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REMARKS ON THE GENERIC EXISTENCE
OF ULTRAFILTERS ON w

ANDRES MILLAN

ABSTRACT. The purpose of this note is to contrast the generic
existence of certain kinds of ultrafilters on w with the exis-
tence of 2°-many of them. First, we prove that it is consistent
with ZFC that there are 2°-many Q-points but Q-points do
not exist generically. This answers in the negative a ques-
tion by R. Michael Canjar. Then we define the strong generic
existence of a class of ultrafilters and show that the strong
generic existence of selective ultrafilters is equivalent to the
their generic existence. However, we prove a result that im-
plies that for several classes of ultrafilters, including P-points
and nowhere dense ultrafilters, the strong generic existence of
P-points is not equivalent to their generic existence.

1. PRELIMINARIES

We use standard set theoretic notation. We say that A C [w]¥
has the strong finite intersection property (SFIP) provided that the
intersection of any finite subfamily is infinite. The filter generated
by A is denoted (A). The letter F will always denote a filter on
w containing the cofinite filter. A basis for F is a family B C F
such that for every F' € F there exists a B € B such that B C F.
Given any filter F let x(F) be the minimum cardinality of a basis
of F. This x(F) is called the character of F. We say that F
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is k-generated provided that x(F) = k and F is < k-generated
provided that x(F) < k. The letters ¢ and V will always denote
nonprincipal ultrafilters on w. The cardinal u is defined as

u = min{|B|: B is basis of an ultrafilter on w}.

Two filters Fo and F; are orthogonal provided that there exists an
X € [w]¥ such that X € Fp and w \ X € Fj. This is denoted
Fo L Fi. An ultrafilter U is a Q-point provided that for every
finite-to-one f: w — w there exists a U € U such that f|U is
one-to-one. On the other hand, U/ is rapid provided that for every
f:w — w there is a U € U such that |U N f(n)| < n for every
n < w. Every Q-point is rapid but not every rapid ultrafilter is
a @Q-point. An ultrafilter U is a P-point provided that for every
partition P of w either P NU # () or there exists a U € U such
that [U N P| < w for every P € P. We will call such a U € U a
partial pseudo-selector of P. If in this definition we require instead
that there exists a U € U such that |U N P| <1 for every P € P,
we obtain the definition of a selective or Ramsey ultrafilter, and we
will call such a U € U a partial selector of P. It is well known
that an ultrafilter is selective if and only if it is both a P-point
and a @Q-point. An ultrafilter which is both a P-point and a rapid
ultrafilter is called semiselective. If f,g € w*, we declare f <* ¢
when [{n <w: f(n) > g(n)}| <w. A family G C w* is dominating
provided that for every f € w* there is a g € G such that f <* g,
and it is unbounded provided that there is no single f € w* such
that g <* f for every g € G. The cardinals 9, b, cov(M), and
non(/N') denote the minimum cardinality of a dominating family, an
unbounded family, a family of meager sets whose union covers R,
and a non-measure zero subset of R, respectively. These cardinals
are related as shown in Figure 1, where kK — A means k£ < .

b 0 _—
w1 cov(M) non(N)

FicURrRE 1. A fragment of Cichon’s diagram.
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2. GENERIC AND STRONG GENERIC EXISTENCE
OF ULTRAFILTERS

Definition 2.1. Let % be a class of ultrafilters on w and let k be an
uncountable cardinal. We abbreviate by GE(%, k) the statement
“every < k-generated filter can be extended to an ultrafilter in €.”
Here, GE stands for “generic existence.”

In what follows, we will denote by P, @, R, S, and S5 the
classes of P-points, Q-points, rapid, selective, and semi-selective
ultrafilters, respectively.

The next three propositions characterize the generic existence of
these ultrafilters in terms of cov(M) and 0.

