn are products of n
loops α1 and β1, respectively, their corresponding lifted paths α̂n

and β̂n are loops. Note that the loop γ̂n : [0, 1] → T2, defined by
γ̂n(t) = (α̂n(t), β̂n(t)), is a path-lifting, with respect to the cover-
ing f = fn × fn, of the product γn of n maps γ1. It also satisfies
γ̂n(0) = γ̂n(1) = (x1, x2). Since f is a covering map, for sufficiently
large m, the set γ̂m([0, 1]) equals the component C of f−1(S) con-
taining (x1, x2). Clearly, γ̂m([0, 1]) = γ̂ln([0, 1]) for an l such that
ln ≥ m. Thus, C = γ̂m([0, 1]) = γ̂ln([0, 1]) = γ̂n([0, 1]) because γ̂n

is a loop. We have γn(t) = y for exactly n values of t in [0, 1), and
thus |C ∩ f−1(y)| ≤ n. Since f is an n2-fold covering, it follows
|f−1(y)| = n2. Hence, there are at least n different components of
f−1(S). ¤
Proposition 2.4. If f = fn × fn : T2 → T2 for some positive
integer n and S is a non-separating simple closed curve in T2, then
f−1(T2 − S) has at least n components.

Proof: Since the position of S in T2 is the same as the one of the
meridian {1} × S1, it follows that T2 − S is homeomorphic to an
open annulus with another simple closed curve S0 being a strong
deformation retract of T2 − S.
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Suppose p : [0, 1] → f−1(T2 − S) is a path with p(0) = a ∈
f−1(S0) and p(1) = b ∈ f−1(S0). Since S0 is a deformation retract
of T2−S, the path p0 = f ◦p is path-homotopic in T2−S to a path
p1 : [0, 1] → T2 − S with p1([0, 1]) ⊂ S0. Let p̂1 : [0, 1] → T2 be
the path-lifting of p1 with respect to f such that p̂1(0) = a. Since
p1 and p0 are path-homotopic and the maps p̂1 and p are their
corresponding liftings that begin at the same point a, it follows
that p̂1(1) = p(1) = b. Note that p̂1([0, 1]) ⊂ f−1(S0), and thus
a and b are in the same path component of f−1(S0). We have
shown that if f−1(T2−S) is path connected between two points in
f−1(S0), then f−1(S0) is path connected between these two points.
Since the set f−1(T2−S) is locally connected and locally compact,
its path components and (connected) components are the same. By
Proposition 2.3, the set f−1(S0) has at least n components. Hence,
f−1(T2 − S) has at least n components. ¤

Proposition 2.5. If f = fm × fn : T2 → T2 for some relatively
prime numbers m and n, and ∆ = {(z, z) | z ∈ S1} is the diagonal
of T2, then f−1(∆) is connected.

Proof: For k = mn, let gk : [0, 1] → S1 be the loop gk(t) =
(cos 2πkt, sin 2πkt), and let ĝ1,k, ĝ2,k : [0, 1] → S1 be the path-
liftings of gk, with respect to fm and fn, respectively, such that
ĝ1,k(0) = ĝ2,k(0) = 1. Consider the path pk : [0, 1] → ∆ ⊂ T2,
defined by pk(t) = (gk(t), gk(t)), and the corresponding path lift-
ing p̂k : [0, 1] → T2, with respect to f = fm × fn, such that
p̂k(0) = (1, 1). Note that π1 ◦ p̂k = ĝ1,k, π2 ◦ p̂k = ĝ2,k, and
p̂k(1) = (1, 1).

Claim. If p̂k(s) = p̂k(t) for some s and t with 0 ≤ s < t ≤ 1,
then s = 0 and t = 1.

Indeed, since ĝ1,k(s) = ĝ1,k(t) and ĝ1,k is a path-lifting of gk with
respect to fm, the number kt− ks = mn(t− s) is a multiple of m.
Similarly, using the definition of ĝ2,k, we argue that mn(t− s) is a
multiple of n. The numbers m and n are relatively prime, and thus
mn(t − s) is a multiple of mn. Consequently, t − s is a non-zero
integer. Hence, s = 0 and t = 1.

