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LINDELÖF PROPERTY OF THE
MULTIFUNCTION SPACE L(X)

OF CUSCO MAPS

TANVI JAIN AND R. A. McCOY

Abstract. A set-valued mapping F from a topological space
X to a topological space Y is called a cusco map if F is upper
semicontinuous and F (x) is a nonempty, compact, and con-
nected subset of Y for each x ∈ X. We denote by L(X) the
space of all subsets F of X × R such that F is the graph of
a cusco map from the space X to the real line R. In this pa-
per, we find several necessary conditions and several sufficient
conditions on X such that L(X) with the Vietoris topology
is Lindelöf. We also study some conditions on X that are
sufficient for L(X) with the Fell topology to be Lindelöf.

1. Introduction

For a function space, one of the topological properties that is
difficult to characterize is the Lindelöf property. For example, an
open problem (see [1]; [2, Chapter 1, Section 4]; [3, pp. 29–32]; [25,
Exercise 3, p. 68]) is how can one characterize Cp(X) as Lindelöf
in terms of topological properties of X, where Cp(X) is the space
of continuous real-valued functions on X under the topology of
pointwise convergence. A number of people have obtained partial
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results for this “Lindelöf problem,” but no full characterization is
known.

There has recently been much interest in the multifunction space
of usc, usco, and cusco maps on a topological space X under various
hyperspace topologies (see [10], [14], [15], [20], [24]). In particular,
an interesting and classical problem that leads to the study of cusco
maps is to characterize the closure of C(X) in the space CL(X×R)
of all nonempty closed subsets of X × R for various hyperspace
topologies on CL(X × R) (see [5], [14], [13], [16], [17], [18]). The
cusco maps and minimal cusco maps are also important tools in
convex analysis (see [7]).

Various topological properties of the space LV (X) of cusco maps
from X to the real line R with the Vietoris topology were studied in
[15]: metrizability, complete metrizability, and countability prop-
erties, but not Lindelöf. It was shown that for a normal space X,
the metrizability, complete metrizability, second countability, sepa-
rability, and countable chain condition of LV (X) are all equivalent
to X being compact and metrizable. In this paper, we consider the
Lindelöf problem for the multifunction space LV (X) of cusco maps
on X under the Vietoris topology. It is not surprising that it is
difficult to characterize when LV (X) is a Lindelöf space in terms
of properties of X. But we give several necessary properties of X
and several sufficient properties of X, along with examples show-
ing why these properties are not both necessary and sufficient for
LV (X) to be a Lindelöf space. This leaves the full characterization
as an open problem. We also consider the “Lindelöf problem” for
the same space LF (X) except having the Fell topology.

2. Preliminaries

We refer to Gerald Beer [6] and Ryszard Engelking [12] for basic
notions. If X and Y are nonempty sets, a set-valued mapping
or multifunction from X to Y is a mapping that assigns to each
element of X a (possibly empty) subset of Y . If T is a set-valued
mapping from X to Y , then its graph is {(x, y) : y ∈ T (x)}.

If F is a subset of X × Y and x ∈ X, define F (x) = {y ∈ Y :
(x, y) ∈ F}. We assign to each subset F of X × Y a set-valued
mapping which takes the value F (x) at each point x ∈ X. Then F
is the graph of the set-valued mapping. In this paper, we identify
mappings with their graphs.
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Let X and Y be topological spaces, and let T be a set-valued
mapping from X to Y . Then T is called upper semicontinuous
(usc) if for each x ∈ X and any open set V containing T (x), there
exists a neighborhood Ux of x such that T (z) ⊆ V for all z ∈ Ux.
Following Jens Peter Reus Christensen [8], we say that T is a usco
map if T is a usc map such that T (x) is a nonempty compact set for
all x ∈ X. Similarly, we say that T is cusco if it is usco and T (x) is
connected for all x ∈ X. In the literature, the notation cusco [7] is
also used for usco maps with convex values in a topological vector
space. Since we are working only with multifunctions with values
in R, both of these notations coincide in our case.

To describe the hypertopologies that we are using in this paper,
we need to introduce the following notation. Let (X, τ) be a topo-
logical space and CL(X) be the hyperspace of all nonempty closed
subsets of X. For U ⊆ X, define U+ = {A ∈ CL(X) : A ⊆ U} and
U− = {A ∈ CL(X) : A ∩ U 6= ∅}. If U is a family of sets in X,
define U− = ∩{U− : U ∈ U}.

A subbase for the Vietoris (Fell, resp.) topology on CL(X) (see
[6]) is the family of sets of the form U+ with U ∈ τ (U has compact
complement in X, resp.) and of the form U− with U ⊆ τ finite.

In this paper, X always denotes a Hausdorff space. The sets
of real numbers and natural numbers are denoted by R and N,
respectively. For any subset A of a topological space X, the closure,
boundary, and complement of A are denoted by A, bd(A), and X\A,
respectively. However, in the case of X × R, for any subset A of
X×R, we denote the complement of A in X×R by Ac also. Further,
for any hyperspace H(X), we denote by HV (X) (HF (X), resp.),
H(X) with the Vietoris (Fell, resp.) topology.

The results given in this section, although used in the next two
sections, also have their independent importance.

