

http://topology.auburn.edu/tp/

Remarks on the Generic Existence of Ultrafilters on ω

by

Andres Millán

Electronically published on February 12, 2009

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on February 12, 2009

REMARKS ON THE GENERIC EXISTENCE OF ULTRAFILTERS ON ω

ANDRES MILLÁN

ABSTRACT. The purpose of this note is to contrast the generic existence of certain kinds of ultrafilters on ω with the existence of 2^c-many of them. First, we prove that it is consistent with ZFC that there are 2^c-many Q-points but Q-points do not exist generically. This answers in the negative a question by R. Michael Canjar. Then we define the strong generic existence of a class of ultrafilters and show that the strong generic existence of selective ultrafilters is equivalent to the their generic existence. However, we prove a result that implies that for several classes of ultrafilters, including P-points and nowhere dense ultrafilters, the strong generic existence of P-points is not equivalent to their generic existence.

1. Preliminaries

We use standard set theoretic notation. We say that $\mathcal{A} \subseteq [\omega]^{\omega}$ has the *strong finite intersection property* (SFIP) provided that the intersection of any finite subfamily is infinite. The filter generated by \mathcal{A} is denoted $\langle \mathcal{A} \rangle$. The letter \mathcal{F} will always denote a filter on ω containing the cofinite filter. A *basis* for \mathcal{F} is a family $\mathcal{B} \subseteq \mathcal{F}$ such that for every $F \in \mathcal{F}$ there exists a $B \in \mathcal{B}$ such that $B \subseteq F$. Given any filter \mathcal{F} let $\chi(\mathcal{F})$ be the minimum cardinality of a basis of \mathcal{F} . This $\chi(\mathcal{F})$ is called the *character of* \mathcal{F} . We say that \mathcal{F}

²⁰⁰⁰ Mathematics Subject Classification. Primary 03E05; Secondary 03E65, 04A20, 54A25.

Key words and phrases. dominating number and covering number for the meager ideal, generic existence, *P*-points, *Q*-points, selective ultrafilters.

^{©2009} Topology Proceedings.

is κ -generated provided that $\chi(\mathcal{F}) = \kappa$ and \mathcal{F} is $< \kappa$ -generated provided that $\chi(\mathcal{F}) < \kappa$. The letters \mathcal{U} and \mathcal{V} will always denote nonprincipal ultrafilters on ω . The cardinal \mathfrak{u} is defined as

 $\mathfrak{u} = \min\{|\mathcal{B}|: \mathcal{B} \text{ is basis of an ultrafilter on } \omega\}.$

Two filters \mathcal{F}_0 and \mathcal{F}_1 are *orthogonal* provided that there exists an $X \in [\omega]^{\omega}$ such that $X \in \mathcal{F}_0$ and $\omega \setminus X \in \mathcal{F}_1$. This is denoted $\mathcal{F}_0 \perp \mathcal{F}_1$. An ultrafilter \mathcal{U} is a *Q*-point provided that for every finite-to-one $f: \omega \to \omega$ there exists a $U \in \mathcal{U}$ such that $f \upharpoonright U$ is one-to-one. On the other hand, \mathcal{U} is *rapid* provided that for every $f: \omega \to \omega$ there is a $U \in \mathcal{U}$ such that $|U \cap f(n)| \leq n$ for every $n < \omega$. Every Q-point is rapid but not every rapid ultrafilter is a Q-point. An ultrafilter \mathcal{U} is a P-point provided that for every partition \mathcal{P} of ω either $\mathcal{P} \cap \mathcal{U} \neq \emptyset$ or there exists a $U \in \mathcal{U}$ such that $|U \cap P| < \omega$ for every $P \in \mathcal{P}$. We will call such a $U \in \mathcal{U}$ a partial pseudo-selector of \mathcal{P} . If in this definition we require instead that there exists a $U \in \mathcal{U}$ such that $|U \cap P| \leq 1$ for every $P \in \mathcal{P}$, we obtain the definition of a *selective* or *Ramsey ultrafilter*, and we will call such a $U \in \mathcal{U}$ a partial selector of \mathcal{P} . It is well known that an ultrafilter is selective if and only if it is both a P-point and a Q-point. An ultrafilter which is both a P-point and a rapid ultrafilter is called *semiselective*. If $f, g \in \omega^{\omega}$, we declare $f \leq^* g$ when $|\{n < \omega : f(n) > g(n)\}| < \omega$. A family $\mathcal{G} \subseteq \omega^{\omega}$ is dominating provided that for every $f \in \omega^{\omega}$ there is a $g \in \mathcal{G}$ such that $f \leq^* g$, and it is *unbounded* provided that there is no single $f \in \omega^{\omega}$ such that $g \leq^* f$ for every $g \in \mathcal{G}$. The cardinals $\mathfrak{d}, \mathfrak{b}, \operatorname{cov}(\mathcal{M})$, and $\mathsf{non}(\mathcal{N})$ denote the minimum cardinality of a dominating family, an unbounded family, a family of meager sets whose union covers \mathbb{R} , and a non-measure zero subset of \mathbb{R} , respectively. These cardinals are related as shown in Figure 1, where $\kappa \to \lambda$ means $\kappa < \lambda$.

