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RECOGNIZING INDECOMPOSABLE
SUBCONTINUA OF SURFACES FROM THEIR

COMPLEMENTS

CLINTON P. CURRY

Abstract. We prove two theorems which allow one to rec-
ognize indecomposable subcontinua of closed surfaces without
boundary. If X is a subcontinuum of a closed surface S, we
call the components of S \ X the complementary domains of
X. We prove that a continuum X is either indecomposable
or the union of two indecomposable continua whenever it has
a sequence (Un)∞n=1 of distinct complementary domains such
that limn→∞ ∂Un = X. We define a slightly stronger condi-
tion on the complementary domains of X, called the double-
pass condition, which we conjecture is equivalent to indecom-
posability. We prove that this is so for continua which are not
the boundary of one of their complementary domains.

1. Introduction

For us, a continuum is a compact connected metric space. A
closed surface is a compact and connected, but not necessarily
orientable, 2-manifold without boundary. We are interested in con-
ditions which imply that a subcontinuum of a closed surface is
topologically complicated. Further, we would like for these condi-
tions to rely upon how the continuum is embedded in its ambient
space, rather than to use internal characteristics of the continuum.
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252 C. P. CURRY

We use indecomposability as a criterion for topological complex-
ity. A continuum X is decomposable if it can be written as the
union of a pair of proper subcontinua A and B. The pair (A, B)
is then called a decomposition of X . A continuum which is not
decomposable is called indecomposable.

Non-degenerate indecomposable continua (i.e., indecomposable
continua consisting of more than a point) are certainly quite com-
plicated and have rich internal structure. For example, a non-
degenerate continuum X is indecomposable if and only if, for all
p ∈ X , the composant of p

Cp =
⋃

{proper subcontinua of X containing p}

is a dense set of first category [10, Exercise 5.20a and Proposition
11.14], in which case there are uncountably many disjoint com-
posants. In contrast, decomposable continua have either one or
three composants [10, Theorem 11.15].

The rich structure of indecomposable continua provides many
interesting internal methods of recognizing indecomposability. We
are instead interested in recognizing indecomposability based on
the continuum’s interaction with the space in which it lies. This
approach is in the spirit of some classical work of Kuratowski [7],
Rutt [11], and Burgess [2].

In Section 2, we recall some earlier theorems which the current
work extends. In Section 3, we extend a theorem of C. E. Burgess
about planar continua. In Section 4 we extend the characterization
of planar indecomposable continua in [3] to certain subcontinua of
closed surfaces – those subcontinua which are not the boundary of
any of their complementary domains. Finally, in Section 5 we state
questions and conjectures.

I would like to thank my advisor, Dr. John Mayer, for many
helpful discussions and tireless proofreading of preliminary drafts.
I would also like to thank the referee for careful attention that
improved the quality of this paper.

2. Prior Work and Notions

Let S be a closed surface, and X ⊂ S be a continuum. A com-
ponent of S \ X is called a complementary domain of X . If X
equals the boundary of one of its complementary domains, then X
is called unshielded ; otherwise, it is shielded.
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In order to shorten some statements, we say that a continuum X
is 2-indecomposable if X is decomposable but cannot be written as
the essential union of three proper subcontinua. By a theorem of
Burgess [2, Theorem 1], a 2-indecomposable continuum is in some
sense uniquely decomposable. Specifically, there exists a decompo-
sition (A, B) of X where A and B are indecomposable continua.
Further, if (C, D) is any other decomposition, then C and D each
contain exactly one of A and B.

The first and most famous result in the vein of this work is by
Kuratowski. It deals exclusively with continua which are unshielded.

Theorem 2.1 ([7, Theorem 11 of §62]). Let X be a planar contin-
uum. If X is the common boundary of three of its complementary
domains, then X is either indecomposable or 2-indecomposable.

C. E. Burgess generalized this and other related theorems. The
following is a corollary to the main result in [2]. It complements
Theorem 2.1 in that it can detect indecomposability in shielded
continua.

Theorem 2.2 ([2, Corollary of Theorem 10]). Let X be a planar
continuum, and let (Un)∞n=1 be a sequence of distinct complementary
domains of X. If X = limn→∞ ∂Un, then X is either indecompos-
able or 2-indecomposable.

Our Theorem 3.7 extends this theorem. It states that the above
holds not only for continua in the plane, but for continua in all
closed surfaces.

To state the next theorem, we need some terminology from [3].
We slightly extend the definitions to apply to an arbitrary closed
surface, whereas the work from [3] applies only to S2.