For every j ∈ {0, 1, . . . , k}, we have p̂k(j/k) ∈ f−1(1, 1). Thus,
by the Claim, |p̂k([0, 1]) ∩ f−1(1, 1)| ≥ mn. Since f is an (mn)-
fold covering map, it follows f−1(1, 1) ⊂ p̂k([0, 1]). So p̂k([0, 1]) is
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a simple closed curve in f−1(∆), and it contains an entire fiber,
f−1(1, 1), of f . The map f |f−1(∆) : f−1(∆) → ∆ is a covering
for the simple closed curve ∆. Hence, f−1(∆) = p̂k([0, 1]), which
completes the proof. ¤

3. The products of solenoids

A solenoid is the inverse limit of simple closed curves with cover-
ing bonding maps different from homeomorphisms2. Each solenoid
can be represented as the limit of an inverse system (S1, {frk

}),
where R = (r1, r2, . . . ) is a sequence of integers greater than 1. We
denote this inverse limit by SR. Each solenoid can also be repre-
sented as the inverse limit SP , where P = (p1, p2, . . . ) is a sequence
of primes (number 1 is not considered prime).

In the proof of the next theorem, which is the main result of the
paper, we will use the following known and easy to proof fact. If
P = (p1, p2, . . . ) and Q = (q1, q2, . . . ) are sequences of (not neces-
sarily prime) integers, then the product SP × SQ is homeomorphic
to the limit of the inverse sequence (T2, {fpn × fqn}).
Theorem 3.1. If P = (p1, p2, . . . ) and Q = (q1, q2, . . . ) are se-
quences of primes and SP , SQ are the corresponding solenoids, then
the product SP ×SQ is semi-indecomposable if and only if for every
number M there are i, j > M such that pi = qj.

Proof: Let ϕn : SP → S1, ψn : SQ → S1 be the projection maps
onto the n-th coordinate of the corresponding inverse limit space.

Suppose there exists a number M such that pi 6= qj for all i, j >
M . Since disregarding finitely many initial spaces and mappings in
an inverse sequence leads to a homeomorphic inverse limit space,
we can modify sequences P and Q so that pi 6= qj for all i, j. Let
rn = p1 · p2 · · · pn and sn = q1 · q2 · · · qn. The product SP × SQ

can be naturally represented as the limit of the inverse sequence
(T2, {fpn × fqn}). Note that ϕn × ψn are the projections of this
inverse limit.

Let ∆ be the diagonal of T2 as in Proposition 2.5, ∆1 = ∆, and
∆n+1 = (fpn × fqn)−1(∆n). Since rn and sn are relatively prime

2Other authors also admit homeomorphisms for bonding maps in this defi-
nition, which results with additionally including the simple closed curves in the
class of solenoids.
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for every n and ∆n = (frn × fsn)−1(∆), each set ∆n is connected
by Proposition 2.5. Consider the inverse limit K of the inverse
sequence ({∆n}, {(fpn × fqn)|∆n+1}), which is naturally embedded
in SP × SQ. Since ∆n’s are connected, K is a continuum. By the
definition of K, it follows ϕ−1

1 (1)×ψ−1
1 (1) = (ϕ1×ψ1)−1(1, 1) ⊂ K.

The solenoids SP and SQ have the local product structure of an arc
times the topological Cantor set, and the sets ϕ−1

1 (1) and ψ−1
1 (1)

are Cantor set cross sections of such structures for SP and SQ,
respectively. Each point in ϕ−1

1 (1) can be slightly enlarged to an arc
in SP so that the union of such arcs, a closed set C, has interior in
SP . Similarly, the set ψ−1

1 (1) can be slightly enlarged to a closed set
D with non-empty interior in SQ. We note that K0 = K ∪ (C×D)
is a continuum with interior in SP × SQ. Moreover, such K0 can
be defined arbitrarily near, in the sense of the Hausdorff distance,
to K. Therefore, K is non-filament in SP × SQ. Consequently, K
is an ample subcontinuum of SP × SQ by Theorem 1.1.

Let z = (z1, z2, . . . ) be a fixed point in SP with z1 6= 1. For
every x = (x1, x2, . . . ) ∈ SP and y = (y1, y2, . . . ) ∈ SQ, define
h(x,y) = (zx,y), where zx = (z1x1, z2x2, . . . ). Note that h :
SP × SQ → SP × SQ is a homeomorphism and (ϕ1 × ψ1)(h(K)) ∩
(ϕ1 × ψ1)(K) = (ϕ1 × ψ1)(h(K)) ∩ ∆ = ∅. Thus, K and h(K)
are disjoint ample subcontinua of SP × SQ. Hence, SP × SQ is not
semi-indecomposable.

