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TUKEY CLASSES OF ULTRAFILTERS ON ω

DAVID MILOVICH

Abstract. Motivated by a question of J. R. Isbell, we show
that 3 implies there is a non-P-point U ∈ βω \ ω such that
neither 〈U ,⊇〉 nor 〈U ,⊇∗〉 is Tukey equivalent to 〈[c]<ω,⊆〉.
We also show that 〈U ,⊇∗〉 ≡T 〈[c]<κ,⊆〉 for some U ∈ βω \ω,
assuming cf(κ) = κ ≤ p = c. We also prove two negative ZFC
results about the possible Tukey classes of ultrafilters on ω.

1. Tukey classes

Definition 1.1. A quasiorder is a set with a transitive reflexive
relation (denoted ≤ by default). A quasiorder Q is a κ-directed
set if every subset of size less than κ has an upper bound. We
abbreviate “ω-directed” with “directed.”

Definition 1.2. The product P × Q of two quasiorders P and Q
is defined by 〈p0, q0〉 ≤ 〈p1, q1〉 iff p0 ≤ p1 and q0 ≤ q1.

Definition 1.3. A subset C of a quasiorder Q is cofinal if for all
q ∈ Q there exists c ∈ C such that q ≤ c. The cofinality of Q
(written cf(Q)), is defined as

cf(Q) = min{|C| : C cofinal in Q}.
Definition 1.4 (Tukey [13]). Given directed sets P and Q and a
map f : P → Q, we say f is a Tukey map, writing f : P ≤T Q, if
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352 D. MILOVICH

the f -image of every unbounded subset of P is unbounded in Q.
We say P is Tukey reducible to Q, writing P ≤T Q, if there is a
Tukey map from P to Q. If P ≤T Q ≤T P , then we say P and Q
are Tukey equivalent and write P ≡T Q.

Proposition 1.5 (Tukey [13]). A map f : P → Q is Tukey if and
only the f-preimage of every bounded subset of Q is bounded in P .
Moreover, P ≤T Q if and only if there is a map g : Q → P such
that the image of every cofinal subset of Q is cofinal in P .

Theorem 1.6 (Tukey [13]). P ≡T Q if and only if P and Q order
embed as cofinal subsets of a common third directed set. Moreover,
if P ∩Q = ∅, then we may assume the order embeddings are identity
maps onto a quasiordering of P ∪Q.

The following is a list of basic facts about Tukey reducibility.
• P ≤T Q ⇒ cf(P ) ≤ cf(Q).
• For all ordinals α, β, we have α ≤T β ⇔ cf(α) = cf(β).
• P ≤T P ×Q.
• P ≤T R ≥T Q ⇒ P ×Q ≤T R.
• P × P ≡T P .
• P ≤T 〈[cf(P )]<ω,⊆〉.
• For all infinite sets A,B, we have 〈[A]<ω,⊆〉 ≤T 〈[B]<ω,⊆〉 ⇔
|A| ≤ |B|.

• Given finitely many ordinals α0, . . . , αm−1, β0, . . . , βn−1, we
have

∏

i<m

αi ≤T

∏

i<n

βi ⇔ {cf(αi) : i < m} ⊆ {cf(βi) : i < n}.

• Every countable directed set is Tukey equivalent to 1 or ω.

Theorem 1.7 (Isbell [7]). No two of 1, ω, ω1, ω×ω1, and 〈[ω1]<ω,⊆〉
are Tukey equivalent.

J. R. Isbell [7] asked if these five Tukey classes encompass all
directed sets of size ω1. In [8], he answered, “No,” assuming CH. In
particular, ωω, ordered by domination, is not Tukey equivalent to
any of the above five orders. Keith J. Devlin, Juris Steprāns, and
W. Stephen Watson [3] showed that 3 implies there are 2ω1-many
pairwise Tukey inequivalent directed sets of size ω1. Moreover,
Stevo Todorčevic̀ [12] weakened the hypothesis of 3 to CH and also
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showed that PFA implies that 1, ω, ω1, ω × ω1, and 〈[ω1]<ω,⊆〉
represent the only Tukey classes of directed sets of size ω1.

