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ABSTRACT. A group G is non-topologizable if the only
Hausdorff group topology that G admits is the discrete one. Is
there an infinite group G such that H/N is non-topologizable
for every subgroup H < G and every normal subgroup N < H?
We show that an answer to this essentially group theoretic
question provides a solution to the problem of c-compactness.

Following Ol’shanskii, we say that a group G is non-topologizable
if the only Hausdorff group topology that G admits is the dis-
crete one. In 1944, Markov asked whether infinite non-topologizable
groups exist ([12]). Markov’s problem was solved in 1979 by Hesse,
whose result, however, seems to have remained unpublished ([6]).
Without being aware of Hesse’s solution, in 1980, Ol’'shanskii and
Shelah independently constructed infinite non-topologizable groups
([13] and [16]). A noteworthy difference between Shelah’s construc-
tion and the other two is that the earlier requires CH, while the later
are ZFC results. Although Ol’shanskii’s example is a countable tor-
sion group, Klyachko and Trofimov showed that a non-topologizable
group need not satisfy either of these properties.
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Theorem 1. ([8]) There exists a torsion-free finitely generated non-
topologizable group. Thus, there exists a torsion-free mon-topolog-
1zable group of any cardinality.

(The second statement is obtained from the first one using the
Lowenheim-Skolem theorem.) In a subsequent paper, Trofimov
proved that every group embeds into a non-topologizable group
of the same cardinality ([21, Thm. 3]). This latter result of Trofimov
also shows how strongly non-hereditary the property of non-topolog-
izability is.

Markov himself obtained a criterion of non-topologizability for
countable groups with a strong algebraic geometric flavour (The-
orem 2 below), whose most elegant proof was given by Zelenyuk
and Protasov, more than half a century later ([12] and [15, 3.2.4]).
Given a monomial

f(x) = gor™ goxt2gs . .. gp12Fn g,

in a single variable z, with ¢g; € G and k; € Z, the set
V() ={9€G|flg) =e}

is closed in any Hausdorff group topology on G, because multipli-
cation must be continuous. Thus, if G\{e} can be represented as
V(fi)U...UV(fn), where each f; is a monomial, then {e} is open
in any Hausdorff group topology on G, and therefore G is non-
topologizable. In this case, one says that e is algebraically isolated
in G. The reverse implication also holds if G is countable.

Theorem 2. ([12], [15, 3.2.4]) A countable group G is non-topolog-
1zable if and only if e is algebraically isolated in G.

Recently, a generalization of Theorem 2 for products of count-
able groups was obtained by Dikranjan and Shakhmatov, and by
Sipachéva (]2, 5.8] and [17]). Shelah’s solution, on the other hand,
is uncountable and simple. Thus, his result can be rephrased as
follows:

Theorem 3. ([16]) Under the Continuum Hypothesis, there is
a group G such that G/N is non-topologizable for every N <1 G.

We say that G is hereditarily non-topologizable if H/N is non-
topologizable for every subgroup H < G and every normal sub-
group N <1 H. Motivated by Shelah’s result, we pose the following
problem, and show that it is intimately related to the decade-old
problem of c-compactness of topological groups, outlined below.
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Problem. Is there an infinite hereditarily non-topologizable group?

By the well-known Kuratowski-Mréwka Theorem, a (Hausdorff)
topological space X is compact if and only if for every (Hausdorff)
topological space Y, the projection py: X x Y — Y is closed. In-
spired by this theorem, Dikranjan and Uspenskij called a Hausdorff
topological group G categorically compact (or briefly, c-compact) if
for every Hausdorff group H, the image of every closed subgroup
of G x H under the projection mg: G x H — H is closed in H
([3, 1.1]); they asked whether every c-compact topological group
is compact. This question has been an open problem for more
than ten years. The most extensive study of c-compact topologi-
cal groups was done by Dikranjan and Uspenskij in [3], which was
a source of inspiration for part of the author’s PhD dissertation, as
well as his subsequent work ([9], [11], and [10]).

A Hausdorff topological group G is minimal if there is no coarser
Hausdorff group topology on G ([18] and [4]). So, a discrete group
G is non-topologizable if and only if it is minimal. One says that
a Hausdorff topological group G is totally minimal if every quotient
of G by a closed normal subgroup is minimal ([1]), or equivalently,
if every continuous surjective homomorphism f : G — H is open.
The following two results of Dikranjan and Uspenskij provide a link
between c-compactness and total minimality.