Definition 2.3 (generalized crosscut). Let S be a closed surface
and U a connected open subset with non-degenerate boundary. A
generalized crosscut of U is a homeomorphic copy A ⊂ U of the
open interval (0, 1) such that A \ A ⊂ ∂U .

Generalized crosscuts are similar to crosscuts from prime end
theory, except that the closure of a crosscut is by definition a com-
pact arc. The closure of a generalized crosscut, however, need not
be locally connected.
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Definition 2.4 (shadow). Let A be a generalized crosscut of U . A
component V of U \ A is called a crosscut neighborhood of A. The
shadow of A corresponding to V is the set V ∩ ∂U .

Observe that a generalized crosscut has either one or two shad-
ows. We can now state the double-pass condition.

Definition 2.5 (double-pass condition). Let X ⊂ S be a contin-
uum, and let (Un)∞n=1 be a sequence of complementary domains of
X . We say that (Un)∞n=1 satisfies the double-pass condition when,
for any choice of generalized crosscuts Kn of Un, there exists a
sequence of shadows Sn of Kn so that limn→∞ Sn = X .

The main result of [3] is the following theorem.

Theorem 2.6 ([3, Theorem 1.4]). A continuum X ⊂ S2 is inde-
composable if and only if it has a sequence (Un)∞n=1 of complemen-
tary domains satisfying the double-pass condition.

We extend this theorem in Section 4. Specifically, we prove that
a shielded continuum in a surface is indecomposable if and only if
it has a sequence of complementary domains satisfying the double-
pass condition.

3. An Extension of a Theorem of Burgess

In this section, we extend Theorem 2.2 for planar continua to
continua in arbitrary closed surfaces. Namely, we prove that a con-
tinuum in a surface which is the limit of boundaries of distinct com-
plementary domains is either indecomposable or 2-indecomposable.

3.1. Graphs and Cat’s Cradles. The following lemma gives us a
convenient way to gain information about the genus of a particular
surface.

Definition 3.1. The complete bipartite graph Km,n is the graph
with m + n vertices, {a1, . . . , am, b1, . . . , bn}, and mn edges joining
every vertex in {a1, . . . , am} to every vertex in {b1, . . . , an}.

Lemma 3.2. If S is a closed surface containing an embedding of
the graph K3,4g−1, then the genus of S is at least g.
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Proof. According to [4], the minimal genus g of any surface in which
the graph Km,n can be embedded is

⌈
(m−2)(n−2)

4

⌉
. (Here, dxe de-

notes the smallest integer n such that x ≤ n.) Substituting m = 3
and n = 4g−1 gives that the minimal genus for a surface to contain
a copy of K3,4g−1 is equal to

⌈
g − 3

4

⌉
= g. �

For the remainder of this section, let S denote a particular closed
surface of genus g. Below we will use the following convenient
notation: For an arc A, let Int(A) denote the open sub-arc of A
joining the endpoints of A.

Definition 3.3 (cat’s cradle). Let d1, d3 ∈ S be distinct points. A
collection of arcs {Aα}α∈J is called a cat’s cradle (between d1 and
d3) if

(1) d1 and d3 are the endpoints of each Aα and
(2) for distinct α, β ∈ J , Int(Aα) ∩ Int(Aβ) = ∅.

In addition, if each Aα intersects a set D2 disjoint from {d1, d3},
then {Aα}α∈J is a cat’s cradle through D2.

We now prove a general fact about a cat’s cradle through a closed
disk in a surface. On the face of it, there are many ways in which
the arcs of a cat’s cradle could be arranged. It is certainly possible
for the arcs to intersect the disk D2 in parallel chords (in a way
that one might call linearly ordered, defined precisely below). On
the other hand, the arcs could be arranged in such a way that no
chord in the intersection divides the disk between any other two
chords in the intersection. The following lemma shows that this
second possibility does not occur often in a surface of finite genus.

Lemma 3.4. Let d1, d3 ∈ S, and let D2 ⊂ S be a closed disk.
Suppose (An)4g+3

n=1 is a cat’s cradle between d1 and d3 through D2,
where g is the genus of S. Then no component of D2 \

⋃4g+3
n=1 An

can have closure which meets every element of (An)4g+3
n=1 .

Proof. Suppose some component V of D2 \
⋃4g+3

n=1 An has closure
which meets every arc An. Designate a point d2 ∈ V , and choose
arcs (A′

n)4g+3
n=1 satisfying the following for all different indices m and

n:
(1) A′

n joins d2 to a point of An, with no proper sub-arc of A′
n

doing so;
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(2) A′
n ∩ A′

m = {d2}; and
(3) Int(A′

n) ⊂ V for each n.

