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REMARKS ON THE GENERIC EXISTENCE
OF ULTRAFILTERS ON ω

ANDRES MILLÁN

Abstract. The purpose of this note is to contrast the generic
existence of certain kinds of ultrafilters on ω with the exis-
tence of 2c-many of them. First, we prove that it is consistent
with ZFC that there are 2c-many Q-points but Q-points do
not exist generically. This answers in the negative a ques-
tion by R. Michael Canjar. Then we define the strong generic
existence of a class of ultrafilters and show that the strong
generic existence of selective ultrafilters is equivalent to the
their generic existence. However, we prove a result that im-
plies that for several classes of ultrafilters, including P -points
and nowhere dense ultrafilters, the strong generic existence of
P -points is not equivalent to their generic existence.

1. Preliminaries

We use standard set theoretic notation. We say that A ⊆ [ω]ω

has the strong finite intersection property (SFIP) provided that the
intersection of any finite subfamily is infinite. The filter generated
by A is denoted 〈A〉. The letter F will always denote a filter on
ω containing the cofinite filter. A basis for F is a family B ⊆ F
such that for every F ∈ F there exists a B ∈ B such that B ⊆ F .
Given any filter F let χ(F) be the minimum cardinality of a basis
of F . This χ(F) is called the character of F . We say that F
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28 A. MILLÁN

is κ-generated provided that χ(F) = κ and F is < κ-generated
provided that χ(F) < κ. The letters U and V will always denote
nonprincipal ultrafilters on ω. The cardinal u is defined as

u = min{|B| : B is basis of an ultrafilter on ω}.
Two filters F0 and F1 are orthogonal provided that there exists an
X ∈ [ω]ω such that X ∈ F0 and ω \ X ∈ F1. This is denoted
F0 ⊥ F1. An ultrafilter U is a Q-point provided that for every
finite-to-one f : ω → ω there exists a U ∈ U such that f |̀U is
one-to-one. On the other hand, U is rapid provided that for every
f : ω → ω there is a U ∈ U such that |U ∩ f(n)| ≤ n for every
n < ω. Every Q-point is rapid but not every rapid ultrafilter is
a Q-point. An ultrafilter U is a P -point provided that for every
partition P of ω either P ∩ U 6= ∅ or there exists a U ∈ U such
that |U ∩ P | < ω for every P ∈ P. We will call such a U ∈ U a
partial pseudo-selector of P. If in this definition we require instead
that there exists a U ∈ U such that |U ∩ P | ≤ 1 for every P ∈ P,
we obtain the definition of a selective or Ramsey ultrafilter, and we
will call such a U ∈ U a partial selector of P. It is well known
that an ultrafilter is selective if and only if it is both a P -point
and a Q-point. An ultrafilter which is both a P -point and a rapid
ultrafilter is called semiselective. If f, g ∈ ωω, we declare f ≤∗ g
when |{n < ω : f(n) > g(n)}| < ω. A family G ⊆ ωω is dominating
provided that for every f ∈ ωω there is a g ∈ G such that f ≤∗ g,
and it is unbounded provided that there is no single f ∈ ωω such
that g ≤∗ f for every g ∈ G. The cardinals d, b, cov(M), and
non(N ) denote the minimum cardinality of a dominating family, an
unbounded family, a family of meager sets whose union covers R,
and a non-measure zero subset of R, respectively. These cardinals
are related as shown in Figure 1, where κ → λ means κ ≤ λ.
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Figure 1. A fragment of Cichon’s diagram.
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2. Generic and strong generic existence
of ultrafilters

Definition 2.1. Let C be a class of ultrafilters on ω and let κ be an
uncountable cardinal. We abbreviate by GE(C , κ) the statement
“every < κ-generated filter can be extended to an ultrafilter in C .”
Here, GE stands for “generic existence.”

In what follows, we will denote by P , Q, R, S, and SS the
classes of P -points, Q-points, rapid, selective, and semi-selective
ultrafilters, respectively.

The next three propositions characterize the generic existence of
these ultrafilters in terms of cov(M) and d.

Proposition 2.2 (Ketonen [13]).

GE(P, c) ⇔ d = c.

Proposition 2.3 (Canjar [12]).

GE(Q, d) ⇔ cov(M) = d ⇔ GE(R, d).

Proposition 2.4 (Canjar [12]; Bartoszynski and Judah [10]).