FIGURE 1. A fragment of Cichon's diagram.

2. Generic and strong generic existence of ultrafilters

Definition 2.1. Let \mathscr{C} be a class of ultrafilters on ω and let κ be an uncountable cardinal. We abbreviate by $GE(\mathscr{C}, \kappa)$ the statement "every $< \kappa$ -generated filter can be extended to an ultrafilter in \mathscr{C} ." Here, GE stands for "generic existence."

In what follows, we will denote by P, Q, R, S, and SS the classes of P-points, Q-points, rapid, selective, and semi-selective ultrafilters, respectively.

The next three propositions characterize the generic existence of these ultrafilters in terms of $cov(\mathcal{M})$ and \mathfrak{d} .

Proposition 2.2 (Ketonen [13]).

$$GE(P, \mathfrak{c}) \Leftrightarrow \mathfrak{d} = \mathfrak{c}.$$

Proposition 2.3 (Canjar [12]).

 $GE(Q, \mathfrak{d}) \Leftrightarrow \operatorname{cov}(\mathcal{M}) = \mathfrak{d} \Leftrightarrow GE(R, \mathfrak{d}).$

Proposition 2.4 (Canjar [12]; Bartoszynski and Judah [10]).

 $GE(S, \mathfrak{c}) \Leftrightarrow \operatorname{cov}(\mathcal{M}) = \mathfrak{c} \Leftrightarrow GE(SS, \mathfrak{c}).$

In [12, p. 240], R. Michael Canjar asked, Assuming that \mathfrak{c} is regular, does the existence of 2^c-many selective ultrafilters imply $GE(S,\mathfrak{c})$? We answered this negatively in [17] by constructing a model of ZFC where $\mathfrak{c} = \omega_2$, and there are 2^c-many selective ultrafilters but $\operatorname{cov}(\mathcal{M}) < \mathfrak{c}$. The same question for \mathfrak{c} singular is an unpublished result by James E. Baumgartner who noticed that in the Bell-Kunen model described in [6], $\mathfrak{c} = \omega_{\omega_1}$, $\operatorname{cov}(\mathcal{M}) = \omega_1$, and there are 2^c-many selective ultrafilters on ω .

Definition 2.5. Let M be a model of ZFC. A forcing notion \mathbb{P} is ω^{ω} -bounding provided that for every \mathbb{P} -generic filter G over M and for every $f \in \omega^{\omega} \cap M[G]$, there exists a $g \in \omega^{\omega} \cap M$ such that $\forall n < \omega f(n) < g(n)$.

Proposition 2.6 (Millán [17]). There is a model N of ZFC such that

 $N \models "\mathfrak{c} = \omega_2 + |S| = 2^{\mathfrak{c}} + \neg GE(S, \mathfrak{c})."$

Proof: Let M be such that $M \models "\mathsf{ZFC} + \mathsf{CH} + 2^{\omega_1} = 2^{\omega_2} = \omega_3$." If $\mathbb{P} \in M$ is the partial order to add ω_2 -many Sacks reals iteratively with countable supports and G is \mathbb{P} -generic over M, then

$$M[G] \models "\mathsf{ZFC} + \mathfrak{c} = \omega_2 + 2^{\omega_1} = 2^{\omega_2} = \omega_3."$$

Now, CH in M implies that $\mathfrak{d}^M = \omega_1^M$. Since \mathbb{P} is ω^{ω} -bounding and proper, we have that $\omega_1^{M[G]} = \omega_1^M = \mathfrak{d}^M = \mathfrak{d}^{M[G]}$. In particular, $M[G] \models \text{``cov}(\mathcal{M}) < \mathfrak{c}$." By Proposition 2.4, $M[G] \models \text{``}\neg GE(S, \mathfrak{c})$." To see that $M[G] \models \text{``}|S| = 2^{\mathfrak{c}}$," use CH to construct in M, 2^{ω_1} many selective ultrafilters. Then invoke a theorem by Baumgartner and Richard Laver [4, Theorem 4.5] to extend these to 2^{ω_1} -many selective ultrafilters in M[G]. Therefore,

$$M[G] \models$$
 " \mathfrak{c} is regular + $|S| = 2^{\mathfrak{c}} + \neg GE(S, \mathfrak{c})$."