Proposition 2.2 (Ketonen [13]).
GE(P,¢) = d=c.
Proposition 2.3 (Canjar [12]).
GE(Q,?) & cov(M) =0 < GE(R,D).
Proposition 2.4 (Canjar [12]; Bartoszynski and Judah [10]).
GE(S,¢) & cov(M) = c < GE(SS,¢).

In [12, p. 240], R. Michael Canjar asked, Assuming that ¢ is
regular, does the existence of 2-many selective ultrafilters imply
GE(S,¢)? We answered this negatively in [17] by constructing a
model of ZFC where ¢ = wo, and there are 2°many selective ul-
trafilters but cov(M) < ¢. The same question for ¢ singular is an
unpublished result by James E. Baumgartner who noticed that in
the Bell-Kunen model described in [6], ¢ = w,,, cov(M) = wy, and
there are 2°-many selective ultrafilters on w.

Definition 2.5. Let M be a model of ZFC. A forcing notion P is
w“-bounding provided that for every P-generic filter G over M and
for every f € w* N MI[G], there exists a ¢ € w* N M such that
Vn <w f(n) < g(n).

Proposition 2.6 (Milldn [17]). There is a model N of ZFC such
that

N “c=wy + S| =2+ -GE(S,c).”



30 A. MILLAN

Proof: Let M be such that M = “ZFC + CH + 2¢1 = 2¥2 = (3.”
If P € M is the partial order to add wo-many Sacks reals iteratively
with countable supports and G is P-generic over M, then

MG |= “ZFC+ ¢ = wy + 291 = 22 = (.7

Now, CH in M implies that 9 = w}. Since P is w“-bounding and

proper, we have that wi\/[[G] = w{w = oM = MGl In particular,

MI[G] E “cov(M) < ¢.” By Proposition 2.4, M[G] E “-GE(S,¢).”
To see that M[G] = “|S| = 2%,” use CH to construct in M, 2«1-
many selective ultrafilters. Then invoke a theorem by Baumgartner
and Richard Laver [4, Theorem 4.5] to extend these to 2“'-many
selective ultrafilters in M[G]. Therefore,

MI[G] & “cis regular + |S| =2 + =GE(S,¢).”
Hence, N = M|G] works. O
Canjar also asked [12], Does the existence of 2°-many Q-points
imply GE(Q,0)?
We will answer this question negatively by constructing a model
of “ZFC+|Q| =2+ -GE(Q,0).”

Definition 2.7. Let f: w — w be any function. We say that U C w
is f-rare if f(m) < n for every m,n € U with m < n.

Definition 2.8. A family ¢/ C [w]* is rare if for every f:w — w
there exists a Uy € U which is f-rare.

Proposition 2.9 (Mathias [16]; Taylor, unpublished. See also
Blass [8]). An ultrafilter U on w is a Q-point if and only if U is a
rare family.

Let U and V be two families of subsets of w and let (i, V) be
an abbreviation of the statement, ‘U # V and both & and V are
Q-points.”

Lemma 2.10. Let M be a transitive model of ZFC, let U,V € M
such that M = “U(U,V),” and let P € M be an w*-bounding
forcing notion. Then, for any P-generic filter G over M,

M[G)E“ZFC+3UIV UCU AN VYV A VWU, V).
Proof: Let U be a Q-point in M, let G be a P-generic filter over

M, and let f € w* N M[G]. Then there exists a g € w* N M such
that f(n) < g(n) for every n < w. Since M = ‘U is a Q-point,”
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we can find a U; € U which is g-rare. Since f is dominated by g,
we conclude that Uy is also f-rare. Therefore, M[G] |= “U is rare.”
If M = “U #V,” then there exists a U € U\ V)N M C U\ V)
N M|[G]. This implies that U € Y and w \ U € V. If U and V are
ultrafilters in M[G], extending U and V), respectively, then I/ and
V are distinct Q-points. Hence, M|[G] = “¥ (U, V).” O

Corollary 2.11. If an w“-bounding forcing notion preserves P-
points, then it preserves selective ultrafilters.