2. Tukey reducibility and topology

Traditionally, Tukey reducibility has mainly been connected to
topology by the concept of subnet: We say 〈xi〉i∈I is a subnet of
〈yj〉j∈J if there exists f : I → J such that the image of every cofinal
subset of I is cofinal in J , and xi = yf(i) for all i ∈ I. In contrast,
our results are about classifying points in certain spaces by the
Tukey classes of their local bases ordered by reverse inclusion. The
following theorem, which is of independent interest, implies that
the Tukey class of a local base at a point in a space is a topological
invariant.

Theorem 2.1. Suppose X and Y are spaces, p ∈ X, q ∈ Y , A is
a local base at p in X, B is a local base at q in Y , f : X → Y is
continuous and open (or just continuous at p and open at p), and
f(p) = q. Then 〈B,⊇〉 ≤T 〈A,⊇〉.

Proof: Choose H : A → B such that H(U) ⊆ f [U ] for all U ∈ A.
(Here we use that f is open.) Suppose C ⊆ A is cofinal. For any
U ∈ B, we may choose V ∈ A such that f [V ] ⊆ U by continuity of
f . Then choose W ∈ C such that W ⊆ V . Hence, H(W ) ⊆ f [W ] ⊆
f [V ] ⊆ U . Thus, H[C] is cofinal. ¤
Corollary 2.2. In the above theorem, if f is a homeomorphism,
then every local base at p is Tukey equivalent to every local base at
q.

Example 2.3. Consider the ordered space X = ω1 + 1 + ωop. It
has a point p that is the limit of an ascending ω1-sequence and
a descending ω-sequence. Every local base at p, ordered by ⊇, is
Tukey equivalent to ω × ω1.

Next, consider Dω1 ∪{∞}, the one-point compactification of the
ω1-sized discrete space. Glue X and Dω1∪{∞} together into a new
space Y by a quotient map that identifies p and ∞. In Y , every
local base at p, ordered by ⊇, is Tukey equivalent to 〈[ω1]<ω,⊆〉,
which is not Tukey equivalent to ω × ω1.

Thus, we can distinguish p in X from p in Y by their associ-
ated Tukey classes, even though other topological properties, such
as character and π-character, have not changed. Moreover, since
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ω × ω1 <T [ω1]<ω, we may conclude there is no continuous open
map from X to Y that sends p to p.

3. Ultrafilters

Definition 3.1. Let ω∗ denote the space βω \ ω of nonprincipal
ultrafilters on ω.

By Stone duality, every ultrafilter U on ω is such that U ordered
by containment, ⊇, is Tukey equivalent to every local base of U
in βω. Likewise, U ordered by almost containment, ⊇∗, is Tukey
equivalent to every local base of U in ω∗. Therefore, let us now re-
strict our attention to the Tukey classes of nonprincipal ultrafilters
on ω, ordered by ⊇ or ⊇∗. Note that the identity map on a U ∈ ω∗
is a Tukey map from 〈U ,⊇∗〉 to 〈U ,⊇〉. Moreover, since 〈[c]<ω,⊆〉
is Tukey-maximal among the directed sets of cofinality at most c,
if 〈U ,⊇∗〉 ≡T 〈[c]<ω,⊆〉, then 〈U ,⊇〉 ≡T 〈[c]<ω,⊆〉.

Isbell [7], using an independent family of sets, showed that there
is always some U ∈ ω∗ such that 〈U ,⊇〉 ≡T 〈[c]<ω,⊆〉. Moreover,
his proof also implicitly shows that 〈U ,⊇∗〉 ≡T 〈[c]<ω,⊆〉.
Definition 3.2. We say I ⊆ [ω]ω is independent if for all disjoint
σ, τ ∈ [I]<ω, we have

⋂
σ 6⊆∗ ⋃

τ .

Lemma 3.3 (Hausdorff [5]). There exists an independent I ∈
[[ω]ω]c.