Hence, N = M[G] works.

Canjar also asked [12], Does the existence of $2^{\mathfrak{d}}$ -many Q-points imply $GE(Q, \mathfrak{d})$?

We will answer this question negatively by constructing a model of " $\mathsf{ZFC}+|Q| = 2^{\mathfrak{c}} + \neg GE(Q, \mathfrak{d})$."

Definition 2.7. Let $f: \omega \to \omega$ be any function. We say that $U \subseteq \omega$ is *f*-rare if f(m) < n for every $m, n \in U$ with m < n.

Definition 2.8. A family $\mathcal{U} \subseteq [\omega]^{\omega}$ is *rare* if for every $f : \omega \to \omega$ there exists a $U_f \in \mathcal{U}$ which is *f*-rare.

Proposition 2.9 (Mathias [16]; Taylor, unpublished. See also Blass [8]). An ultrafilter \mathcal{U} on ω is a *Q*-point if and only if \mathcal{U} is a rare family.

Let \mathcal{U} and \mathcal{V} be two families of subsets of ω and let $\Psi(\mathcal{U}, \mathcal{V})$ be an abbreviation of the statement, " $\mathcal{U} \neq \mathcal{V}$ and both \mathcal{U} and \mathcal{V} are Q-points."

Lemma 2.10. Let M be a transitive model of ZFC, let $\mathcal{U}, \mathcal{V} \in M$ such that $M \models ``\Psi(\mathcal{U}, \mathcal{V}), `` and let <math>\mathbb{P} \in M$ be an ω^{ω} -bounding forcing notion. Then, for any \mathbb{P} -generic filter G over M,

 $M[G] \models "\mathsf{ZFC} + \exists \, \bar{\mathcal{U}} \exists \, \bar{\mathcal{V}} \, (\mathcal{U} \subseteq \bar{\mathcal{U}} \land \mathcal{V} \subseteq \bar{\mathcal{V}} \land \Psi(\bar{\mathcal{U}}, \bar{\mathcal{V}}))."$

Proof: Let \mathcal{U} be a Q-point in M, let G be a \mathbb{P} -generic filter over M, and let $f \in \omega^{\omega} \cap M[G]$. Then there exists a $g \in \omega^{\omega} \cap M$ such that f(n) < g(n) for every $n < \omega$. Since $M \models \mathcal{U}$ is a Q-point,"

we can find a $U_g \in \mathcal{U}$ which is g-rare. Since f is dominated by g, we conclude that U_g is also f-rare. Therefore, $M[G] \models "\mathcal{U}$ is rare." If $M \models "\mathcal{U} \neq \mathcal{V}$," then there exists a $U \in (\mathcal{U} \setminus \mathcal{V}) \cap M \subseteq (\mathcal{U} \setminus \mathcal{V})$ $\cap M[G]$. This implies that $U \in \mathcal{U}$ and $\omega \setminus U \in \mathcal{V}$. If $\overline{\mathcal{U}}$ and $\overline{\mathcal{V}}$ are ultrafilters in M[G], extending \mathcal{U} and \mathcal{V} , respectively, then $\overline{\mathcal{U}}$ and $\overline{\mathcal{V}}$ are distinct Q-points. Hence, $M[G] \models "\Psi(\overline{\mathcal{U}}, \overline{\mathcal{V}})$."

Corollary 2.11. If an ω^{ω} -bounding forcing notion preserves *P*-points, then it preserves selective ultrafilters.

Theorem 2.12. There are models N_i of ZFC for i = 0, 1 such that

(a) $N_0 \models$ "ZFC + $\mathfrak{c} = \omega_2 + |Q| = 2^{\mathfrak{c}} + \neg GE(Q, \mathfrak{d})$," and (b) $N_1 \models$ "ZFC + $\mathfrak{c} = \omega_{\omega_1} + |Q| = 2^{\mathfrak{c}} + \neg GE(Q, \mathfrak{d})$."