The first result in this section states some basic facts on graphs
of cusco maps which will be used in several results in this paper.

Lemma 2.1 ([15, Lemma 3.1]). For a Hausdorff space X, the fol-
lowing statements are equivalent.

(a) F ⊂ X × R is the graph of a cusco map.
(b) F is a closed, locally bounded subset of X × R with F (x)

nonempty and connected for each x ∈ X.
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(c) There exist real-valued functions f and g on X with f ≤ g
and f and g lower and upper semicontinuous, respectively,
such that F (x) = [f(x), g(x)] for each x ∈ X.

Theorem 2.2. For a Hausdorff space X, the following assertions
hold.

(a) CLV (X) can be homeomorphically embedded into LV (X).
(b) CLF (X) can be homeomorphically embedded into LF (X).
(c) If X is regular, then CLV (X) can be embedded as a closed

subspace of LV (X).

Proof: Parts (a) and (c) follow from [15, Proposition 3.2 and
Proposition 3.3], respectively.

Now, as in the proof of [15, Proposition 3.2], for each E ∈ CL(X),
define

FE = E × [0, 1] ∪X × {0}.
Then FE ∈ L(X). Consider a map φ : CL(X) → L(X) defined
by φ(E) = FE for each E ∈ CL(X). We shall show that φ is a
homeomorphism from CLF (X) to LF (X). Clearly, φ is one-one.

First, let E ∈ CL(X) and K be a compact set in X × R such
that FE ∈ (Kc)+. Without loss of generality, we can assume that
K ⊆ X × [0, 1]. Then it can be verified that the set

KX = {x ∈ X : there exists some t in [0, 1] such that (x, t) ∈ K}
is a compact set in X with E ∈ (Kc

X)+ and φ(X \KX)+) ⊆ (Kc)+.
Therefore, by [15, Proposition 3.2], we obtain that φ is continuous
from CLF (X) to LF (X).

Now, for any compact set C in X, let

K = C × {1}.
Then K is a compact set in X × R and φ((X \ C)+) = (Kc)+ ∩
φ(CL(X)). Hence, again by [15, Proposition 3.2], we finally obtain
that φ is a homeomorphism. ¤

Remark 2.3. Consider the subspace

CL∗(X × R) = {F ∈ CL(X × R : F (x) 6= ∅ for all x ∈ X}
of CL(X ×R). Then since for each x ∈ X,

(
(X \ {x})×R)+ is an

open set in CLV (X × R) containing no member of CL∗(X × R),
CL∗V (X × R) is a closed subspace of CLV (X × R).
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The space LV (X) is never closed in CLV (X × R) since the set

M = {A ∪ (C × R) : A ∈ L(X), C is a closed subset of X}
is contained in the closure of LV (X) in CLV (X × R). However,
for a compact space X, LV (X) is closed in the space KV (X × R)
of nonempty compact subsets of X × R if and only if X is locally
connected, as shown by the following theorem. In fact, the theo-
rem gives an equivalent characterization for LV (X) to be locally
compact for a Hausdorff space X.

Theorem 2.4. For a Hausdorff space X, the following assertions
are equivalent.

(a) X is compact and locally connected.
(b) LV (X) is a closed subset of KV (X × R).
(c) LV (X) is locally compact.

Proof: (a) =⇒ (b): Since X is compact, by [12, Problem
3.12.23(g)], every member A of L(X) is contained in X × [−n, n]
for some n ∈ N. Therefore, L(X) ⊆ K(X×R). We shall show that
LV (X) is closed in KV (X × R). Let F ∈ L(X) in KV (X × R). In
a similar way as in Remark 2.3, we have that F (x) 6= ∅ for each
x ∈ X.

Now suppose for some x ∈ X that F (x) is not connected, that is,
there exist real numbers r, s, t with r < s < t such that r, t ∈ F (x)
but s /∈ F (x). If x is an isolated point of X, then

(X \ {x} × R ∪ ({x} × ((−∞, s) ∪ (s,∞))))+∩
({x} × (−∞, s))− ∩ ({x} × (s,∞))−

is an open neighborhood of F containing no member of L(X). So
let x be a nonisolated point of X. Since F is closed in X×R, we can
find some open neighborhood U of x such that s /∈ F (z) ∀ z ∈ U .
Let U0 be a connected open neighborhood of x such that U0 ⊆ U .
Let W0 = (X \ U0 × R) ∪ (U × (−∞, s) ∪ (s,∞)), W1 = U0 ×
(−∞, s), and W2 = U0 × (s,∞). Then F ∈ W+

0 ∩ W−
1 ∩ W−

2 .
Since F ∈ L(X) and x is a nonisolated point of X, by [15, Lemma
4.1], [16, Lemma 4.1], and [4, Proposition 7], we can find some
f ∈ C(X) ∩ W+

0 ∩ W−
1 ∩ W−

2 . Since U0 is connected, f(U0) is
connected. But this is a contradiction as f(U0) ⊆ (−∞, s)∪ (s,∞),
and f(U0) ∩ (−∞, s) 6= ∅ and f(U0) ∩ (s,∞) 6= ∅. Therefore, F (x)
is connected for each x ∈ X. Also since F ∈ K(X×R), F is locally
bounded and hence belongs to L(X).
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(b) =⇒ (c): Since X×{0} ∈ L(X) ⊆ K(X×R), X is compact.
Let F ∈ L(X). Again, since X is compact, we can find some n ∈ N
such that F ⊆ X × (−n, n). Now, for any neighborhood W of
F , W ∩ (X × (−n, n))+ is a closed subset of the compact space
KV (X × [−n, n]), and hence is compact. This proves that LV (X)
is locally compact.