The graph
⋃4g+3

n=1 (An ∪ A′
n) is then homeomorphic to the graph

K3,4g+3, being the complete bipartite graph between the sets
{d1, d2, d3} and

⋃4g+3
n=1 (An ∩ A′

n). Lemma 3.2 indicates that the
genus of S is at least g + 1, contradicting the assumption that it is
g. �

Lemma 3.6 will be used in the proof of Theorem 3.7 to build
interesting graphs in S. To state it, we need a definition.

Definition 3.5 (linearly ordered). Let (A′
α)α∈J be an ordered se-

quence of pairwise disjoint compact arcs in a closed disk D2, each
irreducible with respect to intersecting ∂D2 twice. We say that
(A′

α)α∈J is linearly ordered if, for α < β < γ in J , A′
α is sepa-

rated from A′
γ in D2 by A′

β . If J is finite, we call a component
of D2 \

⋃
n∈J A′

n an end component if its closure meets only one
element of (A′

n)n∈J .

In what follows a chord of a disk D2 is an arc in D2 which
intersects ∂D2 exactly at its endpoints.

Lemma 3.6. Let (An)∞n=1 be a cat’s cradle from d1 to d3 through
a closed disk D2, and suppose that An ∩ ∂D2 is finite for each n.
Then there is a subsequence (Ani)

∞
i=1 and a collection of sub-arcs

(A′
ni

)∞i=1, A′
ni

⊂ Ani ∩ D2, so that (A′
ni

)∞i=1 is linearly ordered in
D2.

Proof. First, using Lemma 3.4, notice that only finitely many com-
ponents of D2 ∩

⋃∞
n=1 An do not meet D2 in its interior. Hence,

by passing to a subsequence, we may assume that D2 \ Ai is not
connected for any i ∈ N. In particular, Ai ∩ D2 contains a non-
degenerate chord for every i ∈ N and therefore separates D2.

There are two cases.
Case 1. One case is that, for any element Aα, there is an

element Aβ such that no element Aγ separates Aα from Aβ in D2.
We will build by induction an increasing sequence (nk)∞k=1 and a
corresponding sequence of chords (A′

nk
)∞k=1 with A′

nk
⊂ Ank

∩ D2

such that, for all k ≥ 1, the following two conditions are met:
(1) The chords A′

n1
, . . . , A′

nk
are linearly ordered; and
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(2) some end component of D2 \
⋃k

i=1 A′
ni

bounded by A′
nk

intersects infinitely many elements of (An)n>nk
. (Notice

that there is a unique such end component if k 6= 1.)
For the base case of our induction, set n1 = 1, and let A′

n1
⊂ An1

be any non-degenerate chord in D2. There are then two components
to D2 \ A′

n1
, each an end component of D2 \ A′

n1
. Infinitely many

elements of the collection (An)n≥n1 must intersect one of them. We
have therefore satisfied the requirements for k = 1.

Now suppose that chords A′
n1

, . . . , A′
nk

have been found which
satisfy conditions 1 and 2. Consider the collection {AN1 , . . . , ANm}
of arcs which are not separated from A′

nk
by any other An. (There

may only be finitely many by Lemma 3.4.) Let V denote the end
component of D2 \

⋃k
i=1 A′

ni
meeting A′

nk
Because each ANi inter-

sects ∂D2 in finitely many points, we see that
⋃m

i=1 ANi divides V
into finitely many components. By choice of N1, . . . , Nm, no mem-
ber of (An)n>max(N1,...,Nm) intersects the component of V \

⋃m
i=1 ANi

which meets A′
nk

. Therefore, infinitely many members must inter-
sect another component W of V \

⋃m
i=1 ANi . Let A′

nk+1
be a minimal

sub-arc of
⋃m

i=1 ANi which separates W from A′
k . Then W is con-

tained in the end component of D2\
⋃k+1

i=1 A′
ni

meeting A′
nk+1

. That
end component meets infinitely many members of (An)n>nk+1

, so
we have extended our linearly ordered collection to k + 1 elements.

By induction, we have a sequence of chords (A′
ni

)∞i=1. Since each
finite subsequence (Ani)

k
i=1 is linearly ordered, (Ani)

∞
i=1 is linearly

ordered.
Case 2. There exists Aα such that any Aβ is separated from Aα

in D2 by some Aγ .
Choose n1 > α, and let A′

n1
⊂ An1 be any non-degenerate chord.

