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ON SOME APPLICATIONS OF EQUIVALENCE
RELATIONS IN TOPOLOGICAL DYNAMICS

JERZY SZYMAŃSKI

Abstract. We discuss some applications of equivalence
relations in topological dynamics. We look at their use in
defining some topological objects (topological determinism
and Kolmogorov property) and their applications in proofs
of properties of these objects.

1. Introduction

The inspiration to apply closed equivalence relations to investiga-
tion of topological dynamical systems was the Rokhlin-Sinai theory
of invariant partitions which had important applications in ergodic
theory. In topological setting the object corresponding to an in-
variant partition is an invariant closed equivalence relation. In the
Rokhlin-Sinai theory an important role play extreme partitions,
perfect partitions and also Pinsker partitions. In the paper [19]
Rokhlin and Sinai proved that there exists an extreme partition
(Rokhlin-Sinai theorem). These partitions were applied, among
other things, to investigation of determinism and Kolmogorov prop-
erty for measure-theoretic dynamical systems.

The relative version of the Rokhlin-Sinai theorem was applied to
solve the problem of the spectrum of Kolmogorov Zd-actions ([11]).
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140 JERZY SZYMAŃSKI

Topological analogues of the mentioned above measure-theoretic
systems and results were considered in the series of papers [12], [13],
[14]. The present paper is mainly the survey on results of these pa-
pers. At the end of the article we give some open questions.

Through the paper we assume (X, T ) is a topological flow where
X is a compact metric space equipped with metric d and T is a
homeomorphism.

For a given x ∈ X , the sets O+
T (x) = {Tnx, n ≥ 0}, O−

T (x) =
{Tnx, n ≤ 0} and OT (x) = {Tnx, n ∈ Z} are called the positive
semiorbit, the negative semiorbit and the orbit of x, respectively.

Let A(T ) be the set of all asymptotic pairs for T . Recall that
(x, x′) ∈ A(T ) if limn→+∞ d(Tnx, Tnx′) = 0. Obviously TA(T ) =
A(T ).

By REL(X) we denote the set of all relations in X × X . By
CER(X) we denote the subset of REL(X) consisting of all closed
equivalence relations and by ∆ the diagonal relation. A relation
R ∈ CER(X) is said to be positively invariant (resp. invariant)
with respect to T if (T × T )(R) ⊂ R (resp. (T × T )(R) = R).
The symbol ICER+(X) (ICER(X)) stands for the set of all posi-
tively invariant (invariant) relations. For a subset F ⊂ X ×X , the
smallest invariant relation R ∈ CER(X) containing F is denoted
by 〈F 〉. For a family {Ri} ⊂ CER(X), the symbol

∨
i

Ri means the

smallest closed invariant equivalence relation containing all Ri’s.

2. Closed equivalence relations induced by pairs of
points

We consider here some properties of a special kind of relations,
i.e. relations induced by certain pairs of points. Such kind of rela-
tions are important in our further considerations.

For any R, S ∈ REL(X) the symbol R ◦ S denotes the composi-
tion of R and S.

It is well-known that the operation ◦ has the following properties:
(i) For any relation R ∈ REL(X) it holds R ◦∆ = R = ∆ ◦R.
(ii) ∀P,R,S∈REL(X) P ◦ (R ∪ S) = (P ◦R) ∪ (P ◦ S).
(iii) For any R1, R2, . . . ∈REL(X) and any S1, S2, . . . ∈REL(X)

we have
∞⋃
i=1

Ri ◦
∞⋃

j=1
Sj =

∞⋃
i=1

∞⋃
j=1

Ri ◦ Sj .
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(iv) Let R ∈ REL(X). Relation R is transitive ⇐⇒ R◦R ⊂ R.
(v) If R ∈ REL(X) is reflexive then R is transitive ⇐⇒

R ◦ R = R.
Let (x, x′) ∈ X ×X where x 6= x′. We assume in the sequel that

the orbits OT (x) and OT (x′) are infinite.
We define relation R ∈ REL(X) in the following way:

R = R(x, x′) =
∞⋃

n=0

(T × T )n(x, x′) ∪
∞⋃

n=0

(T × T )n(x′, x)∪ ∆.