(c) =⇒ (a): Let LV (X) be locally compact. We shall show
that X is compact. First, suppose, by way of contradiction, that
X is not countably compact; that is, there exists an infinite closed
discrete set M = {xn : n ∈ N} in X.

Let F0 = X × {0} denote the zero function. It can be verified
that the set B = {W+ : W is an open set containing F0} forms a
base for LV (X) at F0. Let W+ ∈ B be such that W+ is compact
in LV (X). For each n ∈ N, let tn ∈ R such that (xn, tn) ∈ W , and
let Fn = (X × {0}) ∪ ({xn} × [0, tn]). Since W+ is compact, the
sequence (Fn) has a cluster point F in W+.

If for some x ∈ X, F (x) ∩ (R \ {0}) 6= ∅, then since M is a
closed discrete set in X, we can find an open set Ux such that
x ∈ Ux and xn ∈ Ux for at most one n ∈ N, so that we have
F ∈ (Ux × R \ {0})− but Fn ∈ (Ux × R \ {0})− for at most one
n ∈ N. This is a contradiction to the fact that F is a cluster point of
(Fn). Hence, F must be F0. Now let W0 = W \ {(xn, tn) : n ∈ N}.
Then W0 is an open subset of X × R such that F0 ∈ W+

0 , but no
Fn ∈ W+

0 , which is again a contradiction to F0 being a cluster point
of (Fn). But this shows that the sequence (Fn) has no cluster point
in W+. This is not possible as W+ is compact. Hence, X must be
countably compact.

Now, again suppose, by way of contradiction, that X is not com-
pact. Since X is countably compact, every upper semicontinuous
function is bounded above, and hence, it can be verified that the
set B′ = {(X × (−1/n, 1/n)

)+ : n ∈ N} forms a base for LV (X) at
F0. Since LV (X) is locally compact, we can find an m ∈ N such
that (X × (−1/m, 1/m))+ is compact. As X is not compact, we
can find a net (xi) in X which has no cluster point in X. Now, for
each i, define Fi = (X × {0}) ∪ ({xi} × [0, r]), where 0 < r < 1/m.
Then, as in the above paragraph, we can show that the net (Fi)
has no cluster point in (X × (−1/m, 1/m))+, a contradiction to the
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compactness of (X × (−1/m, 1/m))+. Hence, we obtain that X is
compact.

It remains to show that X is locally connected. Again, by com-
pactness and local compactness of X, we can find some m ∈ N such
that for every n ≥ m, (X × (−1/n, 1/n))+ is compact in LV (X).
Suppose, by way of contradiction, X is not locally connected, that
is, there exists some x ∈ X and some open neighborhood U0 of x
such that every set containing x as its interior point and contained
in U is not connected. Let U be an open neighborhood of x such
that U ⊆ U0. Clearly, U is not connected.

Define a set

S = {A ⊆ U : x ∈ A,A is a clopen subset in U}.
Now, partially order S by the relation ≥ defined by A1 ≥ A2 if
and only if A1 ⊆ A2. Fix some k ∈ N such that k > m. For each
A ∈ S, consider fA ∈ C(X) such that 0 ≤ fA(y) ≤ 1/k, ∀ y ∈ X,
fA(A) = {0}, and fA(U \A) = {1/k}.

Note that
⋂

A∈S

A is not an open set in U . Because if it were so,

then
⋂

A∈S

A ∈ S. But since
⋂

A∈S

A ∩ U is an open set containing x

contained in U0, we can find some nonempty disjoint closed subsets
A′, B′ such that A′ ∪ B′ =

⋂
A∈S

A and x ∈ A′. Then A′ ∈ S. This

implies
⋂

A∈S

A = A′, which is not possible since B′ is nonempty.

Hence,
⋂

A∈S

A is not an open set in U .

Therefore, there exists some y ∈ ⋂
A∈S

A such that V is not con-

tained in
⋂

A∈S

A for every open neighborhood V of y.

Now, since KV (X × [0, 1/k]) is compact, the net (fA)A∈S has
a cluster point F ∈ K(X × [0, 1/k]). We show that F (y) is not
connected. First, we show that 0, 1/k ∈ F (y). If possible, let
0 /∈ F (y). Then we can find some open neighborhood V of y such
that 0 /∈ F (V ). Consider the open set W =

(
V × (R \ {0})) ∪(

(X \ V0) × R
)
, where V0 is open neighborhood of y such that

V0 ⊆ V . Then F ∈ W+, but no fA ∈ W+ since fA(y) = 0 for
each A ∈ S. Hence, 0 ∈ F (y). Similarly, from the fact that for
every open neighborhood V of y contained in U , there exists some
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AV such that V is not contained in AV and hence, ∀A ≥ AV ,
1/k ∈ fA(V ). Now suppose that 1/(2k) ∈ F (y). Consider any open
neighborhood V of y contained in U . Then F ∈ (V × (0, 1/k))−,
but since fA(A) = {0} and fA(U \ A) = {1/k} for each A ∈ S,
no fA ∈ (V × (0, 1/k))−. Hence, F (y) is not connected. This is
a contradiction to the compactness of (X × (−1/m, 1/m))+, and
hence, X must be locally connected. ¤

Definition 2.5. A metric space (X, d) is called boundedly compact
if every closed and bounded subset of (X, d) is compact.