Find a sequence (Ani)
∞
i=1 such that Ani is separated from A′

α by
Ani+1 . Recall that D2, as a two-dimensional disk, is unicoher-
ent, which implies that any closed set which separates two points
of D2 also has a component which does so. Therefore, a chord
A′

ni+1
⊂ Ani+1 also separates Ani from A′

α. This process inductively
yields the ordered sequence (Ani)

∞
i=2, which is evidently linearly

ordered. �

3.2. Burgess’s Theorem for Surfaces. Now we move to the spe-
cific setting of a continuum with infinitely many complementary
domains.
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Theorem 3.7 (Burgess’s Theorem for Surfaces). Let X be a sub-
continuum of a closed surface S, and let (Un)∞n=1 be a sequence of
distinct complementary domains of X. If X = limn→∞ ∂Un, then
X is either indecomposable or 2-indecomposable.

Proof. By [2, Theorem 1], we must only show that X is not the
essential union of three proper subcontinua. By way of contradic-
tion, suppose that X = X1 ∪ X2 ∪ X3, where each Xi is a proper
subcontinuum of X not contained in

⋃
j 6=i Xj . We will first find

appropriate closed disks D1, D2, and D3. Designated points in D1

and D3 will function as the endpoints of a cat’s cradle through D2.
By the definitions of X1, X2, and X3, there exist closed disks

D1, D2, D3 ⊂ S such that

(1) the interior of Di intersects Xi, and
(2) Di is disjoint from Dj ∪ Xj when i 6= j.

Because of the increasing density of (Un)∞n=1, Un intersects each Di

when n is large enough. By passing to a subsequence, assume that
Un ∩ Di 6= ∅ for each n ∈ N and i ∈ {1, 2, 3}. Then for each n ∈ N
let An ⊂ Un be an arc such that, for each i ∈ {1, 2, 3},

(1) An ∩ Di 6= ∅,
(2) no proper sub-arc of An intersects each Di, and
(3) An ∩ ∂Di is finite.

Note that the last condition can be achieved since each Un is open.
It is evident that Int(An) intersects only one Di for each n. By

passing to a subsequence and relabeling the disks, we can assume
without loss of generality that Int(An) ∩ D2 6= ∅. Extend each An

to an arc Ãn with arcs in D1 and D3 to obtain a cat’s cradle from
d1 to d3 through D2, where di is a designated point of Di. Notice
that

⋃∞
n=1 Ãn is still disjoint from X2, since Ãn \ (D1 ∪ D3) ⊂ Un

is disjoint from X and Ãn ∩ (D1 ∪ D3) ⊂ D1 ∪ D3 is disjoint from
X2.

Let (A′
ni

)∞i=1 be the linearly ordered sequence of compact arcs

in
(⋃∞

n=1 Ãn

)
∩ D2 guaranteed by Lemma 3.6. First, notice that

X2 separates Ani ∩ D2 from Anj ∩ D2 in D2 when i 6= j. To see
this, observe that Ani ∩ D2 ⊂ Uni , and analogously Anj ⊂ Unj .
These are distinct complementary domains of X , so X separates
Ani from Anj in S and thus in D2. Since X ∩ D2 ⊂ X2, we see
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that X2 separates Ani from Anj in D2. Accordingly, choose points
x1, . . . , x4g+3 ∈ X2 so that

(1) each xi lies between A′
ni

and A′
ni+1

in D2, and
(2) the set

⋃
j 6=i Anj does not separate xi from Ani in D2.

Since X2 is connected and X2 ∩
⋃4g+4

j=1 Anj = ∅, there exists
an arc J ⊂ S \

⋃4g+4
j=1 Anj containing {xi}4g+3

i=1 . By choice of xi,
there are disjoint arcs (A′′

ni
)4g+3
i=1 ⊂ D2 which join J to Ani without

intersecting any other A′
nj

. By collapsing the arc J to a point, the
graph K3,4g+3 is obtained in

G = J ∪
4g+3⋃

i=1

(Ãni ∪ A′′
ni

),

i.e., K3,4g+3 is a minor of G. Lemma 3.2 concludes that the genus
of S is at least g + 1, contradicting our assumption that the genus
is g. �

3.3. A Partial Converse. As can be expected, Theorem 3.7 has
a partial converse: If X is indecomposable, then there exists a
sequence (Un)∞n=1 of complementary domains of X , not necessarily
distinct, such that limn→∞ ∂Un = X . This fact will be used in the
next section, so we prove it here. The proof of this property follows
closely the outline of [3, Theorem 2.10], modified slightly to allow
for a finite degree of multicoherence.