Suppose for every M there are integers i, j > M such that pi =
qj . We inductively choose two subsequences kn and ln of positive
integers as follows. Let k1 = 1 and l1 = 1. If kn, ln are already
defined for some positive odd integer n, we choose integers kn+1

and ln+1 greater than kn + 1 and ln + 1, respectively, such that
pkn+1 = qln+1 . Further, define kn+2 = kn+1 +1 and ln+2 = ln+1 +1.
Next, we define two sequences an and bn of positive integers letting

a1 =
k2−1∏

j=1

pj , an =
kn+1−1∏

j=kn

pj , and b1 =
l2−1∏

j=1

qj , bn =
ln+1−1∏

j=ln

qj .

Observe that an = bn = pkn = qln for every even number n. We
also have a1 · a2 · · · an = p1 · p2 · · · pkn−1 and b1 · b2 · · · bn = q1 ·
q2 · · · qln−1 for every n. Let A = (a1, a2, . . . ) and B = (b1, b2, . . . ).
The expressions (x1, x2, . . . ) 7→ (xk1 , xk2 , . . . ) and (x1, x2, . . . ) 7→
(xl1 , xl2 , . . . ) establish homeomorphisms between solenoids SP and
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SA and between SQ and SB, respectively. Therefore, it suffices to
show that SA × SB is semi-indecomposable.

We view the space SA × SB as the limit of the inverse sequence
(Tn, {fan × fbn}). Let αn : SA → S1 and βn : SB → S1 be the
projections of SA and SB, respectively, onto the n-th coordinate.
Then γn = αn×βn : SA×SB → T2 are the projections of SA×SB.

Suppose K and L are disjoint subcontinua of SA×SB with non-
empty interiors. Define Kn = γn(K) and Ln = γn(L). For suf-
ficiently large number T , if n > T , we have Kn ∩ Ln = ∅, and
there are points xn ∈ Kn and yn ∈ Ln such that γ−1

n (xn) ⊂ K and
γ−1

n (yn) ⊂ L. Let n be such a number that, additionally, is even,
and xn and yn be such points. Since Kn and Ln are disjoint sub-
continua of T2, by Proposition 2.2, there is a non-separating simple
closed curve S contained either in T2 −Kn or in T2 − Ln. Assume
S ⊂ T2−Kn (the proof in the other case is similar). Since an = bn,
by Proposition 2.4, it follows (fan×fbn)−1(Kn) = (fan×fan)−1(Kn)
has at least an components. In particular, (fan × fbn)−1(Kn) is not
connected. Since γ−1

n (xn) ⊂ K and the bonding maps are surjec-
tive, we have (fan × fbn)−1(xn) ⊂ γn+1(K) = Kn+1. The bonding
map fan × fbn is a covering, and thus, (fan × fbn)−1(xn) intersects
different components of (fan×fbn)−1(Kn). Hence, the image, Kn+1,
of the continuum K is not connected, an impossibility. ¤

4. Applications

In this section, using some known results, we show consequences
that follow from Theorem 3.1. First, we recall the following result,
which has been recently proven by the author in [6, Corollary 4.4].

Theorem 4.1. If X is a homogeneous continuum with dense arc
components, then X is either mutually aposyndetic or semi-inde-
composable.

Since solenoids and their products have dense arc components
and are homogeneous, by Theorem 3.1 and Theorem 4.1, we have
the following characterization of mutually aposyndetic products of
solenoids.

Corollary 4.2. If P = (p1, p2, . . . ) and Q = (q1, q2, . . . ) are se-
quences of primes, and SP and SQ are the corresponding solenoids,
the three following conditions are equivalent.
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(a) SP × SQ is mutually aposyndetic,
(b) SP × SQ is not semi-indecomposable, and
(c) there exists a number M such that pi 6= qj for all i, j > M .

Remark 4.3. From the view point of mutual aposyndesis, the
product of two solenoids is the only non-trivial case. Indeed, each
solenoid is indecomposable, and thus semi-indecomposable, and the
product of more than two solenoids is mutually aposyndetic by [3,
Theorem 2]. Thus, Corollary 4.2 yields a complete characterization
of all mutually aposyndetic products of solenoids.