Proof: Suppose that $\kappa \in \{\omega_2, \omega_{\omega_1}\}$. If $M \models "\mathsf{ZFC} + \mathsf{GCH},"$ let $\mathbb{P} = \mathbf{C}(\kappa) \in M$ be the notion of forcing for adding κ -many Cohen reals and let G be a \mathbb{P} -generic filter over M; then we have that $M[G] \models "\kappa = \mathfrak{c} = \operatorname{cov}(\mathcal{M}) = \mathfrak{d}$." By Proposition 3.2, it follows that $M[G] \models$ " $\mathfrak{c} = \kappa + |Q| = 2^{\mathfrak{c}}$." Let $\mathbb{Q} = \mathbf{B}(\kappa) \in M[G]$ be the measure algebra for adding κ -many random reals. Let H be a Q-generic filter over M[G]. Then \mathbb{Q} is ω^{ω} -bounding and $M[G][H] \models "\mathfrak{c} = \kappa = \mathfrak{d}$." By Lemma 2.10, we can extend each of the Q-points existing in M[G] to at least one Q-point in M[G][H] obtaining 2^c-many Qpoints altogether. Hence, $M[G][H] \models "|Q| = 2^{\mathfrak{c}}$." Let $S \in M[G][H]$ be the set formed by the first ω_1 -many random reals added. Since S is a Sierpinski set in M[G][H], it is non-measurable, so $M[G][H] \models$ "non(\mathcal{N}) = ω_1 ." On the other hand, $cov(\mathcal{M}) \leq non(\mathcal{N})$; hence, $M[G][H] \models \text{``cov}(\mathcal{M}) < \mathfrak{d}$." By Proposition 2.3, $M[G][H] \models \text{``}|Q| =$ $2^{\mathfrak{c}} \wedge \neg GE(Q, \mathfrak{d})$." Therefore, models $N_0 = M[G][H]$, when $\kappa = \omega_2$, and $N_1 = M[G][H]$, when $\kappa = \omega_{\omega_1}$, satisfy the conclusion of the theorem.

3. Generic versus strong generic existence of ultrafilters on ω

In this section we show that for some classes of ultrafilters \mathscr{C} , $GE(\mathscr{C}, \mathfrak{c})$ fails to be a good indicator of the abundance of ultrafilters from \mathscr{C} . As an alternative, we propose $SGE(\mathscr{C}, \mathfrak{c})$ instead.

Definition 3.1. $SGE_{\lambda}(\mathscr{C}, \kappa)$ abbreviates the statement, "every $< \kappa$ -generated filter can be extended to 2^{λ} -many ultrafilters in \mathscr{C} ," where SGE stands for "strong generic existence." When $\lambda = \mathfrak{c}$, we

drop the subindex and write $SGE(\mathscr{C}, \kappa)$. We will use $SGE(\mathscr{C}, \mathfrak{c})$ to abbreviate "the strong generic existence of ultrafilters in \mathscr{C} ."

Proposition 3.2 (Millán [17]).

 $SGE(Q, \mathfrak{d}) \Leftrightarrow \mathsf{cov}(\mathcal{M}) = \mathfrak{d}.$

Actually, we proved in [17] that the identity $cov(\mathcal{M}) = \mathfrak{d}$ implies that every $< \mathfrak{d}$ -generated filter can be extended to 2^c-many c-generated Q-points. The other direction follows from Proposition 2.3 and Lemma 3.5(b) below.

As an immediate consequence of Proposition 3.2, we have the following dichotomy result.

Corollary 3.3. Suppose that $\mathfrak{c} \leq \operatorname{cov}(\mathcal{M})^+$, then either there is a \mathfrak{c} -generated Q-point or there are no Q-points at all.

Proof: If $\mathfrak{c} \leq \operatorname{cov}(\mathcal{M})^+$, then $\operatorname{cov}(\mathcal{M}) \leq \mathfrak{d} \leq \mathfrak{c} \leq \operatorname{cov}(\mathcal{M})^+$. Suppose that $\operatorname{cov}(\mathcal{M}) = \mathfrak{d}$. Then we are done by Proposition 3.2 and the remark below it. If $\operatorname{cov}(\mathcal{M}) < \mathfrak{d}$, then $\mathfrak{d} = \mathfrak{c}$. Since, by Proposition 2.9, every *Q*-point has character $\geq \mathfrak{d}$ and either there is a *Q*-point (in which case it has character \mathfrak{c}) or there are no *Q*-points at all, this completes the argument.

Notice that propositions 2.3 and 3.2 can be combined to obtain the following.

Proposition 3.4. $SGE(Q, \mathfrak{d}) \Leftrightarrow GE(Q, \mathfrak{d})$.