In the sequel we investigate properties of the above relation.
From the definition it follows at once that the relation R is re-

flexive, symmetric and positively invariant.
Denote

R1 =
∞⋃

n=0

(T × T )n(x, x′), R2 =
∞⋃

n=0

(T × T )n(x′, x).

Proposition 2.1. If (x, x′) is asymptotic then R is closed.

Proof. Since R = R1 ∪ R2 ∪ ∆ it is enough to observe that Ri ⊂
Ri∪∆ for i = 1, 2. Let (x1, x2) be the limit point of the set R1. Since
(x, x′) is asymptotic, then in any neighborhood of (x1, x2) there
are points of the form (Tnx, Tnx′), n ≥ 0 for which the distance
d(Tnx, Tnx′) is as small as requested. It follows immediately that
x1 = x2 and so (x1, x2) ∈ ∆. Since X × X is compact we have
R1 = R1 ∪ (x, x) for some x ∈ X . Applying the same argument we
obtain that for the same x we have R2 = R2∪(x, x). In consequence

R ⊂ R = R1 ∪ R2 ∪ (x, x) ⊂ R,

and so R is closed. �
Proposition 2.2. Relation R is transitive ⇐⇒ OT (x)∩OT (x′) =
∅.
Proof. Assume that OT (x) ∩ OT (x′) = ∅. Using the property (iv)
in order to show that R is transitive it is enough to show that
R ◦R ⊂ R.

Applying the properties (i)-(ii) it is easy to check that

R ◦R = [(R1 ∪ R2) ◦ (R1 ∪ R2)]∪ R.

Therefore, according to (iv), we have to show that (R1 ∪ R2) ◦
(R1 ∪ R2) ⊂ R.
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We have

(R1 ∪ R2) ◦ (R1 ∪ R2) =
(R1 ◦ R1) ∪ (R1 ◦ R2) ∪ (R2 ◦ R1) ∪ (R2 ◦ R2).

Since for any x1, x2, x3, x4 ∈ X from the definition of operation
◦ we have

(x1, x2) ◦ (x3, x4) =
{

(x1, x4) x2 = x3,
∅ x2 6= x3,

then applying the property (iii) and the assumption we get R1 ◦
R1 = R2 ◦ R2 = ∅. Next, using the fact that the orbits of points
x and x′ are infinite it follows R2 ◦ R1 = R2 and R1 ◦ R2 = R1,
respectively. Thus R ◦R ⊂ R and so R is transitive.

Assume now that R is transitive, i.e. R ◦R ⊂ R. We show that
OT (x) ∩ OT (x′) = ∅. If it is not the case, since x 6= x′, it would
exist k ≥ 1 such that T kx = x′ or T kx′ = x. Assume first that
T kx = x′. Then using the considerations from the previous part of
the proof we would obtain (T kx′, x) ∈ R because

(T kx′, x) = (T kx′, T kx) ◦ (x′, x) ∈ R2 ◦ R2 ⊂ R ◦R,

and from the assumption R ◦R ⊂ R. The fact that (T kx′, x) ∈ R
means that (T kx′, x) ∈ R1 or (T kx′, x) ∈ R2 or (T kx′, x) ∈ ∆. It is
impossible because in any of the cases applying T kx = x′ we obtain
a contradition with the asumed infiniteness of the oribit x or x′.

Similarly, assuming that T kx′ = x we get the pair (T kx, x′) ∈
R1 ◦ R1 ⊂ R - contradiction as before. �

Corollary 2.3. If (x, x′) is asymptotic and the orbits OT (x) and
OT (x′) are infinite and disjoint then R ∈ ICER+(X) \ ICER(X).