Theorem 3.4 (Isbell [7]). There exists U ∈ ω∗ such that 〈U ,⊇∗〉 ≡T

〈[c]<ω,⊆〉.
Proof: It suffices to show that there exists f : 〈[c]<ω,⊆〉 ≤T

〈U ,⊇∗〉. Let I ∈ [[ω]ω]c be independent. Let F be the filter gen-
erated by I. Let J be the ideal generated by the set of pseudo-
intersections of infinite subsets of I. Extend F to an ultrafilter U
disjoint from J . Define f : [c]<ω → U by σ 7→ ⋂

α∈σ Iα. Then f is
Tukey as desired. ¤
Definition 3.5. Given U ∈ ω∗, we say U is a Pκ-point if 〈U ,⊇∗〉 is
κ-directed. We call Pω1-points P-points.

There are also known constructions of various U ∈ ω∗ that sat-
isfy 〈U ,⊇∗〉 ≡T 〈[c]<ω,⊆〉 and some additional property. See, for
example, Alan Dow and Jinyuan Zhou [4]. Also, K. Kunen [9]
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proved that there exists a non-P-point U ∈ ω∗ such that U is
c-OK, and the next proposition shows that such a point must satisfy
〈U ,⊇∗〉 ≡T 〈[c]<ω,⊆〉.
Definition 3.6 (Kunen [9]). We say U ∈ ω∗ is κ-OK if, for
every 〈An〉n<ω ∈ Uω, there exists 〈Bα〉α<κ ∈ Uκ such that for
all nonempty σ ∈ [κ]<ω, we have

⋂
α∈σ Bα ⊆∗ A|σ|. (Therefore,

Keisler’s notion of κ+-good implies κ-OK.)

Proposition 3.7. If U is a c-OK non-P-point in ω∗, then 〈U ,⊇∗〉
≡T 〈[c]<ω,⊆〉.

Proof: It suffices to show that there exists f : 〈[c]<ω,⊆〉 ≤T

〈U ,⊇∗〉. Choose 〈An〉n<ω ∈ Uω such that {An : n < ω} has no
pseudointersection in U . Choose 〈Bα〉α<c ∈ U c as in Definition 3.6.
Define f : [c]<ω → U by σ 7→ ⋂

α∈σ Bα. Then every infinite subset
of [c]<ω has unbounded f -image; hence, f is Tukey as desired. ¤
Definition 3.8. Let u denote the least κ such that there exists U ∈
ω∗ such that cf(〈U ,⊇∗〉) = κ. Note that cf(〈U ,⊇〉) = cf(〈U ,⊇∗〉)
always holds.

Isbell [7] asked if every U ∈ ω∗ satisfies 〈U ,⊇〉 ≡T 〈[c]<ω,⊆〉. It
is now well known that it is consistent with ¬CH that u < c, which
implies the existence of U ∈ ω∗ such that 〈U ,⊇〉 ≤T 〈[u]<ω,⊆〉 <T

〈[c]<ω,⊆〉. To keep Isbell’s question interesting, we must restrict
our attention to models of u = c.

Definition 3.9. We sayA ⊆ P(ω) has the strong finite intersection
property (SFIP) if |⋂σ| = ω for all σ ∈ [A]<ω. Let p denote the
least κ for which some A ∈ [[ω]ω]κ has the SFIP but does not have
a nontrivial pseudointersection.

It easily follows that p ≤ u. Moreover, by Bell’s Theorem [1],
p is the least κ for which there exists a σ-centered poset P and a
family D of κ-many dense subsets of P such that P does not have
a D-generic filter. Hence, p = c is equivalent to MAσ-centered.

Definition 3.10. Given cardinals κ and λ, let Eκ
λ denote {α < κ :

cf(α) = λ}.
Theorem 3.11. Assume 3(Ec

ω) and p = c. Then there exists
U ∈ ω∗ such that U is not a P -point and c <T 〈U ,⊇∗〉 ≤T 〈U ,⊇〉 <T

[c]<ω.
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Proof: To simplify notation, we construct U as an ultrafilter on
ω2. Indeed, we construct Pc-points V,W0,W1,W2, . . . ∈ ω∗ and set
U = {E ⊆ ω2 : V 3 {i : Wi 3 {j : 〈i, j〉 ∈ E}}}. This immediately
implies that {(ω \ n) × ω : n < ω} is a countable subset of U
with no pseudointersection in U ; hence, U is not a P -point. Our
construction proceeds in c stages such that for each n < ω, the
sequences 〈Vα〉α<c and 〈Wn,α〉α<c are continuous increasing chains
of filters such that V =