GE(S, c) ⇔ cov(M) = c ⇔ GE(SS, c).

In [12, p. 240], R. Michael Canjar asked, Assuming that c is
regular, does the existence of 2c-many selective ultrafilters imply
GE(S, c)? We answered this negatively in [17] by constructing a
model of ZFC where c = ω2, and there are 2c-many selective ul-
trafilters but cov(M) < c. The same question for c singular is an
unpublished result by James E. Baumgartner who noticed that in
the Bell-Kunen model described in [6], c = ωω1 , cov(M) = ω1, and
there are 2c-many selective ultrafilters on ω.

Definition 2.5. Let M be a model of ZFC. A forcing notion P is
ωω-bounding provided that for every P-generic filter G over M and
for every f ∈ ωω ∩ M [G], there exists a g ∈ ωω ∩ M such that
∀n < ω f(n) < g(n).

Proposition 2.6 (Millán [17]). There is a model N of ZFC such
that

N |= “c = ω2 + |S| = 2c + ¬GE(S, c).”
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Proof: Let M be such that M |= “ZFC + CH + 2ω1 = 2ω2 = ω3.”
If P ∈ M is the partial order to add ω2-many Sacks reals iteratively
with countable supports and G is P-generic over M , then

M [G] |= “ZFC + c = ω2 + 2ω1 = 2ω2 = ω3.”

Now, CH in M implies that dM = ωM
1 . Since P is ωω-bounding and

proper, we have that ω
M [G]
1 = ωM

1 = dM = dM [G]. In particular,
M [G] |= “cov(M) < c.” By Proposition 2.4, M [G] |= “¬GE(S, c).”
To see that M [G] |= “|S| = 2c, ” use CH to construct in M , 2ω1-
many selective ultrafilters. Then invoke a theorem by Baumgartner
and Richard Laver [4, Theorem 4.5] to extend these to 2ω1-many
selective ultrafilters in M [G]. Therefore,

M [G] |= “c is regular + |S| = 2c + ¬GE(S, c).”

Hence, N = M [G] works. ¤
Canjar also asked [12], Does the existence of 2d-many Q-points

imply GE(Q, d)?
We will answer this question negatively by constructing a model

of “ZFC+|Q| = 2c + ¬GE(Q, d).”

Definition 2.7. Let f : ω → ω be any function. We say that U ⊆ ω
is f-rare if f(m) < n for every m, n ∈ U with m < n.

Definition 2.8. A family U ⊆ [ω]ω is rare if for every f : ω → ω
there exists a Uf ∈ U which is f -rare.

Proposition 2.9 (Mathias [16]; Taylor, unpublished. See also
Blass [8]). An ultrafilter U on ω is a Q-point if and only if U is a
rare family.

Let U and V be two families of subsets of ω and let Ψ(U ,V) be
an abbreviation of the statement, “U 6= V and both U and V are
Q-points.”

Lemma 2.10. Let M be a transitive model of ZFC, let U ,V ∈ M
such that M |= “Ψ(U ,V), ” and let P ∈ M be an ωω-bounding
forcing notion. Then, for any P-generic filter G over M ,

M [G] |= “ZFC + ∃ Ū ∃ V̄ (U ⊆ Ū ∧ V ⊆ V̄ ∧ Ψ(Ū , V̄)).”

Proof: Let U be a Q-point in M , let G be a P-generic filter over
M , and let f ∈ ωω ∩M [G]. Then there exists a g ∈ ωω ∩M such
that f(n) < g(n) for every n < ω. Since M |= “U is a Q-point, ”
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we can find a Ug ∈ U which is g-rare. Since f is dominated by g,
we conclude that Ug is also f -rare. Therefore, M [G] |= “U is rare.”
If M |= “U 6= V, ” then there exists a U ∈ (U \ V) ∩M ⊆ (U \ V)
∩M [G]. This implies that U ∈ U and ω \ U ∈ V. If Ū and V̄ are
ultrafilters in M [G], extending U and V, respectively, then Ū and
V̄ are distinct Q-points. Hence, M [G] |= “Ψ(Ū , V̄).” ¤
Corollary 2.11. If an ωω-bounding forcing notion preserves P -
points, then it preserves selective ultrafilters.

Theorem 2.12. There are models Ni of ZFC for i = 0, 1 such that
(a) N0 |= “ZFC + c = ω2 + |Q| = 2c + ¬GE(Q, d), ” and
(b) N1 |= “ZFC + c = ωω1 + |Q| = 2c + ¬GE(Q, d).”