Lemma 3.5. Let \mathscr{C} be a class of ultrafilters and let κ , λ , and μ be cardinals. Then

- (a) $SGE_0(\mathscr{C},\kappa) \Leftrightarrow GE(\mathscr{C},\kappa),$
- (b) $\lambda \leq \mu \Rightarrow SGE_{\mu}(\mathscr{C}, \kappa) \Rightarrow SGE_{\lambda}(\mathscr{C}, \kappa), and$
- (c) $SGE_1(\mathscr{C},\kappa) \Leftrightarrow (GE(\mathscr{C},\kappa) \wedge \kappa \leq \mathfrak{u}).$

Proof: Parts (a) and (b) are obvious. For part (c), one implication follows from parts (a) and (b) and the fact that $\mathfrak{u} < \kappa \Rightarrow \neg SGE_1(\mathscr{C},\kappa)$. For the other implication, let \mathcal{F} be a filter with $\chi(\mathcal{F}) < \kappa$. Since $\kappa \leq \mathfrak{u}$, \mathcal{F} cannot be an ultrafilter and there exists an $X \in [\omega]^{\omega}$ such that $\mathcal{F} \cup \{X\}$ and $\mathcal{F} \cup \{\omega \setminus X\}$ both have the SFIP. Let \mathcal{F}_0 and \mathcal{F}_1 be the filters generated by $\mathcal{F} \cup \{X\}$ and $\mathcal{F} \cup \{\omega \setminus X\}$, respectively. Then $\chi(\mathcal{F}_0) = \chi(\mathcal{F}_1) = \chi(\mathcal{F}) < \kappa$. So we can use $GE(\mathscr{C},\kappa)$ to extend \mathcal{F}_0 and \mathcal{F}_1 to ultrafilters \mathcal{U}_0 and \mathcal{U}_1 in \mathscr{C} . By our choice of X, these ultrafilters are distinct. \Box

Definition 3.6. We call a class \mathscr{C} of ultrafilters on ω to be κ inductive provided that there exist formulas $\langle \phi_{\xi}(Y) : \xi < \kappa \rangle$ such that for every \mathcal{U}

$$\mathcal{U} \in \mathscr{C} \Leftrightarrow \forall \xi < \kappa \; \exists U \in \mathcal{U} \; \phi_{\xi}(U).$$

Lemma 3.7. The classes P, S, and Q are \mathfrak{c} -inductive.

Proof: To see that P is \mathfrak{c} -inductive, let $\langle \mathcal{P}_{\xi} \colon \xi < \mathfrak{c} \rangle$ be a listing of the partitions of ω into infinitely many pieces and consider for every $\xi < \mathfrak{c}$ the formula

$$\phi_{\xi}(Y) \Leftrightarrow [(\exists \mathcal{G} \in [\mathcal{P}_{\xi}]^{<\omega})(Y \subseteq \bigcup \mathcal{G}) \lor (\forall P \in \mathcal{P}_{\xi})(|Y \cap P| < \omega)].$$

For S, replace $|Y \cap P| < \omega$ by $|Y \cap P| \leq 1$ in the formulas above. For Q, let $\langle \mathcal{P}_{\xi} : \xi < \mathfrak{c} \rangle$ be a listing of the partitions of ω into finite pieces and consider $\phi_{\xi}(Y) \Leftrightarrow (\forall P \in \mathcal{P}_{\xi})(|Y \cap P| \leq 1)$ for every $\xi < \mathfrak{c}.$

Lemma 3.8. The class Q is \mathfrak{d} -inductive.

Proof: Let $\langle f_{\xi} \in \omega^{\omega} : \xi < \mathfrak{d} \rangle$ be a dominating family and consider for each $\xi < \mathfrak{d}$ the formula

$$\phi_{\xi}(Y) \Leftrightarrow (\forall m < \omega)(\forall n < \omega) \ ((m, n \in Y \land m < n) \Rightarrow f_{\xi}(m) < n).$$

Then the \mathfrak{d} -inductivity of Q follows from Proposition 2.9.

Theorem 3.9. If $\kappa \geq 1$ and \mathscr{C} is a κ -inductive class of ultrafilters, then

$$SGE_{\kappa}(\mathscr{C},\kappa) \Leftrightarrow (GE(\mathscr{C},\kappa) \wedge \kappa \leq \mathfrak{u}).$$

Proof: It is obvious that $SGE_{\kappa}(\mathscr{C},\kappa)$ implies both $GE(\mathscr{C},\kappa)$ and $\kappa \leq \mathfrak{u}$. So suppose that $G(\mathscr{C}, \kappa)$ and $\kappa \leq \mathfrak{u}$ hold and that \mathcal{F} is a $< \kappa$ generated filter. We will construct inductively a tree $\langle \mathcal{F}_s : s \in 2^{<\kappa} \rangle$ of filters satisfying the following requirements for every $\xi < \kappa$ and $s \in 2^{\xi}$.

