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A CORRECTION TO “THE CONNECTIVITY
STRUCTURE OF THE HYPERSPACES Cε(X)”

ERIC L. McDOWELL

Abstract. We demonstrate that Proposition 3.1 of [Eric L.
McDowell and B. E. Wilder, The connectivity structure of
the hyperspaces Cε(X), Topology Proc. 27 (2003), no. 1,
223–232] is false by constructing a locally connected metric
continuum which admits a non-locally connected small-point
hyperspace.

Let X be a continuum with metric d. For any ε > 0 the set
Cd,ε(X) = {A ∈ C(X) : diamd(A) ≤ ε} is called a small-point
hyperspace of X. The notation Cε(X) is used when the metric on
X is understood.

Proposition 3.1 of [2] asserts that X is locally connected if and
only if Cε(X) is locally connected for every ε > 0. While it is true
that the local connectivity of Cε(X) for every ε > 0 implies the local
connectivity of X, we show in this note that the reverse implication
is false.

Below we construct a locally connected continuum X in R3 for
which Cε(X) fails to be locally connected for some ε > 0. The
metric considered on X is the usual metric inherited from R3. All
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points (r, θ, z) are described using the standard cylindrical coordi-
nate system, and all concepts and notation which are used without
definition can be found in [3]. The example is similar to [4, Example
2].

Example 1. For each n = 1, 2, · · · , let Sn denote the circle de-
scribed by {(1, θ, n−1) : 0 ≤ θ < 2π} and let S0 = {(1, θ, 0) : 0 ≤
θ < 2π}. For each n = 1, 2, · · · and each i = 1, 2, · · · , 2n, let An

i
denote the straight line segment given by {(1, 2πi/2n, z) : 0 ≤ z ≤
n−1}. Define X to be the continuum given by

X =

( ∞⋃

n=0

Sn

)
∪

( ∞⋃

n=1

2n⋃

i=1

An
i

)
.

It is straightforward to show that X is a Peano continuum. We will
now prove that Cε(X) fails to be locally connected at the point S0

when ε = 2.
Let {U1, · · · , Uk} be an open cover of S0 with the property that

for every n = 0, 1, · · · and every i = 1, · · · , k it is true that

(1) Sn − Ui is connected and has arc length greater than 3π/2.

Observe that U = 〈U1, · · · , Uk〉 is an open subset of C(X) that
contains S0 as well as all Sn for n sufficiently large. Select N
such that SN ∈ U . We will prove that Cε(X) fails to be locally
connected at S0 by showing that every arc in U with endpoints
S0 and SN must contain a point of diameter greater than 2. Let
f : [0, 1] → U be an embedding for which f(0) = S0 and f(1) = SN .
Let π : X → SN denote the natural projection map. For any subset
S ⊂ X we say that (1, θ, z) ∈ S is an antipodal point of S provided
that (1, θ + π, z′) belongs to S for some z′. We will denote the set
of antipodal points of S by AP (S). We now show that

(2) (1, θ, z) ∈ AP (S) if and only if (1, θ, N−1) ∈ AP (π(S)).

To see (2), let S ⊂ X and let (1, θ, z) ∈ AP (S). By defini-
tion it follows that (1, θ + π, z′) belongs to S for some z′; thus,
π(1, θ+π, z′) = (1, θ+π, N−1) belongs to π(S). Since (1, θ, N−1) =
π(1, θ, z) ∈ π(S), it follows that (1, θ, N−1) ∈ AP (π(S)). The ar-
gument for the converse is similar.

If M ∈ U and M ⊂ SN , then there exists an arc A (possibly
empty) such that M is the closure of SN−A; thus, the only elements
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of M−AP (M) are the points that are diametrically opposed to the
interior points of A. Therefore, AP (M) is either SN (if A = ∅) or
the union of two disjoint arcs. Since f(t) is a continuum for each
0 ≤ t ≤ 1, it follows from continuity that

(3) AP (π(f(t))) is either SN or the union of two disjoint arcs.

Continuity also shows that the intersection of π−1 (AP (π(f(t))))
and f(t) is closed; moreover, it follows from (2) that this intersec-
tion is equal to AP (f(t)). Therefore, we have that

(4) AP (f(t)) is closed for every 0 ≤ t ≤ 1.

Suppose that (1, θ, z) ∈ AP (f(t)); then (1, θ + π, z′) ∈ f(t) for
some z′. If z′ 6= z, then (1, θ, z) and (1, θ + π, z′) are more than
two units apart. Moreover, if (1, θ, z) ∈ AP (f(t))−⋃∞

n=0 Sn, then
it follows from the connectivity of f(t) that there must exist some
z′′ 6= z with (1, θ + π, z′′) ∈ f(t). It follows that

(5) if AP (f(t))−
∞⋃

n=0

Sn 6= ∅ then diam(f(t)) > 2.