⋃
α<c Vα and Wn =

⋃
α<cWn,α. Set Uα =

{E ⊆ ω2 : Vα 3 {i : Wi,α 3 {j : 〈i, j〉 ∈ E}}} for all α < c.
Let 〈Ξα〉α∈Ec

ω
be a 3-sequence. Let ζ : c ↔ [ω]ω and η : c ↔[

ω2
]ω. Set V0 = Wn,0 = {ω \ σ : σ ∈ [ω]<ω} for all n < ω. Suppose

α < c and we have constructed 〈Vβ〉β<α and 〈Wn,β〉〈n,β〉∈ω×α such
that for all β < α and n < ω, Vβ and Wn,β are filters on ω; if
cf(β) 6= ω and β + 1 < α, then further suppose that Vβ and Wn,β

have pseudointersections in Vβ+1 and Wn,β+1, respectively. If α is
a limit ordinal, then set Vα =

⋃
β<α Vβ and Wn,α =

⋃
β<αWn,β for

each n < ω. If α is the successor of an ordinal with cofinality other
than ω, then we use stage α as follows to help our filters become
ultrafilters that are Pc-points. Choose the least β < c such that
ζ(β), ω \ ζ(β) 6∈ Vα−1. Choose E ∈ {ζ(β), ω \ ζ(β)} such that
{E} ∪ Vα−1 has the SFIP and let Vα be a filter generated by Vα−1

and a pseudointersection of {E} ∪ Vα−1. Likewise, for each n < ω,
choose the least β < c such that ζ(β), ω \ ζ(β) 6∈ Wn,α−1. Choose
E ∈ {ζ(β), ω \ ζ(β)} such that {E}∪Wn,α−1 has the SFIP and let
Wn,α be a filter generated by Wn,α−1 and a pseudointersection of
{E} ∪Wn,α−1.

Finally, suppose α is the successor of an ordinal with cofinality ω.
Then we use stage α to kill a potential witness to 〈U ,⊇〉 ≡T [c]<ω.
Choose, if it exists, the least β < c for which η(β) is contained in
the intersection of an infinite subset of η[Ξα] and {η(β)} ∪ Uα−1

has the SFIP. Let Vα be the filter generated by {F} ∪ Vα−1 where
F = {i : Wi,α−1 63 ω \ {j : 〈i, j〉 ∈ η(β)}}; for each i ∈ F , let Wi,α

be the filter generated by {{j : 〈i, j〉 ∈ η(β)}} ∪ Wi,α−1; for each
i ∈ ω \ F , set Wi,α = Wi,α−1. Note that this implies η(β) ∈ Uα. If
no such β exists, then set Vα = Vα−1 and Wn,α = Wn,α−1 for all
n < ω. This completes the construction.

Clearly, c ≤T 〈V,⊇∗〉 ≤T 〈U ,⊇∗〉. Since U is not a P -point, c 6≡T

〈U ,⊇∗〉. Therefore, it remains only to show that 〈U ,⊇〉 6≡T [c]<ω.
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Suppose A ∈ [U ]c. Then it suffices to show that the intersection of
an infinite subset of A is in U . By 3(Ec

ω), there exists M ≺ Hc+

such that |M | = ω and M ⊇ {A, 〈Vα〉α<c, 〈Wn,α〉〈n,α〉∈ω×c} and
η[Ξδ] = A ∩M where δ = sup(c ∩M). Hence, it suffices to show
that the intersection E of some infinite subset of A∩M is such that
{E} ∪ Uδ has the SFIP.

Let {Vn : n < ω} ⊆ M generate of the filter Vδ; for each i < ω,
let {Wi,j : j < ω} ⊆ M generate the filter Wi,δ. Set B0 = A.
Suppose k < ω and, for all l < k, we have Al ∈ Bl+1 ∈ [Bl]c and
nl < ω and Wnl

3 {
j : 〈nl, j〉 ∈ B ∩ ⋂

h<l Ah

}
for all B ∈ Bl+1.