Corollary 2.6. The space LV (X) admits a boundedly compact met-
ric if and only if X is compact, locally connected, and metrizable.

Proof: Let X be a compact, locally connected, and metrizable
space. Then since X is compact and metrizable, by [15, Theorem
5.6], LV (X) is separable and metrizable. Now by Theorem 2.4
and [26, Theorem 2] and ([12, Exercise 4.2.C]), LV (X) admits a
boundedly compact metric.

Conversely, if LV (X) admits a boundedly compact metric, then
again by [15, Theorem 5.6], X is compact and metrizable, and by
Theorem 2.4, X is locally connected. ¤

Proposition 2.7. If X and Y are any Hausdorff spaces, then the
space LV (X⊕Y ) (LF (X⊕Y ), resp.) is homeomorphic to the space
LV (X)× LV (Y ) (LF (X)× LF (Y ), resp.).

Proof: Define a map λ : L(X ⊕ Y ) → L(X)× L(Y ) by

λ(F ) = (F ∩ (X × R), F ∩ (Y × R)) ∀F ∈ L(X ⊕ Y ).

Then, one can verify that λ is a homeomorphism from LV (X ⊕
Y ) (LF (X ⊕ Y ), resp.) onto LV (X) × LV (Y ) (LF (X) × LF (Y ),
resp.). ¤

3. Necessary conditions

In this section, we study conditions that are necessary for the
space LV (X) to be Lindelöf.

Theorem 3.1. If X is a regular space such that LV (X) is Lindelöf,
then X is compact.
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Proof: By Theorem 2.2, since X is regular, CLV (X) is closed in
LV (X) and consequently, is normal. Therefore, by the Theorem in
[27], X is compact. ¤

Remark 3.2. The normality of the space CL(X) with the Vietoris
topology is equivalent to its compactness; so that CLV (X) is nor-
mal if and only if X is compact. The first result in this direction
was established for well-ordered spaces with the order topology by
V. M. Ivanova in [21]. In 1970, the result was proved for general
topological spaces under the assumption of continuum hypothesis
by James Keesling in [22]. The assumption of continuum hypothe-
sis was weakened to Martin’s axioms in [23] and finally the general
result was proved in 1975 by N. V. Veličko in [27]. A shorter and
simpler proof to this result was given in [11] in 2004.

In a similar way, as in the case of LV (X), we can show that the
space USCOV (X) of all usco maps from X to R is Lindelöf only if
X is compact. However, the compactness of X is also sufficient for
USCOV (X) to be Lindelöf.

Proposition 3.3. For a regular space X, USCOV (X) is Lindelöf
if and only if X is compact.

Proof: In a similar way, as in case of LV (X), it can be shown that
CLV (X) is a closed subspace of USCOV (X) whenever X is a reg-
ular space. Hence, compactness of X is necessary for USCOV (X)
to be Lindelöf.

Conversely, for a compact space X, USCOV (X) is a closed sub-
space of the σ-compact space KV (X ×R). Therefore, USCOV (X)
is also σ-compact and consequently, Lindelöf. ¤

Note that compactness of X is not a sufficient condition for
LV (X) to be Lindelöf. For example, let W denote the set of all
ordinal numbers less than or equal to the first uncountable ordinal
number ω1. The set W is well-ordered by the natural order <. Con-
sider on W the topology generated by the base B consisting of the
sets of the form (y, x] = {z ∈ W : y < z ≤ x}, where y < x ≤ ω1

and the one-point set {0}. Then W is compact but LV (W ) is not
Lindelöf, as will be shown by Theorem 3.5.

Further note that even if a space X, in addition to being compact,
is hereditarily separable and perfectly normal, then also LV (X)
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need not be Lindelöf. Consider the double arrow space X, given in
the following example.

Example 3.4. Let X = ((0, 1] × {0}) ∪ ([0, 1) × {1}) ⊆ R2 be
the double arrow space (called the two arrow space in [12]). A
base for the topology on X consists of clopen subsets of X of the
form G(a, b) = ((a, b] × {0}) ∪ ([a, b) × {1}), where 0 ≤ a < b ≤
1. Then X is a compact, perfectly normal, hereditarily separable,
non-metrizable space, but still LV (X) is not Lindelöf, as shown by
Theorem 3.5 below. In fact, the double arrow space X is a zero-
dimensional space, and later in this paper, we shall show that if X
is a zero-dimensional space, then LV (X) is Lindelöf if and only if
X is compact and metrizable.