Theorem 4. ([3, 3.6]) Every closed separable subgroup of a c-com-
pact group is totally minimal.

Theorem 5. ([3, 5.5]) A countable discrete group G is c-compact
if and only if every subgroup of G is totally minimal.

A discrete group G is hereditarily non-topologizable if and only
if the discrete topology is totally minimal on every subgroup of G.
Thus, Theorem 5 yields:

Corollary 6. A countable discrete group is c-compact if and only
if it is hereditarily non-topologizable. O

Recall that a topological group G has small invariant neighbor-
hoods (or briefly, G is SIN), if every neighborhood U of e € G con-
tains an invariant neighborhood V of e, that is, a neighborhood
V such that ¢g7'Vg = V for all g€ G.Equivalently, G is SIN if its
left and right uniformities coincide. In a former paper, the author
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showed that the problem of c-compactness for locally compact SIN
groups can be reduced to the countable discrete case ([10, 4.5]).
Therefore, the Problem is equivalent to a special case of the prob-
lem of c-compactness.

Theorem 7. The following statements are equivalent:

(i) every locally compact c-compact group admitting small invari-
ant neighborhoods is compact;

(ii) every countable hereditarily non-topologizable group is finite.

O

We conclude with an algebraic consequence of hereditary non-
topologizability. We denote by H®*) the k-th derived group of
a group H, that is, HV = [H, H], and H®) = [H(#—-1) gE-D],

Theorem 8. Let G be a hereditarily non-topologizable group. Then:
(a) G has finite index in G for every k € N;

(b) G has a smallest subgroup N of finite index, and N = [N, N|;
(¢) there is n € N such that G = GO+

(d) if G is soluble, then G is finite;

(e) G is a torsion group.

In light of Corollary 6, Dikranjan and Uspenskij’s results imply
Theorem 8 (cf. [3, 3.7-3.12]). Nevertheless, for the sake of complete-
ness, we provide here a direct and elementary proof that does not
rely on the Prodanov-Stoyanov theorem ([14]).

Proof. (a) Since G is hereditarily non-topologizable, the only
Hausdorff group topology on its maximal abelian quotient
A = G/[G,G] is the discrete one. Kertész and Szele showed that
every infinite abelian group admits a non-discrete metrizable group
topology ([7] and [5, 1.7.5]). Therefore, A is finite. Hence, the state-
ment follows by an inductive reiteration of this argument for the
hereditarily non-topologizable groups G®*).

(b) Since every subgroup of G of finite index contains a nor-
mal subgroup of G of finite index (namely, the intersection of the
conjugates of the given subgroup), it suffices to show that G has
a smallest normal subgroup of finite index. To that end, let {N,}
be the collection of normal subgroups of finite index in G, and
set N =[] N,. The discrete topology is the only Hausdorff group
topology on G/N, because G is hereditarily non-topologizable.
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On the other hand, G/N embeds into the product P = [[ G/N,,
which admits a compact Hausdorff group topology (as each quo-
tient G/N,, is finite). So, the image of G/N in P can be discrete
only if it is finite, because every discrete subgroup of a topological
group is closed. Thus, N has finite index in G. Since G is hered-
itarily non-topologizable, so is its subgroup N. Therefore, by (a),
[N, N] has finite index in N, and consequently in G. Hence, one has
N C [N, N], by the minimality of N.

(c) Let N be the smallest normal subgroup of finite index of
G provided by (b). By (a), G®) has finite index in G for every
k € N, and thus N € G®). Since N has finite index in G, there are
only finitely many subgroups of G that contain N. Therefore, the
decreasing sequence of subgroups

NC---<aG® g...90W aG® =g

must stabilize after finitely many steps.

(d) Let N be the smallest normal subgroup of finite index of G
provided by (b). As we have seen in (c), N € G¥) for every k € N.
Thus, if G¥ = {e} for some d € N, then N is trivial. Therefore,
G is finite, because N has finite index in G.

(e) Let a € G. The subgroup H = (a) generated by a is hered-
itarily non-topologizable and abelian. Thus, by (d), H is finite.
Therefore, every element of GG has finite order. O

It follows from Theorem 8(e) that neither the example of Shelah
nor the example of Klyachko and Trofimov are hereditarily non-
topologizable, because they are not torsion groups ([16] and [§]).
We do not know whether Ol’'shanskii’s example is hereditarily non-
topologizable ([13]).
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