Since cf(c) > ω, there exist Bk+1 ∈ [Bk]c and nk ∈
⋂

h<k(Vh \ {nh})
and σk : {nl : l < k} → ω such that for all l < k and B ∈ Bk+1, we
have Wnk

3 {
j : 〈nk, j〉 ∈ B ∩⋂

h<k Ah

}
and σk(nl) ∈

⋂
h<k Wnl,h

and σk ⊆ B ∩⋂
h<k Ah. Choose any Ak ∈ Bk+1 \ {Ah : h < k}. By

induction, we can repeat the above for all k < ω. Moreover, we may
carry out any finite initial segment of the construction in M . Hence,
we may assume {Ai : i < ω} ⊆ M . Finally,

⋃
i<ω σi ⊆

⋂
i<ω Ai and

{⋃i<ω σi} ∪ Uδ has the SFIP. ¤

Note that 3(Ec
ω) is equivalent to 3 under CH. Furthermore, a

recent result of Saharon Shelah [11] is that if κ is an uncountable
cardinal and 2κ = κ+, then 3(S) holds for every stationary S dis-
joint from Eκ+

cf(κ). Hence, we could drop the hypothesis 3(Ec
ω) under

the assumption that c = κ+ for some cardinal κ of uncountable co-
finality. (We’d have 2κ = κ+ because c<p = c; (see D. A. Martin
and R. M. Solovay [10]).)

Remark. When thinking about Tukey classes of ultrafilters, one
may be reminded of Stephen H. Hechler’s result [6] that any ω1-
directed set without a maximum can be forced to be isomorphic to
a cofinal subset of ωω ordered by eventual domination. Similarly,
Jörg Brendle and Shelah [2] have implicitly shown that for a fixed
regular uncountable κ and set R of regular cardinals exceeding κ,
there is a model of ZFC in which, for each λ ∈ R, some U ∈ ω∗,
when ordered by ⊇∗, has a cofinal subset isomorphic to κ×λ. It is
not clear whether an arbitrary ω1-directed set can be forced to be
isomorphic to a cofinal subset of an ultrafilter ordered by ⊇∗. In
constructing non-P -points, which are not ω1-directed when ordered
by ⊇∗, order-theoretic results seem to come even less easily.
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It is worth noting another relationship between the Tukey classes
arising from ultrafilters ordered by ⊇∗ and those ordered by ⊇.

Proposition 3.12. Suppose U is a non-P-point in ω∗. Then there
exists V ∈ ω∗ such that 〈V,⊇〉 ≤T 〈U ,⊇∗〉.

Proof: Choose 〈xn〉n<ω ∈ Uω such that xn ⊇ xn+1 6⊇∗ xn for
all n < ω, that

⋂
n<ω xn = ∅, and that {xn : n < ω} has no

pseudointersection in U . For each n < ω, set yn = xn \ xn+1. Set
V =

{
E ⊆ ω :

⋃
n∈E yn ∈ U

}
. Then V ∈ ω∗, and the map from

〈V,⊇〉 to 〈U ,⊇∗〉 defined by E 7→ ⋃
n∈E yn is Tukey. ¤

Next, we have a pair of negative ZFC results.

Theorem 3.13. Let Q be a directed set that is a countable union
of ω1-directed sets. Then 〈U ,⊇∗〉 6≡T ω ×Q for all U ∈ ω∗.

Proof: Seeking a contradiction, suppose U ∈ ω∗ and 〈U ,⊇∗〉 ≡T

ω ×Q. Then there is a quasiordering v on U ∪ (ω ×Q) such that
〈U ,⊇∗〉 and 〈ω×Q,≤ω×Q〉 are cofinal suborders. Let Q =

⋃
n<ω Qn

where Qn is ω1-directed for all n < ω. Fix p ∈ Q. Fix η ∈ ωω such
that η−1{n} is unbounded and η(4n) = η(4n + 1) = η(4n + 2) =
η(4n + 3) for all n < ω. For all n < ω and q ∈ Q, choose xn,q ∈ U
such that 〈n, q〉 v xn,q. We may assume that xi,p v xj,q for all
i ≤ j < ω and q ∈ Q.