Let N be the set of positive integers and P be the class of
sequences P = (p1, p2, . . . ) of primes. If P = (p1, p2, . . . ) and
Q = (q1, q2, . . . ) are in P, we write P ¹ Q provided there are
a set N1 of almost all positive integers and a one-to-one function
α : N1 → N such that qα(n) = pn for each n ∈ N1. Clearly, ¹ is a
quasi-order in P. The next theorem can be derived from [2, The-
orem 6 and Theorem 8]. Note that the results of [2] are expressed
in different terms.

Theorem 4.4 (Cook). Let SP and SQ be solenoids with P, Q ∈ P.
There exists a continuous surjection f : SP → SQ if and only if
Q ¹ P .

Expressing solenoids as inverse limits SP , where P ∈ P, can
also be used to topologically classify solenoids. We formulate two
more known results in this direction to develop a better view of the
significance of the relation ¹ on P for the class of solenoids. Indeed,
two solenoids SP and SQ, where P, Q ∈ P, are homeomorphic if
and only if for almost all entries of P their order can be rearranged
to agree with almost all entries of Q [5] (see also [1] for a more
elementary proof). Using the relation ¹, the above condition on P
and Q can be expressed by P ¹ Q and Q ¹ P .

Theorem 4.5 (McCord). Let SP and SQ be solenoids with P, Q ∈
P. Then SP and SQ are homeomorphic if and only if P ¹ Q and
Q ¹ P .

Two spaces X and Y are called continuously equivalent provided
there exist continuous surjections f : X → Y and g : Y → X. The
next corollary, originally observed in [2, Theorem 9], follows from
Theorem 4.4 and Theorem 4.5.
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Corollary 4.6 (Cook). Two solenoids are homeomorphic if and
only if they are continuously equivalent.

Note that the negation of condition (c) in Corollary 4.2 is equiv-
alent to the condition that there is a sequence R = (r1, r2, . . . ) ∈ P
such that R ¹ P and R ¹ Q. The next corollary, which ends the
paper, follows from Corollary 4.2 and Theorem 4.4.

Corollary 4.7. If SP and SQ are solenoids, then their product
SP×SQ is semi-indecomposable if and only if there exists a solenoid
SR such that both SP and SQ admit continuous surjections onto SR.

References

[1] J. M. Aarts and R. J. Fokkink, The classification of solenoids, Proc. Amer.
Math. Soc. 111 (1991), no. 4, 1161–1163.

[2] H. Cook, Upper semi-continuous continuum-valued mappings onto circle-
like continua, Fund. Math. 60 (1967), 233–239.

[3] C. L. Hagopian, Mutual aposyndesis, Proc. Amer. Math. Soc. 23 (1969),
no. 3, 615–622.

[4] Alejandro Illanes, Pairs of indecomposable continua whose product is mu-
tually aposyndetic, Topology Proc. 22 (1997), Spring, 239–246.

[5] M. C. McCord, Inverse limit sequences with covering maps, Trans. Amer.
Math. Soc. 114 (1965), no. 1, Jan., 197–209.

[6] Janusz R. Prajs, Mutually aposyndetic decomposition of homogeneous con-
tinua. To appear in Canadian Journal of Mathematics.

[7] Janusz R. Prajs and Keith Whittington, Filament sets and homogeneous
continua, Topology Appl. 154 (2007), no. 8, 1581–1591.

[8] , Filament additive homogeneous continua, Indiana Univ. Math. J.
56 (2007), no. 1, 263–277.

[9] , Filament sets and decompositions of homogeneous continua, Topol-
ogy Appl. 154 (2007), no. 9, 1942–1950.

[10] , Filament sets, aposyndesis, and the decomposition theorem of
Jones, Trans. Amer. Math. Soc. 359 (2007), no. 12, 5991–6000 (electronic).

[11] Dale Rolfsen, Knots and Links. Corrected reprint of the 1976 original.
Mathematics Lecture Series, 7. Houston, TX: Publish or Perish, Inc., 1990.

Department of Mathematics and Statistics; California State Uni-
versity, Sacramento; 6000 J Street; Sacramento, CA 95819

E-mail address: prajs@csus.edu

Institute of Mathematics; University of Opole; Ul. Oleska 48;
45-052 Opole, Poland