Definition 3.8 (multicoherent). A connected topological space X
is multicoherent of degree k if, for any pair of closed, connected
subsets A and B such that A ∪ B = X , the intersection A ∩ B
consists of at most k components.

Closed surfaces and punctured closed surfaces are examples of
finitely multicoherent spaces. Let S be a finitely multicoherent
space, and suppose that A ⊂ S is a closed set which separates p
from q for points p, q ∈ S. Then, by [12, Theorem 1], there is a
closed subset B ⊂ A which has at most k components which also
separates p from q. We use this property in the following proof.
Here, if A and B are compact non-empty subsets of a metric space
(X, d), Hd(A, B) represents the Hausdorff distance between A and
B in the hyperspace of non-empty compact subsets of X . See [10,
Chapter 4] for details.
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Theorem 3.9. Let X be an indecomposable continuum in the closed
surface S. Then there exists a sequence (Un)∞n=1 of (not necessarily
distinct) complementary domains of X such that limn→∞ ∂Un = X.

Proof. This is clear if X is a point, so assume X is a non-degenerate
indecomposable continuum. For the purposes of this proof, suppose
that S is equipped with a metric d in which the set

Bε(p) = {x ∈ S | d(p, x) < ε}

is simply connected when ε ∈ (0, 1). Let p, q, and r lie in different
composants of X . For each n ∈ N, define

Qn = the component of X \ B1/n(p) containing q, and

Rn = the component of X \ B1/n(p) containing r.

Notice that limn→∞ Qn = limn→∞ Rn = X , by density of com-
posants. Since Qn and Rn are different components of X \B1/n(p),
they are separated in S \ B1/n(p) by S \ (B1/n(p) ∪ X). Thus, Qn

and Rn are closed and separated in the normal space S \B1/n(p), so
there is a subset Kn, closed in S\B1/n(p), of S\(B1/n(p)∪X) which
separates Qn and Rn. Since S \ B1/n(p) is finitely multicoherent,
say of degree k, then a subset

L1
n ∪ . . .∪ Lk

n

is a closed separator (in S \ B1/n(p)) of Qn and Rn, where the
elements of the union are disjoint, closed, and connected (though
perhaps some are empty). We may assume that they are ordered
so that

Hd(L1
n, X) ≤ . . . ≤ Hd(Lk

n, X),

where Hd(∅, X) can be regarded as ∞. Moreover, since each Li
n

is disjoint from X and connected, there exists a complementary
domain U i

n such that
Li

n ⊂ U i
n.

(The set U i
n can be any complementary domain of X if Li

n is empty.)
The sequence (U1

n)∞n=1 formed in this way is the required sequence
of complementary domains. We will show that any convergent sub-
sequence of (∂U1

n)∞n=1 converges to X , implying that the sequence
itself converges to X .
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First we demonstrate that X ⊂ lim infn→∞
⋃k

i=1 ∂U i
n. Choose

x ∈ X \ {p} and 0 < ε < d(x, p). Let N ∈ N such that, for all
n ≥ N

(1) Qn ∩ Bε(x) 6= ∅,
(2) Rn ∩ Bε(x) 6= ∅, and
(3) B1/n(p)∩ Bε(x) = ∅.

For n ≥ N , choose qn ∈ Qn ∩ Bε(x) and rn ∈ Rn ∩ Bε(x). Let
An ⊂ Bε(x) ⊂ S \B1/n(p) be an arc joining qn to rn. Then

An ∩
k⋃

i=1

Li
n 6= ∅,

since
⋃k

i=1 Li
n separates qn from rn in S \ B1/n(p). Since Li

n ⊂ U i
n

for each i and qn, rn are not in any U i
n (they lie in X),

An ∩
k⋃

i=1

∂U i
n 6= ∅,

implying that
k⋃

i=1

∂U i
n ∩ Bε(x) 6= ∅.

This is true for all n ≥ N , so x ∈ lim infn→∞
⋃k

i=1 ∂U i
n, and we

have that X = limn→∞
⋃k

i=1 ∂U i
n.