Theorem 2.12. There are models N; of ZFC fori = 0,1 such that
(a) No E “ZFCH+c=wy +|Q| =2+ -GE(Q,?),” and
(b) N1 = “ZFC+ ¢ =w,, + |Q| =2+ -GE(Q,0).”

Proof: Suppose that x € {wa,wy, }. If M = “ZFC+ GCH,” let
P = C(k) € M be the notion of forcing for adding x-many Cohen
reals and let G be a P-generic filter over M; then we have that
MIG] E “k = ¢ = cov(M) = 0.” By Proposition 3.2, it follows that
MIG] E “c=k+|Q| =2°" Let Q = B(k) € M[G] be the measure
algebra for adding x-many random reals. Let H be a Q-generic filter
over M[G]. Then Q is w¥-bounding and M[G][H] | “c =k =0.”
By Lemma 2.10, we can extend each of the Q-points existing in
MIG] to at least one Q-point in M[G][H] obtaining 2°many Q-
points altogether. Hence, M[G][H] | “|Q| = 2°.” Let S € M[G][H]
be the set formed by the first wi-many random reals added. Since S
is a Sierpinski set in M[G][H], it is non-measurable, so M |[G|[H] =
“non(N') = wy.” On the other hand, cov(M) < non(N); hence,
MIG|[H] [ “cov(M) < 0.” By Proposition 2.3, M[G][H] = “|Q| =
2°N-GE(Q,0).” Therefore, models Ny = M[G][H], when k = wa,
and Ny = M[G|[H], when k = w,,, satisfy the conclusion of the
theorem. O

3. GENERIC VERSUS STRONG GENERIC EXISTENCE
OF ULTRAFILTERS ON w

In this section we show that for some classes of ultrafilters €,
GE(¥, ¢) fails to be a good indicator of the abundance of ultrafilters
from €. As an alternative, we propose SGE(%, ¢) instead.

Definition 3.1. SGE\(%, k) abbreviates the statement, “every <
k-generated filter can be extended to 2*-many ultrafilters in €,”
where SGFE stands for “strong generic existence.” When \ = ¢, we
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drop the subindex and write SGE(%, k). We will use SGE(%,¢)

to abbreviate “the strong generic existence of wltrafilters in €.”
Proposition 3.2 (Millan [17]).
SGE(Q,0) < cov(M) = 0.

Actually, we proved in [17] that the identity cov(M) = 0 im-
plies that every < 0-generated filter can be extended to 2°-many
c-generated @-points. The other direction follows from Proposition
2.3 and Lemma 3.5(b) below.

As an immediate consequence of Proposition 3.2, we have the
following dichotomy result.

Corollary 3.3. Suppose that ¢ < cov(M)™T, then either there is a
c-generated QQ-point or there are no Q-points at all.

Proof: If ¢ < cov(M)T, then cov(M) < d < ¢ < cov(M)™F.
Suppose that cov(M) = d. Then we are done by Proposition 3.2
and the remark below it. If cov(M) < 0, then ? = ¢. Since, by
Proposition 2.9, every @-point has character > 0 and either there is
a Q-point (in which case it has character ¢) or there are no Q-points
at all, this completes the argument. O

Notice that propositions 2.3 and 3.2 can be combined to obtain
the following.

Proposition 3.4. SGE(Q,?) & GE(Q,?).

Lemma 3.5. Let € be a class of ultrafilters and let x, A, and u be
cardinals. Then

(a) SGEy(¢,k) < GE(%, k),

(b) A< pu= SGE,(¥¢,k) = SGE\(¥¢,k), and

(c) SGE(¢,k) < (GE(€,k) Nk <u).