Proof. It remains to show that (T × T )R 6= R. If it is not the case
we would get the equality

∞⋃

n=0

(T × T )n(x, x′) ∪
∞⋃

n=0

(T × T )n(x′, x)∪ ∆ =

R = (T × T )R =
∞⋃

n=1

(T × T )n(x, x′) ∪
∞⋃

n=1

(T × T )n(x′, x)∪ ∆.
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It follows that it would hold in one of the following three situations:
(x, x′) ∈ (T × T )R1 or (x, x′) ∈ (T × T )R2 or x = x′, which in any
case leads to a contradiction with the assumption. �

3. Extreme relations

In the present section we recall the definition of an extreme rela-
tion and the statement of the topological analogue of the Rokhlin-
Sinai theorem - both in the absolute and the relative case. We
present also a sketch of the proof of the relative version of the the-
orem to present the method of the construction of a relation with
desired properties.

Let M(X, T ) be the set of all invariant probability measures on
X .

Let us recall that a measurable partition ξ is called extreme ([18])
if it satisfies the following conditions

(i) T−1ξ ≤ ξ,

(ii)
∞∨

n=0
Tnξ = ε,

(iii)
∞∧

n=0
T−nξ = πµ(T ),

where πµ(T ) is the Pinsker partition of T , µ ∈ M(X, T ) and ε is
the partition on points.

In the paper [13] the topological analogue of extreme partition -
extreme relation - was introduced.

Definition 3.1 ([13]). We say that a relation R ∈ CER(X) is
extreme (extreme with respect to µ) if

(i) (T × T )(R) ⊂ R,

(ii)
∞⋂

n=0
(T × T )n(R) = ∆,

(iii)
∞∨

n=0
(T × T )−n(R) = Π(T ) (Πµ(T )),

where Π(T ) (Πµ(T )) is the Pinsker relation (the Pinsker relation
with respect to µ).

The main result concerning extreme relations is the analogue of
the Rohklin-Sinai theorem:
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Theorem 3.2 ([13]). For any ergodic measure µ ∈ M(X, T ), there
exists a relation R = Rµ ∈ CER(X) with

(i) (T × T )(R) ⊂ R,

(ii)
∞⋂

n=0
(T × T )n(R) = ∆,

(iii) Eµ(X, T )∪ S(µ) ⊂
∞⋃

n=0
(T × T )−n(R) ⊂ Πµ(T ),

where S(µ) = {(x, x) ∈ X × X ; x ∈ Supp µ} and Eµ(X, T ) is the
set of entropy pairs with respect to µ.

It follows from the theorem that for any ergodic measure µ ∈
M(X, T ) there exists an extreme relation with respect to µ. If µ is
the only ergodic measure then there exists an extreme relation.

The definition of extreme relation and the above theorem were
then generalized in the recent paper [14] to topological extensions.
Let us write them down in terms of extensions.
Let Σ ∈ CER(X) be fixed and let σ be the invariant measurable
partition associated with Σ. The symbol hµ(T |σ) denotes the σ-
relative entropy of T . By Eµ(X, T |σ) we denote the set of σ-relative
entropy pairs with respect to µ. Let Πµ(T |σ) = 〈Eµ(X, T |σ)〉 be
the relative Pinsker relation with respect to µ.

Definition 3.3 ([14]). We say that a relation R ∈ CER(X) is
Σ-relatively extreme with respect to µ if

(i) (T × T )(R) ⊂ R ⊂ Σ,

(ii)
∞⋂

n=0
(T × T )n(R) = ∆,

(iii)
∞∨

n=0
(T × T )−n(R) = Πµ(T |σ).

Similarly as in the absolute case it is known ([14]) that for any
ergodic measure µ ∈ M(X, T ) there exists a Σ-relatively extreme
relation with respect to µ. This is a corollary from the following
theorem.

Theorem 3.4 ([14]). For any ergodic measure µ ∈ M(X, T ) and
invariant relation Σ ∈ CER(X), there exists a relation R = Rµ ∈
CER(X) with

(i) (T × T )(R) ⊂ R ⊂ Σ,
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(ii)
∞⋂

n=0
(T × T )n(R) = ∆,

(iii) Eµ(X, T |σ)∪ S(µ) ⊂
∞⋃

n=0
(T × T )−n(R) ⊂ Πµ(T |σ).