Now, let us consider the individual limits limn→∞ ∂U i
n for some

fixed i ≤ k. By passing to a subsequence, we may assume that
the limit Xi = limn→∞ ∂U i

n exists for each i ≤ k. Then, since
limn→∞

⋃k
i=1 ∂U i

n = X , we see that
⋃k

i=1 Xi = X . However, this
is a finite union of continua, and X is indecomposable, so at least
one Xi is not a proper subcontinuum of X . By continuity, we see
that Hd(X1, X) ≤ Hd(Xi, X) for all i ≤ k, so X1 = limn→∞ ∂U1

n =
X . �

4. Characterization of Shielded Indecomposable
Continua

A subcontinuum X of a closed surface S is called shielded if,
for every complementary domain U of X , ∂U 6= X . We extend
Theorem 2.6, which is a characterization of planar indecomposable
continua, to shielded subcontinua of closed surfaces.
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The assumption that a continuum is shielded already imparts
some complexity. For instance, any sequence of complementary
domains whose boundaries converge to the continuum must consist
of infinitely many distinct elements. We use this property to bridge
the gap left by the relatively weak separation properties of compact
surfaces.

The proofs in this section will depend upon the existence of par-
ticularly well-behaved homeomorphisms of simply connected do-
mains in a surface to the unit disk D in the plane. Specifically, we
wish for a null sequence of crosscuts in a domain to correspond to
a null sequence of crosscuts in D. We will prove that conformal iso-
morphisms have this property, so for the remainder we will assume
that the closed surface S is endowed with a conformal structure
and that d is the corresponding metric.

Lemma 4.1. If X is a non-degenerate continuum in S, then all of
its simply connected complementary domains are conformally iso-
morphic to the unit disk.

Remark. Note that, in contrast to the planar case, some comple-
mentary domains may not be simply connected.

Proof. Let U be a simply connected complementary domain of X .
Let P be the universal covering space of S, with corresponding con-
formal covering map π : P → S. Recall that, by the Uniformization
Theorem [9, Theorem 1.1], P is conformally isomorphic to a sim-
ply connected subset of the Riemann sphere. If Û is a component
of π−1(U), then Û is simply connected (since U is) and π|Û is a
covering map. In fact, π|Û is a conformal isomorphism since its
trivial fundamental group is isomorphic to the group of deck trans-
formations for π|Û . However, Û misses π−1(X), so Û is conformally
isomorphic to the unit disk by the classical Riemann mapping the-
orem. �

The proof of the following lemma is identical to the proof of [3,
Lemma 3.4], and is included here for completeness.

Lemma 4.2. Let U be a simply connected open subset of S with
non-degenerate boundary. Let φ : U → D be a conformal isomor-
phism. Then the image of a null sequence (Kn)∞n=1 of crosscuts of
U is a null sequence of crosscuts in D.
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Proof. Let (Kn)∞n=1 be a null sequence of crosscuts of U with im-
age sequence (An)∞n=1 = (φ(Kn))∞n=1. Without loss of generality,
assume that (Kn)∞n=1 converges to a point x ∈ ∂U . By passing to
a subsequence, we may assume that the image sequence converges
to a continuum L ⊂ D. Since (Kn)∞n=1 does not accumulate on a
subset of U , we see that L ⊂ ∂D.

Let t ∈ L. There exists a chain of crosscuts (A′
n)∞n=1 of D con-

verging to t which maps to a null sequence (K ′
n)∞n=1 of crosscuts of

U by φ−1. (See [9, Lemma 17.9]; the proof does not rely on the
planarity of U .) We may assume that (K ′

n)∞n=1 converges to a point
of ∂U by passing to a subsequence. For each m ∈ N, that (An)∞n=1

accumulates on t implies that all but finitely many An intersect
the crosscut neighborhood of A′

m corresponding to t. Also, since
(Kn)∞n=1 forms a null sequence in U and converges to x, we see that
all but finitely many Kn (thus An) lie entirely within the crosscut
neighborhood of K ′

m (thus A′
m) corresponding to t. However, the

crosscut neighborhoods of A′
m form a null sequence as m → ∞, so

(An)∞n=1 form a null sequence. �

Lemma 4.3. Suppose U ⊂ S is open, connected, and simply con-
nected with non-degenerate boundary, and let φ : U → D be a con-
formal isomorphism. Let B1 and B2 be disjoint closed disks meeting
∂U , and let Ei ⊂ ∂D denote the set of endpoints of the crosscuts
of D which form φ((∂Bi) ∩ U). If, for different i and j, Ei lies in
a component of ∂D \ Ej, then there is a generalized crosscut K of
U which separates B1 ∩ U from B2 ∩ U in U . Moreover, if ∂U is
locally connected, then K is a crosscut of U .

Proof. Identical to proof of Lemma 3.5 in [3]. �

Theorem 4.4. A shielded subcontinuum X of a closed surface S
is indecomposable if and only if it has a sequence of complementary
domains which satisfies the double-pass condition.