Proof: Suppose that κ ∈ {ω2, ωω1}. If M |= “ZFC + GCH, ” let
P = C(κ) ∈ M be the notion of forcing for adding κ-many Cohen
reals and let G be a P-generic filter over M ; then we have that
M [G] |= “κ = c = cov(M) = d.” By Proposition 3.2, it follows that
M [G] |= “c = κ + |Q| = 2c.” Let Q = B(κ) ∈ M [G] be the measure
algebra for adding κ-many random reals. Let H be aQ-generic filter
over M [G]. Then Q is ωω-bounding and M [G][H] |= “c = κ = d.”
By Lemma 2.10, we can extend each of the Q-points existing in
M [G] to at least one Q-point in M [G][H] obtaining 2c-many Q-
points altogether. Hence, M [G][H] |= “|Q| = 2c.” Let S ∈ M [G][H]
be the set formed by the first ω1-many random reals added. Since S
is a Sierpinski set in M [G][H], it is non-measurable, so M [G][H] |=
“non(N ) = ω1.” On the other hand, cov(M) ≤ non(N ); hence,
M [G][H] |= “cov(M) < d.” By Proposition 2.3, M [G][H] |= “|Q| =
2c ∧ ¬GE(Q, d).” Therefore, models N0 = M [G][H], when κ = ω2,
and N1 = M [G][H], when κ = ωω1 , satisfy the conclusion of the
theorem. ¤

3. generic versus strong generic existence
of ultrafilters on ω

In this section we show that for some classes of ultrafilters C ,
GE(C , c) fails to be a good indicator of the abundance of ultrafilters
from C . As an alternative, we propose SGE(C , c) instead.

Definition 3.1. SGEλ(C , κ) abbreviates the statement, “every <
κ-generated filter can be extended to 2λ-many ultrafilters in C ,”
where SGE stands for “strong generic existence.” When λ = c, we
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drop the subindex and write SGE(C , κ). We will use SGE(C , c)
to abbreviate “the strong generic existence of ultrafilters in C .”

Proposition 3.2 (Millán [17]).

SGE(Q, d) ⇔ cov(M) = d.

Actually, we proved in [17] that the identity cov(M) = d im-
plies that every < d-generated filter can be extended to 2c-many
c-generated Q-points. The other direction follows from Proposition
2.3 and Lemma 3.5(b) below.

As an immediate consequence of Proposition 3.2, we have the
following dichotomy result.

Corollary 3.3. Suppose that c ≤ cov(M)+, then either there is a
c-generated Q-point or there are no Q-points at all.

Proof: If c ≤ cov(M)+, then cov(M) ≤ d ≤ c ≤ cov(M)+.
Suppose that cov(M) = d. Then we are done by Proposition 3.2
and the remark below it. If cov(M) < d, then d = c. Since, by
Proposition 2.9, every Q-point has character ≥ d and either there is
a Q-point (in which case it has character c) or there are no Q-points
at all, this completes the argument. ¤

Notice that propositions 2.3 and 3.2 can be combined to obtain
the following.

Proposition 3.4. SGE(Q, d) ⇔ GE(Q, d).

Lemma 3.5. Let C be a class of ultrafilters and let κ, λ, and µ be
cardinals. Then

(a) SGE0(C , κ) ⇔ GE(C , κ),
(b) λ ≤ µ ⇒ SGEµ(C , κ) ⇒ SGEλ(C , κ), and
(c) SGE1(C , κ) ⇔ (GE(C , κ) ∧ κ ≤ u).

Proof: Parts (a) and (b) are obvious. For part (c), one impli-
cation follows from parts (a) and (b) and the fact that u < κ ⇒
¬SGE1(C , κ). For the other implication, let F be a filter with
χ(F) < κ. Since κ ≤ u, F cannot be an ultrafilter and there ex-
ists an X ∈ [ω]ω such that F ∪ {X} and F ∪ {ω \ X} both have
the SFIP. Let F0 and F1 be the filters generated by F ∪ {X} and
F ∪ {ω \ X}, respectively. Then χ(F0) = χ(F1) = χ(F) < κ. So
we can use GE(C , κ) to extend F0 and F1 to ultrafilters U0 and U1

in C . By our choice of X, these ultrafilters are distinct. ¤
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Definition 3.6. We call a class C of ultrafilters on ω to be κ-
inductive provided that there exist formulas 〈φξ(Y ) : ξ < κ〉 such
that for every U

U ∈ C ⇔ ∀ξ < κ ∃U ∈ U φξ(U).