Proof. (sketch) If hµ(T |σ) = 0 then the relation R = ∆ satisfies
conditions (i)-(iii). Therefore we can assume that hµ(T |σ) > 0.
Now we are going to construct the desired relation induced by a pair
of points (as described in section 2) but the pair has to be especially
chosen. We prove first that there exists σ-relative extreme partition
ζ such that its graph is included in the set of asymptotic pairs, i.e.
∆ζ ⊂ A(T ).

In the next step, similarly as in the proof of Proposition 5 ([1]),
one constructs a set G ⊂ X × X such that for any point (x, x′) ∈
G, the orbit OT×T (x, x′) is dense in Λσ

µ = Supp λσ
µ, where λσ

µ =
(µ ×πµ(T |σ) µ) is the relative square of measure µ over the σ-relative
Pinsker partition πµ(T |σ). The set G is of measure 1 w.r. to
(µ ×ζ µ).

After removing some sets of measure zero w.r. to (µ ×ζ µ) the
properties of ζ imply the inclusions:

∆ζ ⊂ Πµ(T |σ),(3.1)
∆ζ ⊂ Σ.(3.2)

Now, by definition, (µ ×ζ µ) is concentrated on ∆ζ and since
hµ(T |σ) > 0 the measure is not concentrated on ∆. Therefore
we can choose a proper pair (x, x′) ∈ ∆ζ ∩ G and define a relation
R as follows

R = O+
T×T (x, x′) ∪ O+

T×T (x′, x)∪ ∆.

This relation is, of course, reflexive, symmetric and positively in-
variant. Since (x, x′) ∈ A(T ), it is closed (Proposition 2.1) and the
equality (ii) is satisfied.

Applying similar method as in the proof of Theorem 1 ([6]), one
can show the following relative version of this theorem:

Λσ
µ = Eµ(X, T |σ)∪ S(µ).

The density of OT×T (x, x′) in Λσ
µ implies

Eµ(X, T |σ)∪ S(µ) ⊂
∞⋃

n=0

(T × T )−n(R).
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The fact that x 6= x′ and the assumption hµ(T |σ) > 0 imply that
the orbits OT (x) and OT (x′) are infinite and disjoint. Therefore
from Proposition 2.2 we obtain that R is transitive.

From (3.1), we get (x, x′) ∈ Πµ(T |σ), hence, R ⊂ Πµ(T |σ). Since
Πµ(T |σ) is closed and invariant, we get

∞⋃

n=0

(T × T )−n(R) ⊂ Πµ(T |σ).

Since Σ is closed and invariant, then applying (3.2) we get R ⊂ Σ,
i.e. R satisfies all desired properties. �

The special relation constructed in the above theorem proved to
be very useful in investigation both deterministic and Kolmogorov
flows (and corresponding extensions).

4. Deterministic flows

Definition 4.1. A flow (X, T ) is said to be deterministic ([12]) if
every positively invariant relation R ∈ CER(X) is invariant.

It is known that the dynamics of the measure-theoretic determin-
istic systems is not dependent on the direction of time. However in
the topological case it was shown by Hochman ([9]) that there exists
a deterministic flow (X, T ) such that T−1 is not deterministic.

Let π : X → Y be a homomorphism defining an extension (X, T )
of a flow (Y, S) and let Σ = Σπ ∈ ICER(X) be the relation asso-
ciated with π.

Definition 4.2. The homomorphism π : X → Y is called deter-
ministic (or (X, T ) is called a deterministic extension of (Y, S))
([14]) if for every relation R ∈ CER(X) such that (T × T )(R) ⊂
R ⊂ Σπ we have (T × T )(R) = R.

The application of the analogue of the Rokhlin-Sinai theorem
and its relative version allowed to show that deterministic systems
have zero topological entropy and deterministic extensions have
zero relative topological entropy (cf. [13], [14]).