Construct ζ ∈ ωω as follows. Suppose we are given n < ω and
ζ ¹ n. Then, for all q ∈ Q, the set {xζ(m),q : m < n} has a v-upper
bound 〈k, r〉 for some k < ω and r ∈ Q. Since Qη(n) is ω1-directed,
every countable partition of Qη(n) includes a cofinal subset. Hence,
there exist k < ω and a cofinal subset Sn of Qη(n) such that for all
q ∈ Sn, there exists r ∈ Q such that {xζ(m),q : m < n} v 〈k, r〉. We
may assume k > ζ(m) for all m < n. Set ζ(n) = k.

Since ω∗ is an F-space (or, more directly, by an easy diagonaliza-
tion argument), there exists z ⊆ ω such that xζ(4n),p\xζ(4n+2),p ⊆∗ z
and xζ(4n+2),p \ xζ(4n+4),p ⊆∗ ω \ z for all n < ω. Suppose z ∈ U .
Then there exist m < ω and 〈l, r〉 ∈ ω × Qm such that 〈l, r〉 w z.
Choose n < ω such that η(4n + 3) = m and ζ(4n + 2) ≥ l. Then
choose q ∈ S4n+3 such that q ≥ r. Then 〈ζ(4n + 2), q〉 w z. Hence,
xζ(4n+2),q w z ∩ xζ(4n+2),p w xζ(4n+4),p w 〈ζ(4n + 4), p〉. Hence,
〈ζ(4n + 4), p〉 v xζ(4n+2),q v 〈ζ(4n + 3), s〉 for some s ∈ Q, which is
absurd because ζ is strictly increasing. By symmetry, we can also
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derive an absurdity from ω \ z ∈ U . Thus, U is not an ultrafilter on
ω, which yields our desired contradiction. ¤

The above result is optimal in the following sense. As noted
before, it is not hard to show that for a fixed regular uncountable κ
and set R of regular cardinals exceeding κ, a construction of Brendle
and Shelah [2] can be trivially modified to yield of a model of ZFC
in which, for each λ ∈ R, some U ∈ ω∗ satisfies 〈U ,⊇∗〉 ≡T κ × λ
for each λ in an arbitrary set of regular cardinals exceeding κ.

Definition 3.14. A quasiorder Q is said to be κ-like if every
bounded subset of Q has size less than κ.

Lemma 3.15. Given a quasiorder Q with an unbounded cofinal
subset C, there exists a cofinal subset A of C such that A is |C|-like.

Proof: Let 〈cα〉α<|C| : |C| ↔ C. For each α < |C|, let aα = cβ

where β is the least γ < |C| such that cγ has no upper bound in
{aδ : δ < α}, provided such a γ exists. If no such γ exists, then
α > 0, so we may set aα = a0. Then A = {aα : α < |C|} is as
desired. ¤

Theorem 3.16. Suppose Q is a directed set that is a countable
union of ω1-directed sets. Then 〈U ,⊇〉 6≤T Q for all U ∈ ω∗.

Proof: Seeking a contradiction, suppose U ∈ ω∗ and f : 〈U ,⊇〉 ≤T

Q. By a result of Brendle and Shelah [2],

cf(cf(〈U ,⊇〉)) = cf(cf(〈U ,⊇∗〉)) > ω.

By Lemma 3.15, U has a cofinal subset A that is cf(〈U ,⊇〉)-like.
Since A is cofinal, f ¹ A is a Tukey map, and |A| = cf(〈U ,⊇〉).
Let Q =

⋃
n<ω Qn, where Qn is ω1-directed for all n < ω. Since

cf(|A|) > ω, there exist n < ω and B ∈ [A]|A| such that f [B] ⊆ Qn.
Since A is |A|-like, B is unbounded. Set I = ω \ ⋂B. For each
i ∈ I, choose Bi ∈ B such that i 6∈ Bi. Then

⋂
i∈I Bi =

⋂B; hence,
{Bi : i ∈ I} is unbounded. But {f(Bi) : i ∈ I} is a countable subset
of Qn, and therefore bounded. This contradicts our assumption
that f is Tukey. ¤

Our next theorem is a positive consistency result. Its proof uses
Solovay’s Lemma [10], which we now state in terms of p.
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Lemma 3.17. If A,B ∈ [[ω]ω]<p and |a ∩⋂
σ| = ω for all a ∈ A

and σ ∈ [B]<ω, then B has a pseudointersection b such that |a∩b| =
ω for all a ∈ A.