Lemma 3.7. The classes P , S, and Q are c-inductive.

Proof: To see that P is c-inductive, let 〈Pξ : ξ < c〉 be a listing
of the partitions of ω into infinitely many pieces and consider for
every ξ < c the formula

φξ(Y ) ⇔ [(∃G ∈ [Pξ]<ω)(Y ⊆
⋃
G) ∨ (∀P ∈ Pξ)(|Y ∩ P | < ω)].

For S, replace |Y ∩ P | < ω by |Y ∩ P | ≤ 1 in the formulas above.
For Q, let 〈Pξ : ξ < c〉 be a listing of the partitions of ω into finite
pieces and consider φξ(Y ) ⇔ (∀P ∈ Pξ)(|Y ∩ P | ≤ 1) for every
ξ < c. ¤

Lemma 3.8. The class Q is d-inductive.

Proof: Let 〈fξ ∈ ωω : ξ < d〉 be a dominating family and consider
for each ξ < d the formula

φξ(Y ) ⇔ (∀m < ω)(∀n < ω) ((m,n ∈ Y ∧m < n) ⇒ fξ(m) < n).

Then the d-inductivity of Q follows from Proposition 2.9. ¤

Theorem 3.9. If κ ≥ 1 and C is a κ-inductive class of ultrafilters,
then

SGEκ(C , κ) ⇔ (GE(C , κ) ∧ κ ≤ u).

Proof: It is obvious that SGEκ(C , κ) implies both GE(C , κ) and
κ ≤ u. So suppose that G(C , κ) and κ ≤ u hold and that F is a < κ-
generated filter. We will construct inductively a tree 〈Fs : s ∈ 2<κ〉
of filters satisfying the following requirements for every ξ < κ and
s ∈ 2ξ.

(1) F∅ = F ;
(2) Fs¹γ ⊆ Fs for every γ < ξ;
(3) χ(Fs) ≤ max{χ(F), |ξ|};
(4) Fs∧〈0〉 ⊥ Fs∧〈1〉;
(5) Fs =

⋃{Fs¹γ : γ < ξ} if ξ is limit; and
(6) there exists Xi

ξ ∈ Fs∧〈i〉 such that φξ(Xi
ξ) hold for i = 0, 1.
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If this construction can be completed, then for every g ∈ 2κ, let
Ug be an ultrafilter extending the filter Fg =

⋃{Fg¹ξ : ξ < κ}.
By conditions (1), (4), and (6), the ultrafilters Ug extend F , are
pairwise distinct, and are all in C . To see that this construction
can be completed, we need only to check the inductive hypothesis
for the successor ordinal case. Suppose that s ∈ 2ξ and that Fs has
been defined. We want to define Fs∧〈0〉 and Fs∧〈1〉. By the induction
hypothesis, χ(Fs) < κ ≤ u, so we can find a Y ∈ [ω]ω such that
Fs∪{Y } and Fs∪{ω\Y } have both SFIP. Since F∗0 = 〈Fs ∪ {Y }}〉
and F∗1 = 〈Fs ∪ {ω \ Y }〉, we have that χ(F∗0 ) = χ(F∗1 ) = χ(Fs) <
κ. Also, since GE(C , κ) holds, there exist Ui ∈ C extending F∗i for
i = 0, 1. Thus, it is possible to pick Xi

ξ ∈ Ui such that φξ(Xi
ξ) for i =

0, 1. Put Fs∧〈0〉 = 〈Fs ∪ {Y,X0
ξ }〉 and Fs∧〈1〉 = 〈Fs ∪ {ω \ Y, X1

ξ }〉.
Then these filters satisfy the requirements. ¤

Corollary 3.10. If C is c-inductive like P , Q, or S, then

SGE(C , c) ⇔ SGE1(C , c).

Proof: This follows from Lemma 3.5(c), Lemma 3.7, and Theo-
rem 3.9. ¤

Corollary 3.11. SGE(S, c) ⇔ GE(S, c).

Proof: This follows from Theorem 3.9 and Proposition 2.4. ¤

Corollary 3.12. SGE(P, c) ⇔ min{u, d} = c.