Proof. Suppose first that X is indecomposable. By Theorem 3.9,
there is a sequence (Un)∞n=1 of complementary domains of X such
that limn→∞ ∂Un = X . For each n ∈ N, let Kn be a generalized
crosscut of Un. Let An and Bn be shadows of Kn so that An∪Bn =
∂Un, with Hd(An, X) ≤ Hd(Bn, X).
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Then An and Bn are subcontinua of X . There is a subsequence
(Uni)

∞
i=1 so that (Ani)

∞
i=1 and (Bni)

∞
i=1 converge to subcontinua A

and B of X . We see that A∪B = X , since Ani ∪Bni = ∂Uni . Since
X is indecomposable, either A or B is not a proper subcontinuum
of X . We have Hd(X, Ani) ≤ Hd(X, Bni), so A = X . This is true
for all choices of subsequences (Uni)

∞
i=1 where (Ani)

∞
i=1 and (Bni)

∞
i=1

both converge, so (Un)∞n=1 satisfies the double-pass condition.
Now, assume that a continuum X ⊂ S has a sequence (Un)∞n=1 of

complementary domains satisfying the double-pass condition. By
way of contradiction, suppose that (X1, X2) is a decomposition of
X . There are disjoint closed disks D1, D2 ⊂ S so that, for i ∈ {1, 2},

(1) the interior of Di intersects Xi, and
(2) if i 6= j, Di is disjoint from Xj ∪ Dj .

Since X satisfies the double-pass condition, there exists N ≥ 1 such
that, for all n ≥ N , no generalized crosscut of Un separates D1 ∩U
from D2 ∩ U in Un. Without loss of generality, N = 1.

Now we make use of the assumption that X is shielded. Since
∂Un 6= X for each n and limn→∞ ∂Un = X , no element of (Un)∞n=1

appears infinitely often in the sequence. Therefore, we can assume
by passing to a subsequence that (Un)∞n=1 consists of different sim-
ply connected complementary domains of X .

Let φn : Un → D be a conformal isomorphism. According to
Lemma 4.3, the sets En,1 and En,2, comprised of the endpoints
of the crosscuts constituting φn((∂D1) ∩ Un) and φn((∂D2) ∩ Un)
separate each other in ∂D. It is evident that D1 ∩ Un and D2 ∩
Un may or may not separate the other in Un. By passing to a
subsequence, we can assume that, for every n ∈ N, either

(1) D1 ∩ Un separates D2 ∩ Un in Un, or
(2) neither separates the other in Un.

We will find a crosscut Fn ⊂ D \ φ(D2) of D which joins points of
En,1 which separate En,2 in ∂D. In the case that D1 ∩Un separates
D2 ∩ Un, a component of (∂D1) ∩ Un also does, so we can define
Fn as a component of φ((∂D1)∩ Un) which separates φn(D2 ∩ Un)
in D. In the second case, there are components K1 and K2 of
φn((∂D1) ∩ Un) whose endpoints separate E2,n in ∂D. Let Fn be
the union of an arc joining k1 ∈ Int(K1) to k2 ∈ Int(K2) with one
component each of K1 \ {k1} and K2 \ {k2}. Notice that φ−1

n (Fn)
is in fact a crosscut of Un in either case, since points of Fn close to
∂Un are in ∂D1.
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Let An be an arc in Un joining components of D2∩Un which are
separated by φ−1

n (Fn), intersecting φ−1
n (Fn) transversely exactly

once. Let Cn ⊂ D2 ∪ An be a simple closed curve containing An,
formed by joining the endpoints of An to a designated point a ∈ D2

with line segments otherwise disjoint from C1 ∪ . . .Cn−1.
Let Y = C1 ∪C2 ∪ . . .∪C2g+1, where g is the genus of S. This is

the one-point union of 2g + 1 simple closed curves, so S \ Y is not
connected (see for instance [1, 5.14]). Since the arcs F1, . . . , F2g+1

intersect Y exactly once transversely and have their endpoints in
X2, we conclude that each component of S \ Y contains points of
X1. However, since Y is the union of arcs in S \ X and B2, we see
that Y is disjoint from X1. This contradicts the assumption that
X1 is connected. �

Remark. Suppose that the continuum in question has locally con-
nected boundary components. Then Lemma 4.3 provides a cross-
cut (rather than a generalized crosscut) to show that X fails the
double-pass condition. Hence, we can observe that a continuum
with locally connected boundary components is indecomposable if
and only if it satisfies the double-pass condition with crosscuts.