Let C be a closed subset of X. The set

S(C) = {[A∩C, B∩C] : A, B are open in X, A∩B = ∅, C ⊆ A∪B}
is called the disconnection set for C. Note that if C is connected,
then S(C) = {[C, ∅], [∅, C]}; and if X is normal, then the converse
is also true; that is, if X is normal, then a closed subset C of X
is connected if and only if S(C) = {[C, ∅], [∅, C]}. In fact, for a
normal space X and any closed subset C of X, a subset A of C is
clopen in C if and only if [A,C \A] ∈ S(C).

We say that C has the countable disconnection property if S(C)
is countable. A space X is said to have Gδ countable disconnection
property if every closed Gδ-set in X has the countable disconnection
property.

Theorem 3.5. If X is a regular space such that LV (X) is Lindelöf,
then X has Gδ countable disconnection property.

Proof: First, note that since X is regular and LV (X) is Lindelöf,
by Theorem 3.1, X is compact. Obviously, the empty set has the
countable disconnection property. So let C be a nonempty closed

subset of X such that C =
∞⋂

n=1
Un, where (Un) is a decreasing

sequence of open sets in X, and let p, q be rational numbers such
that p < q. First, we show that

S = (C × [p, q])c+ =
⋃

m,n∈N
(Um × (p− 1/n, q + 1/n))c+.
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Let F ∈ L(X) such that F ∩C × [p, q] = ∅. Then we can find some
open set V containing C and some n ∈ N such that C × [p, q] ⊆
V × (p − 1/n, q + 1/n) and F ∩ V × (p − 1/n, q + 1/n) = ∅. Now
since C =

⋂
n∈N

Un and X is compact, we can find some Um such

that Um ⊆ V . Hence, F ∩ Um × (p − 1/n, q + 1/n) = ∅, that is,
F ∈ Um × (p− 1/n, q + 1/n))c+. Consequently, S is an Fσ-set in
LV (X) and hence is Lindelöf.

We show that the disconnection set S(C) is countable. Define

S0(C) = {[A,B] : A,B open in X such that A∩B = ∅, C ⊆ A∪B}.
For each [E, F ] ∈ S(C), let [A,B] ∈ S0(C) such that E = A ∩ C
and F = B ∩ C. Define the set

M [E, F ] = A×{p−1}∪B×{q+1}∪(X\(A∪B))×[p−1, q+1] ∈ S.

Now consider the family

U = {(A× (−∞, p) ∪B × (q,∞) ∪X \ C × R)+ : [A,B] ∈ S0(C)}.
Then it can be verified that U is an open cover of S. Since S is
Lindelöf, there exists a countable family S(p, q) ⊆ S0(U) such that

U0 = {(A× (−∞, p)∪B× (q,∞)∪ (X \C)×R)+ : [A, B] ∈ S(p, q)}
is an open subcover of U for S. This gives that if F ∈ S, then there
exists some [A,B] ∈ S(p, q) such that F ∈ (A × (−∞, p) ∪ B ×
(q,∞) ∪ (X \ C) × R)+; that is, for each x ∈ C, F (x) ⊆ (−∞, p)
if x ∈ A and F (x) ⊆ (q,∞) if x ∈ B. In particular, for any
[E0, F0] ∈ S(C), there exists some [A0, B0] ∈ S(p, q) such that
M [E0, F0](x) ⊆ (−∞, p) for all x ∈ A0 ∩ C and M [E0, F0](x) ⊆
(q,∞) for all x ∈ B0 ∩C. This implies [E0, F0] = [A0 ∩C,B0 ∩C].
Since S(p, q) is countable, S(C) is also countable. ¤
Corollary 3.6. Let X be a perfectly normal space such that LV (X)
is Lindelöf. Then X is compact and every nonempty closed subset
of X has the countable disconnection property.

Corollary 3.7. Let X be a regular space such that LV (X) is Lin-
delöf. Then X is compact and the set of all clopen subsets of X is
countable.

We would like to point out that if X is a space such that LV (X)
is Lindelöf, then X need not satisfy the countable chain condi-
tion, as shown by the following example, which defines the space
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long segment V that does not satisfy the countable chain condi-
tion but LV (V ) is Lindelöf. Further, this example shows that if
X is a space for which LV (X) is Lindelöf, then it is not necessary
that every closed subset of X has the countable disconnection prop-
erty. Therefore we have that if X is any space such that LV (X)
is Lindelöf and if Y is a closed subset of X, then LV (Y ) need not
be Lindelöf; the space W of all ordinals less than or equal to ω1

is a closed subset of V such that W does not have Gδ countable
disconnection property, and hence, LV (W ) is not Lindelöf.

Example 3.8. Let W0 be the set of all countable ordinal numbers.
In the set V0 = W0 × [0, 1), consider the linear order defined by
letting (α1, t1) < (α2, t2) whenever α1 < α2 or α1 = α2 and t1 < t2;
the set V0 with the topology induced by the linear order < is called
the long line. Adjoining the point ω1 to V0 and assuming that
x < ω1 for all x ∈ V0, we obtain a linearly ordered set V . The
set V with the topology induced by the linear order < is called
the long segment (see [12, Problem 3.12.19]). The long segment is
a compact, locally connected space, and hence LV (V ) is Lindelöf
(see Theorem 4.3). Note that V does not satisfy the countable chain
condition. The necessary condition given in Theorem 3.5 implies a
condition (see Theorem 3.9 below) that we call the weak boundary
countable chain condition (wbccc) that is similar to, but weaker
than the countable chain condition. One can check that V does
satisfy the wbccc.