Proof: This follows from Theorem 3.9 and Proposition 2.2. ¤
By a theorem of Jason Aubrey [1], min{u, d} = min{r, d}. Here,

r is the refinement or reaping number. (See [7].) Therefore, we can
rephrase Corollary 3.12 as

Corollary 3.13. SGE(P, c) ⇔ min{r, d} = c.

Theorem 3.14. There is a model N of ZFC such that

N |= “GE(P, c) ∧ ¬SGE(P, c).”

Proof: Let M be such that M |= “ZFC + GCH, ” and consider in
M a countable support forcing iteration 〈〈Pα, Q̇α〉 : α < ω2〉 such
that

∀α < ω2 °α “Q̇α ' rational perfect set forcing”
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(see [19]; [10, p. 360]; and [9]), and let G be a Pω2-generic filter
over M . Then P -points in M generate P -points in M [G] and

M [G] |= “Every P -point is ω1-generated + d = c = ω2 = 2ω1 .”

(See [9].) Therefore,

M [G] |= “GE(P, c) ∧ |P | = c.”

Hence, model N = M [G] works. ¤
Corollary 3.15. Con(ZFC) =⇒ Con(ZFC+GE(P, c)+¬SGE(P, c)).

4. Other classes of ultrafilters

Theorem 3.9 can be applied to get a similar characterization for
SGE(C , c) as in Corollary 3.13 for other classes of ultrafilters as
well. These depend, of course, on the characterization of GE(C , c)
in terms of cardinal invariants.

Definition 4.1 (Baumgartner [3]). Let X be a non-empty set and
let I ⊆ P(X) be a set containing the singletons and closed under
subsets. An ultrafilter U on ω is an I-ultrafilter provided that for
every f : ω → X there exists a U ∈ U such that f [U ] ∈ I.

If X = 2ω and I is the ideal of countable closed, nowhere-dense,
measure-zero subsets of 2ω, then I-ultrafilters are called countable
closed, nowhere-dense, and measure-zero ultrafilters, respectively.
If X = ωω and I is the ideal of σ-compact subsets of ωω, then
the I-ultrafilters are called σ-compact ultrafilters. If α < ω1, put
Iα = {A ⊆ ω1 : o.t(A) ≤ α} and Jα = {A ⊆ ω1 : o.t(A) < α}. If
I = Iα or I = Jα for some α < ω1, then I-ultrafilters are called
ordinal ultrafilters. Let O, CC, ND, MZ, and Kσ denote the
classes of ordinal, countable closed, nowhere-dense, measure-zero,
and σ-compact ultrafilters, respectively.

Lemma 4.2. If C ∈ {O, CC, ND,MZ, Kσ}, then C is c-inductive.

Proof: Let 〈fξ : ξ < c〉 be a listing of Xω and consider the family
of formulas 〈φξ(Y ) : ξ < c〉 where φξ(Y ) ⇔ fξ[Y ] ∈ I. ¤

We refer the reader to [5] and [11] for proofs of the following
propositions.

Proposition 4.3 (Brendle [11]). If C ∈ {O, CC}, then

GE(C , c) ⇔ d = c.
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Proposition 4.4 (Brendle [11]). GE(ND, c) ⇔ cof(M) = c.

Proposition 4.5 (Brendle [11]). GE(MZ, c) ⇔ cof(E ,M) = c.

Proposition 4.6 (Barney [5]). GE(Kσ, c) ⇔ d = c.

Theorem 4.7. If C ∈ {O, CC, Kσ}, then
(a) SGE(C , c) ⇔ min{u, d} = c;
(b) SGE(ND, c) ⇔ min{u, cof(M)} = c;
(c) SGE(MZ, c) ⇔ min{u, cof(E ,M)} = c.

Proof: Apply Theorem 3.9 and propositions 4.1 and 4.4 for (a),
Proposition 4.2 for (b), and Proposition 4.3 for (c). ¤
Theorem 4.8. There is a model N of ZFC such that if C ∈
{O,CC,ND, MZ, Kσ}, then

N |= “GE(C , c) ∧ ¬SGE(C , c).”

Proof: The model from Theorem 3.14 works since it is known
that in this model, d = cof(M) = cof(E ,M) = c. ¤
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Departmento de Matemáticas; Universidad Metropolitana, La Urbina
Norte; 1070-76810, Caracas, Venezuela

E-mail address: amillan@unimet.edu.ve