- (1) $\mathcal{F}_{\emptyset} = \mathcal{F};$
- (2) $\mathcal{F}_{s|\gamma} \subseteq \mathcal{F}_s$ for every $\gamma < \xi$; (3) $\chi(\mathcal{F}_s) \leq \max\{\chi(\mathcal{F}), |\xi|\};$
- (4) $\mathcal{F}_{s^{\wedge}\langle 0 \rangle} \perp \mathcal{F}_{s^{\wedge}\langle 1 \rangle};$
- (5) $\mathcal{F}_s = \bigcup \{ \mathcal{F}_{s \mid \gamma} : \gamma < \xi \}$ if ξ is limit; and
- (6) there exists $X_{\xi}^i \in \mathcal{F}_{s^{\wedge}\langle i \rangle}$ such that $\phi_{\xi}(X_{\xi}^i)$ hold for i = 0, 1.

If this construction can be completed, then for every $g \in 2^{\kappa}$, let \mathcal{U}_g be an ultrafilter extending the filter $\mathcal{F}_g = \bigcup \{\mathcal{F}_g|_{\xi} \colon \xi < \kappa\}$. By conditions (1), (4), and (6), the ultrafilters \mathcal{U}_g extend \mathcal{F} , are pairwise distinct, and are all in \mathscr{C} . To see that this construction can be completed, we need only to check the inductive hypothesis for the successor ordinal case. Suppose that $s \in 2^{\xi}$ and that \mathcal{F}_s has been defined. We want to define $\mathcal{F}_{s^{\wedge}(0)}$ and $\mathcal{F}_{s^{\wedge}(1)}$. By the induction hypothesis, $\chi(\mathcal{F}_s) < \kappa \leq \mathfrak{u}$, so we can find a $Y \in [\omega]^{\omega}$ such that $\mathcal{F}_s \cup \{Y\}$ and $\mathcal{F}_s \cup \{\omega \setminus Y\}$ have both SFIP. Since $\mathcal{F}_0^* = \langle \mathcal{F}_s \cup \{Y\}\}$ and $\mathcal{F}_1^* = \langle \mathcal{F}_s \cup \{\omega \setminus Y\}$, we have that $\chi(\mathcal{F}_0^*) = \chi(\mathcal{F}_1^*) = \chi(\mathcal{F}_s) < \kappa$. Also, since $GE(\mathscr{C}, \kappa)$ holds, there exist $\mathcal{U}_i \in \mathscr{C}$ extending \mathcal{F}_i^* for i = 0, 1. Thus, it is possible to pick $X_{\xi}^i \in \mathcal{U}_i$ such that $\phi_{\xi}(X_{\xi}^i)$ for i = 0, 1. Put $\mathcal{F}_{s^{\wedge}(0)} = \langle \mathcal{F}_s \cup \{Y, X_{\xi}^0\} \rangle$ and $\mathcal{F}_{s^{\wedge}(1)} = \langle \mathcal{F}_s \cup \{\omega \setminus Y, X_{\xi}^1\} \rangle$. Then these filters satisfy the requirements.

Corollary 3.10. If \mathscr{C} is \mathfrak{c} -inductive like P, Q, or S, then

 $SGE(\mathscr{C}, \mathfrak{c}) \Leftrightarrow SGE_1(\mathscr{C}, \mathfrak{c}).$

Proof: This follows from Lemma 3.5(c), Lemma 3.7, and Theorem 3.9. \Box

Corollary 3.11. $SGE(S, \mathfrak{c}) \Leftrightarrow GE(S, \mathfrak{c})$.

Proof: This follows from Theorem 3.9 and Proposition 2.4. \Box

Corollary 3.12. $SGE(P, \mathfrak{c}) \Leftrightarrow min\{\mathfrak{u}, \mathfrak{d}\} = \mathfrak{c}.$

Proof: This follows from Theorem 3.9 and Proposition 2.2. \Box

By a theorem of Jason Aubrey [1], $\min{\{\mathfrak{u}, \mathfrak{d}\}} = \min{\{\mathfrak{r}, \mathfrak{d}\}}$. Here, \mathfrak{r} is the *refinement* or *reaping number*. (See [7].) Therefore, we can rephrase Corollary 3.12 as

Corollary 3.13. $SGE(P, \mathfrak{c}) \Leftrightarrow min\{\mathfrak{r}, \mathfrak{d}\} = \mathfrak{c}.$

Theorem 3.14. There is a model N of ZFC such that

$$N \models "GE(P, \mathfrak{c}) \land \neg SGE(P, \mathfrak{c})."$$

Proof: Let M be such that $M \models "\mathsf{ZFC} + \mathsf{GCH}$," and consider in M a countable support forcing iteration $\langle \langle \mathbb{P}_{\alpha}, \dot{Q}_{\alpha} \rangle \colon \alpha < \omega_2 \rangle$ such that

 $\forall \alpha < \omega_2 \quad \Vdash_{\alpha} ``\dot{Q}_{\alpha} \simeq rational perfect set forcing"$

(see [19]; [10, p. 360]; and [9]), and let G be a \mathbb{P}_{ω_2} -generic filter over M. Then P-points in M generate P-points in M[G] and

 $M[G] \models$ "Every P-point is ω_1 -generated $+ \mathfrak{d} = \mathfrak{c} = \omega_2 = 2^{\omega_1}$."