For an uncountable family U of X, define a point x of X to be
a strong closure point of U provided that every neighborhood of
x intersects all but countably many members of U . Then define
X to have the weak boundary countable chain condition provided
that for every uncountable pairwise disjoint family U of nonempty
open subsets of X, every strong closure point of U is contained in
the closure of ∪{bd(U) : U ∈ U} in X. Clearly having ccc implies
having wbccc. But the converse is not true; every first countable
space vacuously has the wbccc but, obviously, need not have ccc.

Theorem 3.9. If X is a compact space having Gδ countable dis-
connection property, then X has weak boundary countable chain
condition. Consequently, if X is a regular space such that LV (X)
is Lindelöf, then X has weak boundary countable chain condition.
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Proof: Suppose that X is a compact space that does not have
wbccc. Then there exists an uncountable pairwise disjoint family
U of nonempty open subsets of X and a strong closure point x of
U that is not contained in C, where C is the closure of ∪{bd(U) :
U ∈ U} in X.

By induction, define a sequence Un of neighborhoods of x such
that U1 = X \ C and for each n > 1, Un ⊆ Un−1. Then define
G = ∩{Un : n ∈ N} so that G = ∩{Un : n ∈ N}, and hence, G is a
closed Gδ-set in X.

We want to show that G intersects uncountably many members
of U . For each n ∈ N, let Un = {U ∈ U : U ∩ Un = ∅}, which
is countable; therefore, ∪{Un : n ∈ N} is countable. Then define
U ′ = U \ ∪{Un : n ∈ N}, which is uncountable.

Now let U ∈ U ′. We want to show that G intersects U . For
each n ∈ N, we have Un ∩ U 6= ∅ and Un ∩ bd(U) = ∅. Therefore,
Un ∩ U = Un ∩ U is compact. Thus, {Un ∩ U : n ∈ N} is a nested
family of nonempty compact sets, and so ∩{Un ∩ U : n ∈ N} 6= ∅;
that is, U intersects {Un : n ∈ N} = G.

Finally, since G is disjoint from C, for each U ∈ U ′, U ∩ G is
a clopen subset of G; and since U is a pairwise disjoint family,
{U ∩ G : U ∈ U ′} is an uncountable family of clopen subsets of
G. Consequently, X does not have Gδ countable disconnection
property. ¤

Question 3.10. If X is a compact space having Gδ countable dis-
connection property, is LV (X) a Lindelöf space?

4. Sufficient conditions

In this section, we study conditions that are sufficient for L(X)
with the Vietoris and Fell topologies to be Lindelöf. As we shall see,
in addition to the compactness of X, if we assume either metriz-
ability or local connectedness of X, then LV (X) will be Lindelöf.

Theorem 4.1. If X is compact and metrizable, then LV (X) is Lin-
delöf. Consequently, for a metrizable space X, LV (X) is Lindelöf
if and only if X is compact.

Proof: By [15, Theorem 5.6], LV (X) is second countable and
hence Lindelöf. ¤
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The condition that X is compact and metrizable is not necessary
for LV (X) to be Lindelöf, as shown by Theorem 4.3 below, but is
necessary for LV (X) to be hereditarily Lindelöf.

Theorem 4.2. The space LV (X) is hereditarily Lindelöf if and
only if X is compact and metrizable.

Proof: By regularity of X and Lindelöfness of LV (X), X is com-
pact. Thus, C(X) with the fine topology is a subspace of LV (X)
and hence Lindelöf. Consequently, X is compact and metrizable
(see [9]). ¤
Theorem 4.3. If X is compact and locally connected, then LV (X)
is σ-compact and hence Lindelöf. Consequently, for a regular locally
connected space X, LV (X) is Lindelöf if and only if X is compact.

Proof: Since X is compact and locally connected, by Theorem
2.4, LV (X) is a closed subset of the σ-compact set KV (X × R).
Thus, LV (X) is also σ-compact and hence Lindelöf. ¤

In contrast to locally connected spaces, zero-dimensional spaces
require metrizability of X for Lindelöfness of LV (X). The charac-
terization of Lindelöfness of LV (X) in the realm of zero-dimensional
spaces follows from Theorem 4.1 and Corollary 3.7.

Corollary 4.4. For a zero-dimensional space X, LV (X) is Lin-
delöf if and only if X is compact and metrizable.

Since the product of a Lindelöf and a σ-compact space is Lindelöf,
from Proposition 2.7 and theorems 4.1 and 4.3, we can infer the
following result.

Theorem 4.5. If X is compact and can be expressed as a sum of a
locally connected and a metrizable space, then LV (X) is Lindelöf.

In the next result, we investigate the Lindelöfness of LV (Y ),
when Y is a continuous image of a space X such that LV (X) is
Lindelöf. But, before stating the theorem, we would like to give
the following notations and lemmas.

Let φ : X → Y be a continuous surjection. Then φ × id :
X ×R→ Y ×R is a naturally defined continuous function. Define
φ◦ : L(Y ) → L(X) by φ◦(F ) = (φ× id)−1(F ) for all F ∈ L(Y ).