5. Conclusion

Though the results presented here are advances, the correspond-
ing theorems for planar continua are much stronger. Here we dis-
cuss stronger generalizations which may hold.

5.1. Burgess’s Theorem. Theorem 3.7 is a direct translation of
the corollary to [2, Theorem 10]. In turn, that theorem follows from
a fundamental theorem of C. E. Burgess, reproduced below.

Theorem ([2, Theorem 9]). Let H ⊂ S2 be closed, M ⊂ S2 a
continuum, and M1, M2, and M3 subcontinua of M . Suppose that
K1, K2, and K3 are closed disks, disjoint from each other and H,
and Ki intersects Mj if and only if i = j. Then there do not exist
three complementary domains of M ∪ H all of which intersect K1,
K2, and K3.

Question 5.1. Is there an extension of this theorem to closed sur-
faces?
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Using Burgess’s theorem, one can prove that a planar continuum
which is the common boundary of three of its complementary do-
mains [7] or is the impression of one of its prime ends [11] is either
indecomposable or 2-indecomposable. Also, a planar continuum
which is the limit of a disjoint sequence of shadows is indecompos-
able [3]. Theorem 3.7 was proven here without proving the analog
of Burgess’s theorem, but interesting theorems would surely follow
if Question 5.1 had a positive answer.

5.2. Kuratowski’s Theorem. In particular, the requirement of
Theorem 3.7 that X have infinitely many distinct domains whose
boundaries limit to the continuum is probably stronger than nec-
essary for the conclusion. This motivates the following question.

Question 5.2. Is there a finite version of Theorem 3.7 like
Kuratowski’s theorem? Specifically, if a continuum X in a closed
surface of genus g is the common boundary of three complementary
domains, what is the maximal n(g) so that X is the union of n(g)
indecomposable continua?

A partial answer is illustrated by an example. Let C1, C2, C3 ⊂
C∞ \ {∞} be homeomorphic copies of the pseudocircle such that,
for distinct i, j, k,

(1) Ci is contained in the closure of the component of S2 \ Cj

containing ∞,
(2) Ci ∩ Cj is a single point not in Ck , and
(3) Ci ∩ Ck is in a different composant of Ck than Cj ∩ Ck .

This is a continuum with 5 complementary domains. Two com-
plementary domains, U and V , meet each element of {C1, C2, C3}.
There are three complementary domains, W1, W2, and W3, where
Wi is the bounded complementary domain of Ci.

No proper subcontinuum of C1 ∪C2 ∪C3 can separate U from V
because of condition 3, so ∂U = ∂V = C1 ∪C2 ∪C3. Remove disks
D1, D

′
1 ⊂ W1, D2 ⊂ W2, and D3 ⊂ W3, and paste cylinders joining

∂D1 to ∂D2 and ∂D′
1 to ∂D3 in a way resulting in an orientable

surface S of genus 2. Then C1 ∪ C2 ∪ C3 is the common boundary
of three domains, though it is not the union of just two indecom-
posable continua. This indicates that an extension of Kuratowski’s
theorem along these lines must take the genus into account.
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5.3. Characterization Theorem. Theorem 4.4 is significantly
weaker than Theorem 2.6, since Theorem 2.6 holds for continua
which are boundaries of connected open sets in S2. The author
suspects the statement of Theorem 2.6 holds true in surfaces, with
some qualification. For instance, an essentially embedded simple
closed curve in a torus satisfies the double-pass condition as it is
stated here, but artificially so.

One can define a generalized crosscut with curves of a domain U
as the disjoint union of a generalized crosscut and a finite number
of simple closed curves. By defining shadows in analogy to shadows
of generalized crosscuts, one obtains an equivalent notion in sim-
ply connected domains – adding disjoint simple closed curves to a
generalized crosscut does not change the shadows. However, gener-
alized crosscuts with curves allows stronger separation in domains
which are not simply connected.

Question 5.3. Let X be a continuum in a closed surface S. If for
every sequence (Ci)∞i=1 of generalized crosscuts with curves there
exists a choice of shadows (Si)∞i=1, where Si a shadow of Ci, which
converge to X , is X indecomposable?

5.4. Higher Dimensions. One may ask how useful recognition
from the complement might be in more general spaces. Specifi-
cally, in R3, this approach does not look useful. Formulations of
prime end theory in R3 have had limited applicability. Further,
M. Lubański constructed in [8] a family of absolute neighborhood
retracts which can be the common boundary of any finite number
of domains in R3. Kuratowski [7, p. 560] noted that this can be
extended to an infinite number of complementary domains.
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