(See [9].) Therefore,

$$M[G] \models "GE(P, \mathfrak{c}) \land |P| = \mathfrak{c}."$$

Hence, model N = M[G] works.

Corollary 3.15. Con(ZFC) \Longrightarrow Con(ZFC+GE(P, c)+ \neg SGE(P, c)).

4. Other classes of ultrafilters

Theorem 3.9 can be applied to get a similar characterization for $SGE(\mathscr{C}, \mathfrak{c})$ as in Corollary 3.13 for other classes of ultrafilters as well. These depend, of course, on the characterization of $GE(\mathscr{C}, \mathfrak{c})$ in terms of cardinal invariants.

Definition 4.1 (Baumgartner [3]). Let X be a non-empty set and let $\mathcal{I} \subseteq \mathcal{P}(X)$ be a set containing the singletons and closed under subsets. An ultrafilter \mathcal{U} on ω is an \mathcal{I} -ultrafilter provided that for every $f: \omega \to X$ there exists a $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}$.

If $X = 2^{\omega}$ and \mathcal{I} is the ideal of countable closed, nowhere-dense, measure-zero subsets of 2^{ω} , then \mathcal{I} -ultrafilters are called *countable* closed, nowhere-dense, and measure-zero ultrafilters, respectively. If $X = \omega^{\omega}$ and \mathcal{I} is the ideal of σ -compact subsets of ω^{ω} , then the \mathcal{I} -ultrafilters are called σ -compact ultrafilters. If $\alpha < \omega_1$, put $\mathcal{I}_{\alpha} = \{A \subseteq \omega_1 : \text{o.t}(A) \leq \alpha\}$ and $\mathcal{J}_{\alpha} = \{A \subseteq \omega_1 : \text{o.t}(A) < \alpha\}$. If $\mathcal{I} = \mathcal{I}_{\alpha}$ or $\mathcal{I} = \mathcal{J}_{\alpha}$ for some $\alpha < \omega_1$, then \mathcal{I} -ultrafilters are called ordinal ultrafilters. Let O, CC, ND, MZ, and K_{σ} denote the classes of ordinal, countable closed, nowhere-dense, measure-zero, and σ -compact ultrafilters, respectively.

Lemma 4.2. If $\mathscr{C} \in \{O, CC, ND, MZ, K_{\sigma}\}$, then \mathscr{C} is \mathfrak{c} -inductive.

Proof: Let $\langle f_{\xi} \colon \xi < \mathfrak{c} \rangle$ be a listing of X^{ω} and consider the family of formulas $\langle \phi_{\xi}(Y) \colon \xi < \mathfrak{c} \rangle$ where $\phi_{\xi}(Y) \Leftrightarrow f_{\xi}[Y] \in \mathcal{I}$. \Box

We refer the reader to [5] and [11] for proofs of the following propositions.

Proposition 4.3 (Brendle [11]). If $\mathscr{C} \in \{O, CC\}$, then $GE(\mathscr{C}, \mathfrak{c}) \Leftrightarrow \mathfrak{d} = \mathfrak{c}.$ 35

Proposition 4.4 (Brendle [11]). $GE(ND, \mathfrak{c}) \Leftrightarrow cof(\mathcal{M}) = \mathfrak{c}$.

Proposition 4.5 (Brendle [11]). $GE(MZ, \mathfrak{c}) \Leftrightarrow \operatorname{cof}(\mathcal{E}, \mathcal{M}) = \mathfrak{c}$.

Proposition 4.6 (Barney [5]). $GE(K_{\sigma}, \mathfrak{c}) \Leftrightarrow \mathfrak{d} = \mathfrak{c}$.