Now we are going to present a new proof of theorem that deter-
ministic extensions preserve topological entropy ([14]). In the proof
we give also another proof of the fact that deterministic extensions
have zero relative topological entropy which involves more classical
methods than these used in [14].
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The notion of the relative topological entropy which we use here
was introduced by Downarowicz and Serafin in [5]. In the paper
there are proved the following theorems which we are going to apply
in further considerations:

(4.1) h(X |Y ) = sup
y∈Y

h(X |y) = sup
ν∈M(Y,S)

h(X |ν),

where in the case of compact space h(X |y) is Bowen’s entropy
h(T, π−1y) of T where π−1y is a compact set and h(X |ν) can be
expressed as

(4.2) h(X |ν) =
∫

Y
h(X |y)dν.

In the paper of Lemańczyk and Siemaszko ([16]) it is proved that
∀µ∈M(X,T ) hµ(T ) = hπµ(S) ⇐⇒ ∀ν∈M(Y,S) h(X|y) = 0 for ν-a.e. y ∈ Y.

The authors of [16] also noticed that the property in the left hand
side of the above equivalence (P2 property) in the case of compact
metric space is equivalent to the following property

∀ν∈M(Y,S)∀y∈Y h(X |y) = 0,

which in fact follows directly from (4.2) and (4.1). It implies at
once that

(4.3) ∀µ∈M(X,T ) hµ(T ) = hπµ(S) ⇐⇒ h(X |Y ) = 0.

Theorem 4.3. Deterministic extensions preserve topological
entropy, i.e. if (X, T ) is a deterministic extension of (Y, S) then
h(T ) = h(S).

Proof. We prove first that h(X |Y ) = 0. Let (X, T ) be a deter-
ministic extension of (Y, S) and assume that h(X |Y ) > 0. From
the property (4.3) it follows that hµ(T ) > hπµ(S) for any measure
µ ∈ M(Y, S). Using the well-known formula (cf. [10], [5]):

hµ(T ) = hπµ(S) + hµ(T |σ),
where σ = π−1εY and εY is the partition on points of the space

Y , we obtain that hµ(T |σ) > 0. For the measure µ by τ denote
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the unique measure on the space M(X, T ) which is concentrated
on the set of all ergodic invariant measures M e(X, T ) and has the
property

∀f∈C(X)

∫

X
f(x)dµ(x) =

∫

Me(X,T )

(∫

X
f(x)dm(x)

)
dτ(m).

Then from the relative Jacobs theorem

hµ(T |σ) =
∫

Me(X,T )

hm(T |σ)dτ(m),

which proof can be found in [15], it follows directly that

∀µ∈M(X,T ) hµ(T |σ) = 0 ⇐⇒ ∀µ∈Me(X,T ) hµ(T |σ) = 0.

We obtain therefore that hµ(T |σ) > 0 for some ergodic measure
µ ∈ M(X, T ).

Let R ∈ CER(X) be a relation satisfying the conditions (i)-(iii)
of Theorem 3.4. Since from the assumption we get (T ×T )(R) = R,
thus from the above properties we obtain R = ∆. Therefore we have

Eµ(X, T |σ)∪ S(µ) ⊂ ∆,

which is a contradiction with the condition hµ(T |σ) > 0. Therefore
h(X |Y ) = 0.

Since we always have h(S) ≤ h(T ) it is enough to observe that
h(T ) ≤ h(S). We have h(X |Y ) = 0. Therefore the fact that
inequality h(T ) ≤ h(S) holds is a straightforward consequence of
the formula (4.1) and the theorem of Bowen ([3]):

h(T ) ≤ h(S) + sup
y∈Y

h(X |y).

�

It was shown in [14] that in deterministic flow there is no proper
asymptotic pairs. In the proof one constructs a positively invariant
relation which is not invariant assuming only the existence of an
asymptotic pair. Since such pairs exist in any expansive flow (cf.
[2]) we obtain that expansive flows cannot be deterministic.
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5. Kolmogorov flows

Definition 5.1. A flow (X, T ) is called a topological Kolmogorov
flow (K-flow) ([12]) if there exists a relation R ∈ CER(X) with

(i) (T × T )(R) ⊂ R,

(ii)
∞⋂

n=0
(T × T )n(R) = ∆,

(iii)
∞⋃

n=0
(T × T )−n(R) = X × X .