We now show that there exists some t0 ∈ [0, 1] for which the
diameter of f(t0) is greater than 2. Begin by defining

t′ = min{t : [0, 1] : AP (f(t)) ∩ SN 6= ∅}.
Suppose that t′ = 1. Choose γ > 0 small enough such that the γ-
ball, B, about SN has the properties that B ⊂ U and Sn∩ (∪B) = ∅
for all n 6= N . Choose δ > 0 such that if t ∈ (1 − δ, 1] then
Hd(f(t), SN ) < γ. Let t0 ∈ (1 − δ, 1). By (3) we have that
AP (f(t0)) 6= ∅. However, since t0 < t′ we have by the definition
of t′ and our choice of γ that AP (f(t0))− ∪∞n=0Sn 6= ∅. Therefore,
diam(f(t0)) > 2 by (5).

Now suppose that t′ < 1. Let q = (1, θ, z) ∈ AP (f(t′))∩ SN and
let q′ ∈ f(t′)∩π−1(1, θ+π, z). We may assume that q′ = (1, θ+π, z)
since d(q, q′) > 2 otherwise. Using (3), we have that AP (π(f(t′)))
contains an arc I containing q. We suppose first that q is an isolated
point of AP (f(t′)). Let {yi}∞i=1 be a sequence in I converging to q;
then use (2) to select xi ∈ π−1(yi)∩AP (f(t′)) for each i = 1, 2, · · · .
We have by (4) that AP (f(t′)) is closed; hence, some subsequence
of {xi}∞i=1 converges to a point x0 of AP (f(t′)). Moreover, since
{yi}∞i=1 converges to q, we have that x0 ∈ π−1(q). Finally, since q
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is an isolated point of AP (f(t′)), it follows that x0 is a member of
f(t′)∪π−1(q) that does not belong to SN . Therefore, d(x0, q

′) > 2,
and thus, diam(f(t′)) > 2. On the other hand, if q is not an isolated
point of AP (f(t′)), then we may assume that the arc I containing
q belongs to SN ∩ AP (f(t′)). Choose γ > 0 small enough so that
(i) no γ-ball about a point of I meets any Sn for n 6= N and (ii) the
midpoint m = (1, µ, z) of I is not contained in the γ-balls about
the endpoints of I. Choose δ > 0 such that if t ∈ (t′ − δ, t′], then
Hd((f(t), f(t′)) < γ. Let t0 ∈ (t′−δ, t′). Since Hd(f(t0), f(t′)) < γ,
we have by (i), (ii), and the construction of X that f(t0) contains
a point m′ for which π(m′) = m; furthermore, we have by (i) that
m′ ∈ SN . Thus, m′ = (1, µ, z) = m ∈ f(t0). By a similar argument
we can show that (1, µ + π, z) ∈ f(t0). Therefore, m ∈ AP (t0),
contrary to our assumption that t0 < t′.

Example 2. K. Kuratowski [1, p. 268] describes a continuum, K,
consisting of the segment {(x, 0) : 0 ≤ x ≤ 1}, of the vertical seg-
ments {(m/2n+1, y) : 0 ≤ m ≤ 2n+1, 0 ≤ y ≤ 1/2n} and of the level
segments {(x, 1/2n) : 0 ≤ x ≤ 1}, where n = 1, 2, · · · . We note that
K is similar in structure to the continuum in the previous example;
however, Cρ1,ε(K) is locally connected when ρ1 is the usual metric
inherited from R2. (Informally, observe that if a subcontinuum A
of K is contained in an open subset U of C(X), then U also con-
tains subsets of A with diameter smaller than that of A. By first
shrinking A to a continuum with smaller diameter within U , one
can then continuously grow continua to include a subset of a target
subcontinuum within U before continuously releasing A.)

Instead of considering the usual metric on K, let h : K → S1 ×
[0, 1] be an embedding which sends the leftmost vertical segment of
K to {(1, 0, z) : 0 ≤ z ≤ 1} and the rightmost vertical segment of
K to {1, 3π/2, z) : 0 ≤ z ≤ 1}, and which preserves the vertical and
horizontal orientations of all subsets of K. Let d denote the usual
metric for h(K) inherited from R3, and let ρ2 denote the metric on
K given by ρ2(x, y) = d(h(x), h(y)). Then an argument essentially
identical to the one given in Example 1 can be used to show that
Cρ2,ε(X) fails to be locally connected for ε = 2.

Noting that the small-point hyperspaces of the arc, circle, and
simple triod are all locally connected, while the examples provided
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in this article admit non-locally connected small-point hyperspaces,
the referee suggests the following question.

Question 1. Are the small-point hyperspaces of an hereditarily lo-
cally connected continuum always locally connected?

Recall that a continuum is said to be cyclicly connected provided
that any two points of the continuum are contained in some simple
closed curve. Theorem 3.11 of [2] states that Cε(X) is cyclicly
connected for every ε > 0 whenever X is locally connected; however,
the argument that is used to justify this assertion uses Proposition
3.1 of [2]. Therefore, the following question remains open.

Question 2. If X is a locally connected continuum with metric ρ,
must Cρ,ε(X) be cyclicly connected for every ε > 0?
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