Proof: Parts (a) and (b) are obvious. For part (c), one impli-
cation follows from parts (a) and (b) and the fact that u < x =
-~SGFE,(%¢,k). For the other implication, let F be a filter with
X(F) < k. Since k < u, F cannot be an ultrafilter and there ex-
ists an X € [w]* such that F U {X} and F U {w \ X} both have
the SFIP. Let Fy and F; be the filters generated by F U {X} and
F U{w\ X}, respectively. Then x(Fy) = x(F1) = x(F) < . So
we can use GE(%, k) to extend Fy and Fi to ultrafilters Uy and U
in €. By our choice of X, these ultrafilters are distinct. 0



THE GENERIC EXISTENCE OF ULTRAFILTERS ON w 33

Definition 3.6. We call a class & of ultrafilters on w to be k-
inductive provided that there exist formulas (¢¢(Y): { < k) such
that for every U

UeC e VE<kIU el pe(U).
Lemma 3.7. The classes P, S, and Q are c-inductive.

Proof: To see that P is c-inductive, let (P¢: & < ¢) be a listing
of the partitions of w into infinitely many pieces and consider for
every ¢ < ¢ the formula

0e(Y) & [(3G € [P )Y C{JG) V (VP e P)(Y NP <w)].

For S, replace |[Y N P| < w by |[Y N P| <1 in the formulas above.
For @, let (P¢: € < ¢) be a listing of the partitions of w into finite
pieces and consider ¢¢(Y) < (VP € P¢)(]Y N P| < 1) for every
&< O

Lemma 3.8. The class QQ is 0-inductive.

Proof: Let (fe € w”: £ < 0) be a dominating family and consider
for each £ < 0 the formula

Pe(Y) & (Vm <w)(Vn <w) (m,n €Y Am <n) = fe(m) <n).
Then the 0-inductivity of @ follows from Proposition 2.9. U

Theorem 3.9. Ifk > 1 and € is a k-inductive class of ultrafilters,
then

SGE.(%¢,k) < (GE(€¢,k) ANk <u).

Proof: 1t is obvious that SGE, (¢, k) implies both GE(¢, k) and
k < u. Sosuppose that G(%, k) and £ < uhold and that F is a < k-
generated filter. We will construct inductively a tree (Fs: s € 2<F)

of filters satisfying the following requirements for every £ < k and
s € 28,

—

4 € Fs for every v < &;
X(Fs) < max{x(]:), ’f‘}a

A0) L fSA<1>;

Fs = U{Fspy: v < &} if € is limit; and

there exists Xg € Fyn() such that ¢§(X§) hold for i =0, 1.

N N N N

O O i W N

— — N —
N
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If this construction can be completed, then for every g € 27, let
Uy be an ultrafilter extending the filter Fy = [J{Fgpe: £ < K}
By conditions (1), (4), and (6), the ultrafilters U, extend F, are
pairwise distinct, and are all in . To see that this construction
can be completed, we need only to check the inductive hypothesis
for the successor ordinal case. Suppose that s € 2¢ and that F, has
been defined. We want to define Fyn gy and Fyn(qy. By the induction
hypothesis, x(Fs) < k < u, so we can find a Y € [w]¥ such that
FsU{Y} and F;U{w\ Y} have both SFIP. Since F§ = (F, U{Y }})
and Ff = (Fs U{w \ Y}), we have that x(Fg) = x(Ff) = x(Fs) <
k. Also, since GE(%, k) holds, there exist U; € € extending F;* for
1 =0, 1. Thus, it is possible to pick Xg € U; such that gZ)g(Xé) fori =
0,1. Put Forgy = (Fs U{Y, X2}) and Fynpyy = (Fs U{w \ Y, X} }).
Then these filters satisfy the requirements. O

Corollary 3.10. If € is c-inductive like P, ), or S, then
SGE(€,¢) < SGE(€,¢).

Proof: This follows from Lemma 3.5(c), Lemma 3.7, and Theo-
rem 3.9. t

Corollary 3.11. SGE(S,¢) < GE(S,¢).

Proof: This follows from Theorem 3.9 and Proposition 2.4. [
Corollary 3.12. SGE(P,¢) & min{u,0} = c.