Theorem 3.18. Assume p = c. Let ω ≤ cf(κ) = κ ≤ c. Then
there exists U ∈ ω∗ such that 〈U ,⊇∗〉 ≡T 〈[c]<κ,⊆〉.

Proof: Given a set E, let I(E) denote the set of injections from
κ to E. Given E ⊆ P(ω), let Φ(E) denote the set of 〈ρ, Γ〉 ∈
[E ]<ω × I(E)<ω satisfying

⋂
ρ ⊆∗ ⋃

f∈ranΓ f(γ) for all γ < κ. Let
〈Sα〉α<c enumerate [[ω]ω]<κ. Note that if |E| ≥ κ, then Φ(E) = ∅
implies that E has the SFIP and that 〈E ,⊇∗〉 is κ-like.

Let us construct a sequence 〈Uα〉α<c in [ω]ω such that we have
the following for all α ≤ c, given the notation Uβ = {Uγ : γ < β}
for all β ≤ c.

(1) ∀β < α ∀σ, τ ∈ [Uβ]<ω
⋂

σ ⊆∗ ⋃
τ or

⋂
σ \⋃

τ 6⊆∗ Uβ.
(2) ∀β < α ∃σ ∈ [Sβ]<ω Uβ ∩

⋂
σ =∗ ∅ or ∀S ∈ Sβ Uβ ⊆∗ S.

(3) Φ(Uα) = ∅.
Clearly, (1) and (2) will be preserved at limit stages of the

construction. Let us show that (3) will also be preserved. Let
ω ≤ cf(η) ≤ η ≤ c and suppose (1) and (3) hold for all α < η.
Seeking a contradiction, suppose 〈ρ, Γ〉 ∈ Φ(Uη); we may assume
〈ρ, Γ〉 is chosen so as to minimize dom Γ. By (1), 〈Uα〉α<η is injec-
tive; let ψ be its inverse. Since Φ(Usup(ψ[ρ])) = ∅, we have Γ 6= ∅. By
the pigeonhole principle, there exist A ∈ [κ]κ and i ∈ domΓ such
that for all γ ∈ A, we have ψ(Γ(i)(γ)) = maxj∈domΓ ψ(Γ(j)(γ)). By
symmetry, we may assume i = max(dom Γ). Since Φ(Usup(ψ[ρ])) =
∅, we have |A ∩ Γ(i)−1 sup(ψ[ρ])| < κ; hence, we may assume
A ∩ Γ(i)−1 sup(ψ[ρ]) = ∅. By the definition of Φ(Uη), we have⋂

ρ \ ⋃
j<i Γ(j)(γ) ⊆∗ Γ(i)(γ) for all γ ∈ A. Hence, by (1), we

have
⋂

ρ ⊆∗ ⋃
j<i Γ(j)(γ) for all γ ∈ A. Choose h ∈ I(A). Then

〈ρ, 〈Γ(j) ◦ h〉j<i〉 ∈ Φ(Uη), in contradiction with the minimality of
domΓ. Thus, (3) will be preserved at limit stages.