Lemma 4.6. For every F ∈ L(Y ), φ◦(F ) ∈ L(X).
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Proof: Since φ×id is continuous, φ◦(F ) is closed in X×R. More-
over, for each x ∈ X, φ◦(F )(x) = F (φ(x)) is a bounded interval.
Also, since F is locally bounded, there exist an open neighbor-
hood Ux of φ(x) and a positive b ∈ R such that F (y) ⊆ [−b, b]
for all y ∈ Ux. Then we have φ◦(F )(z) ⊆ [−b, b] for all z in the
open neighborhood φ−1(Ux) of x, thus showing that φ◦(F ) is locally
bounded. This finishes the proof that φ◦(F ) ∈ L(X). ¤

For each basic open set V = W+ ∩ W− in LV (Y ), define the
basic open set V ◦ = (W ◦)+ ∩ (W◦)− in LV (X) by taking W ◦ =
(φ× id)−1(W ) and W◦ = {(φ× id)−1(W ′) : W ′ ∈ W}.

The proof of the following lemma is simple and hence omitted.

Lemma 4.7. For a basic open set V in LV (Y ), the following are
true.

(1) φ◦(V ) = V ◦ ∩ φ◦(L(Y )).
(2) For each F ∈ L(Y ), F ∈ V if and only if φ◦(F ) ∈ φ◦(V ).

Lemma 4.8. If X is compact and F ∈ φ◦(L(Y )) in LV (X), then
(φ× id)(F ) ∈ L(Y ).

Proof: First, (φ× id)(F )(y) is nonempty for all y ∈ Y because φ
is a surjection. Also, since X is compact, F is compact and thus,
(φ× id)(F ) is closed in Y × R by the continuity of φ× id.

To show that (φ × id)(F ) is locally bounded, suppose, by way
of contradiction, that (φ × id)(F ) is not locally bounded at some
y ∈ Y . Then for each neighborhood V of y and for each nat-
ural number n, there exist yV,n ∈ V and tV,n ∈ [n,∞) such that
(yV,n, tV,n) ∈ (φ×id)(F ). Let xV,n ∈ X be such that (xV,n, tV,n) ∈ F
and (yV,n, tV,n) = (φ× id)(xV,n, tV,n). Since X is compact, the net
(xV,n) has a cluster point x in X. So for every neighborhood U of x
and for every n ∈ N, there exist a V and a natural number m > n
such that xV,m ∈ U . This contradicts F being locally bounded at
x, which shows that (φ× id)(F ) is indeed locally bounded.

To show that (φ× id)(F )(y) is connected for every y in Y , sup-
pose, by way of contradiction, that there exists a y in Y such
that (φ × id)(F )(y) ⊆ (−∞, t) ∪ (t,∞) for some t ∈ R where
(φ × id)(F )(y) ∩ (−∞, t) 6= ∅ and (φ × id)(F )(y) ∩ (t,∞) 6= ∅.
Define A = {x ∈ φ−1(y) : F (x) ⊆ (−∞, t)} and B = {x ∈ φ−1(y) :
F (x) ⊆ (t,∞)}. Now A and B are disjoint nonempty subsets of X
with A ∪ B = φ−1(y). To see that A is closed in X, let (ai) be a
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net in A that converges to some a in X. Since φ−1(y) is closed in
X, a ∈ φ−1(y). We want to show that F (a) ⊆ (−∞, t), so suppose
not. Then F (a) ⊆ (t,∞). For each i, let ti = maxF (ai), which is
less than t. Since F is compact and (ai) converges to a, the net
((ai, ti)) has a cluster point (a, t0) in F for some t0 that must be less
than or equal to t. But this contradicts F (a) ⊆ (t,∞). Therefore,
F (a) ⊆ (−∞, t) so that a ∈ A. This shows that A is closed in X
and a similar argument shows that B is also closed in X.

Finally, define W = ((A × [t,∞)) ∪ (V × (−∞, t]))c. Now since
F ∈ W+ ∩ φ◦(L(Y )), there exists G ∈ L(Y ) with φ◦(G) ∈ W+,
and hence, (φ× id)−1(G) ⊆ W . Because φ−1(y) = A∪B, it follows
that G(y) ⊆ (−∞, t) ∪ (t,∞). Also, since A and B are nonempty,
G(y) ∩ (−∞, t) 6= ∅ and G(y) ∩ (t,∞) 6= ∅, which contradicts G(y)
being connected. This shows that (φ × id)(F )(y) is connected for
all y ∈ Y and finishes the proof that (φ× id)(F ) ∈ L(Y ). ¤

Lemma 4.9. Let X be compact, let B be a family of basic open
sets in LV (Y ), and let B◦ = {B◦ : B ∈ B}. Then the following
assertions are equivalent.

(1) B covers L(Y ).
(2) B◦ covers φ◦(L(Y )).
(3) B◦ covers φ◦(L(Y )) (here, closure of φ◦(L(Y )) is taken in

LV (X)).

Proof: That (3) =⇒ (2) is obvious, and (2) =⇒ (1) follows
from Lemma 4.7.