Theorem 4.7. If $\mathscr{C} \in \{O, CC, K_{\sigma}\}$, then

- (a) $SGE(\mathscr{C}, \mathfrak{c}) \Leftrightarrow min\{\mathfrak{u}, \mathfrak{d}\} = \mathfrak{c};$
- (b) $SGE(ND, \mathfrak{c}) \Leftrightarrow min\{\mathfrak{u}, cof(\mathcal{M})\} = \mathfrak{c};$
- (c) $SGE(MZ, \mathfrak{c}) \Leftrightarrow min\{\mathfrak{u}, cof(\mathcal{E}, \mathcal{M})\} = \mathfrak{c}.$

Proof: Apply Theorem 3.9 and propositions 4.1 and 4.4 for (a), Proposition 4.2 for (b), and Proposition 4.3 for (c). \Box

Theorem 4.8. There is a model N of ZFC such that if $\mathscr{C} \in \{O, CC, ND, MZ, K_{\sigma}\}$, then

$$N \models "GE(\mathscr{C}, \mathfrak{c}) \land \neg SGE(\mathscr{C}, \mathfrak{c})."$$

Proof: The model from Theorem 3.14 works since it is known that in this model, $\mathfrak{d} = cof(\mathcal{M}) = cof(\mathcal{E}, \mathcal{M}) = \mathfrak{c}$.

References

- Jason Aubrey, Combinatorics for the dominating and unsplitting numbers, J. Symbolic Logic 69 (2004), no. 2, 482–498.
- [2] James E. Baumgartner, *Iterated forcing*, in Surveys in Set Theory. Ed. A. R. D. Mathias. London Mathematical Society Lecture Note Series, 87. Cambridge: Cambridge Univ. Press, 1983. 1–59
- [3] _____, Ultrafilters on ω, J. Symbolic Logic **60** (1995), no. 2, 624–639.
- [4] James E. Baumgartner and Richard Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), no. 3, 271–288.
- [5] Christopher Barney, Ultrafilters on the natural numbers, J. Symbolic Logic 68 (2003), no. 3, 764–784.
- [6] Murray Bell and Kenneth Kunen, On the PI character of ultrafilters, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), no. 6, 351–356.
- [7] Andreas Blass, Combinatorial cardinal characteristics of the continuum. To appear in Handbook of Set Theory. Available at http://www.math.lsa.umich.edu/~ablass/hbk.pdf.
- [8] _____, Near coherence of filters. II. Applications to operator ideals, the Stone-Čech remainder of a half-line, order ideals of sequences, and slenderness of groups, Trans. Amer. Math. Soc. 300 (1987), no. 2, 557–581.
- [9] Andreas Blass and Saharon Shelah, Near coherence of filters. III. A simplified consistency proof, Notre Dame J. Formal Logic 30 (1989), no. 4, 530–538.

- [10] Tomek Bartoszyński and Haim Judah, Set Theory. On the Structure of the Real Line. Wellesley, MA: A K Peters, Ltd., 1995.
- [11] Jörg Brendle, Between P-points and nowhere dense ultrafilters, Israel J. Math. 113 (1999), 205–230.
- [12] R. Michael Canjar, On the generic existence of special ultrafilters, Proc. Amer. Math. Soc. 110 (1990), no. 1, 233–241.
- [13] Jussi Ketonen, On the existence of P-points in the Stone-Čech compactification of integers, Fund. Math. 92 (1976), no. 2, 91–94.
- [14] Kenneth Kunen, Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, 102. Amsterdam-New York: North-Holland Publishing Co., 1980.
- [15] _____, Random and Cohen reals, in Handbook of Set-Theoretic Topology. Ed. Kenneth Kunen and Jerry E. Vaughan. Amsterdam: North-Holland, 1984. 887–911
- [16] A. R. D. Mathias, A remark on rare filters, in Infinite and Finite Sets: To Paul Erdös on his 60th birthday. Vol. III. Ed. A. Hajnal, R. Rado, and Vera T. Sós. Colloquia Mathematica Societatis János Bolyai, Vol. 10. Amsterdam: North-Holland, 1975. 1095–1097
- [17] Andres Millán, A note about special ultrafilters on ω , Topology Proc. **31** (2007), no. 1, 219–226.
- [18] Arnold W. Miller, There are no Q-points in Laver's model for the Borel conjecture, Proc. Amer. Math. Soc. 78 (1980), no. 1, 103–106.
- [19] _____, Rational perfect set forcing, in Axiomatic Set Theory. Ed. James
 E. Baumgartner, Donald A.Martin, and Saharon Shelah. Contemporary Mathematics, 31. Providence, RI: Amer. Math. Soc., 1984. 143–159
- [20] Michel Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), no. 1, 13–43.

DEPARTMENTO DE MATEMÁTICAS; UNIVERSIDAD METROPOLITANA, LA URBINA Norte; 1070-76810, CARACAS, VENEZUELA

E-mail address: amillan@unimet.edu.ve