Given α < c and 〈Uβ〉β<α satisfying (1)–(3), let us show that
there always exists Uα ∈ [ω]ω such that 〈Uβ〉β≤α also satisfies (1)–
(3). Let g ∈ 2ω be sufficiently Cohen generic. There are two cases
to consider. First, suppose that there exists σ ∈ [Sα]<ω such that
Φ(Uα∪σ) 6= ∅. Then there exists 〈ρ2, Γ2〉 ∈ Φ(Uα∪{x2}) where x2 =⋂

σ. For each i < 2, set xi = g−1{i} \ x2. Seeking a contradiction,
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suppose there exists 〈ρi, Γi〉 ∈ Φ(Uα ∪ {xi}) for each i < 2. We
may assume

⋃
i<3

⋃
ranΓi ⊆ Uα. Let Λ be a concatenation of

{Γi : i < 3} and set τ = Uα ∩
⋃

i<3 ρi. Then, for all γ < κ, we have
⋂

τ =
⋃

i<3

(
xi ∩

⋂
τ
)
⊆

⋃

i<3

⋂
ρi ⊆∗

⋃

f∈ranΛ

f(γ).

Hence, 〈τ, Λ〉 ∈ Φ(Uα), in contradiction with (3). Therefore, we
may choose i < 2 such that Φ(Uα ∪ {xi}) = ∅. Set Uα = xi, which
is disjoint from

⋂
σ. Then (2) and (3) are clearly satisfied for stage

α + 1, and (1) is also satisfied because of Cohen genericity.
Now suppose that Φ(Uα ∪ σ) = ∅ for all σ ∈ [Sα]<ω. For each

ρ ∈ [Uα]<ω, σ ∈ [Sα]<ω, and Γ ∈ I(Uα)<ω, choose γρ,σ,Γ < κ
such that

⋂
(ρ ∪ σ) 6⊆∗ ⋃

i∈ranΓ f(δ) for all δ ∈ κ \ γρ,σ,Γ. Set
γρ,Γ = sup{γρ,σ,Γ : σ ∈ [Sα]<ω}; set xρ,Γ =

⋂
ρ \⋃

f∈ranΓ f(γρ,Γ).
Then xρ,Γ∩

⋂
σ is infinite for all σ ∈ [Sα]<ω. By Solovay’s Lemma,

Sα has a pseudointersection y such that y ∩ xρ,Γ is infinite for all
ρ ∈ [Uα]<ω and Γ ∈ I(Uα)<ω, for there are at most |Uα|<ω-many
possible xρ,Γ. Set Uα = y ∩ g−1{0}. Then (2) is clearly satisfied
for stage α + 1. Since y ∩ xρ,Γ is infinite, Cohen genericity implies
Uα ∩ xρ,Γ is infinite, for all ρ and Γ. Hence, (3) is satisfied for
stage α + 1; (1) is also satisfied because of Cohen genericity. This
completes our construction of 〈Uα〉α<c.

Let U be the semifilter generated by Uc. By (3), Uc has the SFIP
and Uc is κ-like with respect to ⊇∗. Hence, by (2), U is a Pκ-point in
ω∗. Therefore, f : 〈U ,⊇∗〉 ≤T 〈[c]<κ,⊆〉 for any injection f of U into
[c]1. Choose ζ : [c]<κ → U such that ζ(σ) is a pseudointersection of
{Uα : α ∈ σ} for all σ ∈ [c]<κ. Then ζ is Tukey because Uc is κ-like.
Thus, U ≤T [c]<κ ≤T U . ¤

4. Questions

Question 4.1. Is it consistent that every U ∈ ω∗ satisfies 〈U ,⊇∗〉
≡T 〈[c]<ω〉?
Question 4.2. Does CH (or even ZFC alone) imply there exists
U ∈ ω∗ such that 〈U ,⊇〉 <T 〈[c]<ω〉?
Question 4.3. Does CH (or even ZFC alone) imply there exists
a non-P-point U ∈ ω∗ such that 〈U ,⊇∗〉 <T 〈[c]<ω〉? By Propo-
sition 3.12, a positive answer to this question implies a positive
answer to the previous question.
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Question 4.4. Does 3 imply there are more than three Tukey
classes represented by 〈U ,⊇∗〉 for some U ∈ ω∗? Infinitely many
Tukey classes? As many as 2ω1? What if we replace ⊇∗ with ⊇?

Question 4.5. Is it consistent with ω1 < p that there exists U ∈ ω∗
such that 〈U ,⊇∗〉 ≡T ω1 × c?

Question 4.6. Does there exist U ∈ ω∗ such that 〈U ,⊇〉 ≡T ωω

where ωω is ordered by domination?
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