(1) =⇒ (3): Let F ∈ φ◦(L(Y )). Then, by Lemma 4.8, A =
(φ × id)(F ) ∈ L(Y ) and hence, A ∈ B for some B ∈ B. Observe
that F ⊆ φ◦(A), and if for some open set W of Y × R, some
(y, t) ∈ A ∩W , then there exists some x ∈ X such that φ(x) = y
and (x, t) ∈ F ∩ (φ× id)−1(W ). Therefore, we obtain that F ∈ B◦

and consequently, B◦ covers φ◦(L(Y )). ¤

Theorem 4.10. If Y is the continuous image of a regular space
X and LV (X) is Lindelöf, then LV (Y ) is Lindelöf.

Proof: Let B be a family of basic open sets in LV (Y ) which
covers L(Y ). Then, by Lemma 4.9, B◦ covers φ◦(L(Y )), which is a
closed subset of the Lindelöf space LV (X). Therefore, we can find
a countable subfamily G◦ of B◦ that also covers φ◦(L(Y )). Again,
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by Lemma 4.9, the corresponding subfamily G of B covers L(Y ),
showing that LV (Y ) is Lindelöf. ¤

Finally, from Theorem 4.5 and Theorem 4.10, we obtain the fol-
lowing sufficient condition for Lindelöfness of LV (X).

Corollary 4.11. If a compact space X can be expressed as a union
of two closed subspaces Y and Z (not necessarily disjoint) such that,
with respect to their relative subspace topologies inherited from X,
the subspace Y is locally connected and the subspace Z is metrizable,
then LV (X) is Lindelöf.

Question 4.12. Let C be the smallest class of topological spaces
that contains the compact metrizable spaces and the compact lo-
cally connected spaces and is closed under finite sums and contin-
uous images. If LV (X) is a Lindelöf space, is X ∈ C?
Question 4.13. If X is a compact metrizable space and Y is a
compact locally connected space, is LV (X × Y ) a Lindelöf space?

Note that if the answer to Question 4.13 is no, then the answer to
Question 3.10 will obviously be no. If the answer to Question 4.13
is yes, then this probably gives a negative answer to Question 4.12,
so that in this case one should weaken Question 4.12 by having C
closed under finite sums, finite products, and continuous images.

The remainder of the section is devoted to the study of Lindelöf
property of L(X) with the Fell topology. We start by giving an
equivalent characterization for second countability of LF (X).

Proposition 4.14. The space LF (X) is second countable if and
only if X is locally compact and second countable.

Proof: By [19, Theorem 3.8], CLF (X) is second countable if
and only if X is locally compact and second countable. Further,
since local compactness and second countability of X implies local
compactness and second countability of X × R, CLF (X × R) is
second countable if and only if X is locally compact and second
countable. Hence, by Theorem 2.2, LF (X) is second countable if
and only if X is locally compact and second countable. ¤

Corollary 4.15. If X is locally compact and second countable, then
LF (X) is Lindelöf.
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Further, since the Fell topology is weaker than the Vietoris topol-
ogy, any condition sufficient for LV (X) to be Lindelöf is also suf-
ficient for LF (X) to be Lindelöf. However, we can find a space X
for which LF (X) is Lindelöf but neither LF (X) is second countable
nor LV (X) is Lindelöf. As an example, the long line V0, defined
in Example 3.8, is countably compact, locally compact, and locally
connected but neither compact nor second countable. Therefore,
neither LV (V0) is Lindelöf nor LF (V0) is second countable. But
Theorem 4.17 below shows that LF (V0) is Lindelöf.

In addition, observe that if X is compact, then for each n ∈ N,
the Fell topology and the Vietoris topology coincide on Ln(X) =
L(X)∩(X×[−n, n])+; and hence, for any compact space X, LF (X)
is Lindelöf if and only if LV (X) is Lindelöf. So we obtain the
following result analogous to Theorem 4.10.

Theorem 4.16. If Y is the continuous image of a compact space
X and LF (X) is Lindelöf, then LF (Y ) is Lindelöf.

We end this section, as well as this paper, with a result that gives
another sufficient condition for LF (X) to be Lindelöf.

Theorem 4.17. For a locally compact space X, if X is a sum of a
second countable space and a countably compact, locally connected
space, then LF (X) is Lindelöf.

Proof: First, we show that if X is a locally compact, countably
compact, and locally connected space, then LF (X) is σ-compact.
So, let X be countably compact, locally compact, and locally con-
nected. Then, by [12, Problem 3.12.23(g)], each F ∈ L(X) is con-
tained in X×[−n, n] for some n ∈ N and hence, L(X) = ∪{Ln(X) :
n ∈ N}. Now, by using local compactness of X and similar argu-
ments, as in the proof of (a) =⇒ (b) in Theorem 2.4, we can prove
that Ln

F (X) is a closed subset of the compact space 2X×[−n,n]
F , and

hence, is compact, too. Therefore, LF (X) is σ-compact.
Now, let X be a sum of a locally compact, second countable

space Y and a countably compact, locally compact, locally con-
nected space Z. Then, by Proposition 2.7, LF (X) = LF (Y ⊕ Z) is
homeomorphic to LF (Y )× LF (Z), and hence is Lindelöf. ¤
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