Proof: This follows from Theorem 3.9 and Proposition 2.2. [

By a theorem of Jason Aubrey [1], min{u,?} = min{r,0}. Here,
t is the refinement or reaping number. (See [7].) Therefore, we can
rephrase Corollary 3.12 as

Corollary 3.13. SGE(P,c) < min{t,0} = c.
Theorem 3.14. There is a model N of ZFC such that
N | “GE(P,c) N-SGE(P,c¢).”

Proof: Let M be such that M = “ZFC+ GCH,” and consider in
M a countable support forcing iteration ((P,,Qa): @ < wy) such
that

Va < ws kg “Qa ~ rational perfect set forcing”
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(see [19]; [10, p. 360]; and [9]), and let G be a P,,-generic filter
over M. Then P-points in M generate P-points in M |G| and
M|[G] E “Every P-point is wi-generated + 0 = ¢ = wy = 2%1.7
(See [9].) Therefore,
MI[G] = “GE(P,c) N |P| =¢.”
Hence, model N = M[G] works. O
Corollary 3.15. Con(ZFC) = Con(ZFC4+GE(P,¢)+-SGE(P,c)).

4. OTHER CLASSES OF ULTRAFILTERS

Theorem 3.9 can be applied to get a similar characterization for
SGE(¥€,c¢) as in Corollary 3.13 for other classes of ultrafilters as
well. These depend, of course, on the characterization of GE(%, ¢)
in terms of cardinal invariants.

Definition 4.1 (Baumgartner [3]). Let X be a non-empty set and
let Z C P(X) be a set containing the singletons and closed under
subsets. An ultrafilter i on w is an Z-ultrafilter provided that for
every f:w — X there exists a U € U such that f[U] € Z.

If X = 2% and 7 is the ideal of countable closed, nowhere-dense,
measure-zero subsets of 2, then Z-ultrafilters are called countable
closed, nowhere-dense, and measure-zero ultrafilters, respectively.
If X = w¥ and 7 is the ideal of o-compact subsets of w*, then
the Z-ultrafilters are called o-compact ultrafilters. If a < w1, put
Zo ={A Cwi:o0t(A) <a}and Jy, = {A Cwi:ot(A) < a}. If
=1, or T = J, for some @ < wq, then Z-ultrafilters are called
ordinal ultrafilters. Let O, CC, ND, MZ, and K, denote the
classes of ordinal, countable closed, nowhere-dense, measure-zero,
and o-compact ultrafilters, respectively.

Lemma 4.2. I[f¢ € {O,CC,ND,MZ, K}, then € is c-inductive.

Proof: Let (f¢: & < ¢) be a listing of X* and consider the family
of formulas (¢¢(Y): & < ¢) where ¢¢(Y) & fe[Y] € Z. O

We refer the reader to [5] and [11] for proofs of the following
propositions.

Proposition 4.3 (Brendle [11]). If € € {O,CC}, then
GE(%¢,c) < 0=rc.
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Proposition 4.4 (Brendle [11]). GE(ND,¢) < cof(M) = «¢.
Proposition 4.5 (Brendle [11]). GE(MZ,¢) < cof(E, M) = c.
Proposition 4.6 (Barney [5]). GE(K,,¢) <0 =rc.

Theorem 4.7. If ¢ € {O,CC, K}, then

(a) SGE(¥,¢) & min{u,d} =
(b) SGE(ND,¢) < min{u,cof(M)} =
(c) SGE(MZ,¢) < min{u,cof(E, M)} = c.

Proof: Apply Theorem 3.9 and propositions 4.1 and 4.4 for (a),

Proposition 4.2 for (b), and Proposition 4.3 for (c). O

Theorem 4.8. There is a model N of ZFC such that if € €
{0,CC,ND,MZ,K,}, then

N & “GE(%,¢) A ~SGE(%,¢).”

Proof: The model from Theorem 3.14 works since it is known

that in this model, 9 = cof (M) = cof (£, M) = c. O
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