In the relative case the definition has the form.

Definition 5.2. The homomorphism π : (X, T ) −→ (Y, S) is called
Kolmogorov (or (X, T ) is called a Kolmogorov extension of (Y, S))
([14]) if there exists a relation R ∈ CER(X) such that

(i) (T × T )(R) ⊂ R ⊂ Σπ ,

(ii)
∞⋂

n=0
(T × T )n(R) = ∆,

(iii)
∞⋃

n=0
(T × T )−n(R) = Σπ .

It follows from the definition that topological K-flows cannot be
deterministic.

The relation satisfying conditions (i)-(iii) of Definition 5.1 as well
as extreme relations were recently considered in the paper [8].

In the following example we can see that for the mixing topo-
logical Markov chains there exists a relation satisfying conditions
(i)-(iii), i.e. topological Markov chains are K-flows.

Example 5.3. Let (Λ, σ|Λ) be a mixing topological Markov chain
with the transition matrix L. Since (Λ, σ|Λ) is mixing, then the
matrix L is aperiodic (cf. [4], Proposition 17.10).

We define the relation R ⊂ Λ × Λ in the following way: If x =
(xn), y = (yn) ∈ Λ, then (x, y) ∈ R ⇐⇒ ∀n≥0 xn = yn.

Now one checks that the relation satisfies desired conditions (i)-
(iii) of Definition 5.1.

Theorems 3.2 and 3.4 allowed to prove the following proposition.
The analogous fact holds in the relative case.

Proposition 5.4 ([13]). If a topological flow admits a K-measure
with full support then it is a topological K-flow.



150 JERZY SZYMAŃSKI

The following proposition relates K-flows to asymptotic pairs.
Let us state it only in the relative version.

Proposition 5.5 ([14]). If π is a K-extension then A(T )∩ Σπ is
dense in Σπ.

At the end we give the following description of the relative Pinsker
relation Π(T |Σ) different from those described in [16] and [17].

Proposition 5.6 ([14]).

Π(T |Σ) =

〈⋃

µ

∞⋃

n=0

(T × T )−n(Rµ)

〉
,

where µ ∈ M(X, T ) runs over all ergodic measures with hµ(T |σ) >
0.

6. Some open qestions

1. Recall that a flow (X, T ) is said to be rigid ([7]) if there exists
an increasing sequence (nk) of positive integers with Tnkx → x for
any x ∈ X . It is clear that rigid flows are deterministic. In the
mentioned paper there is also a notion of weak rigidity. A flow
(X, T ) is weakly rigid if the identity homeomorphism I : X → X
is a limit point of the collection {Tn; n ∈ Z} in the topology of
pointwise convergence. In other words, if I is not an isolated point
in the enveloping semigrup E(X). Clearly every infinite minimal
distal flow is weakly rigid and it is known that every distal flow is
deterministic. However, the question is whether weakly rigid flows
are deterministic? What is known is the following.

One can define positive weak rigidity by the condition
I ∈ {Tn; n ≥ 1}. Every positively weakly rigid flow is deterministic
(cf. [14]). In fact the proof shows that every positively doubly
recurrent flow (cf. [20]), i.e. a flow such that every point in the
product X×X is positively recurrent under T ×T , is deterministic.
Since for a weakly rigid flow either (X, T ) or (X, T−1) are positively
weakly rigid it follows that for a weakly rigid flow at least one of
(X, T ) or (X, T−1) is deterministic.

2. It is known ([12]) that there exist K-flows with zero topologi-
cal entropy. It would be interesting to characterize all K-flows with
zero entropy.
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3. It is shown in [12] that any minimal K-flow is weakly mixing.
Does the the relative analogue this theorem holds? In other words,
does the minimality of (X, T ) imply that any K-extension π is
relatively weakly mixing, i.e. the dynamical system (Σπ, T × T ) is
transitive?
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