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MORE PARACOMPACT SUBSPACES OF ¤(ω + 1)ω

JUDITH ROITMAN

Abstract. We develop machinery to find paracompact sub-
spaces of ∇(ω + 1)ω, the quotient topology (mod finite) of
¤(ω + 1)ω.

1. The question

Definition 1.1. ¤i∈IXi is the topology on Πi∈IXi whose basic
open sets are all Πi∈Iui, where each ui is open in Xi.

Which box products are paracompact? In fact, which are nor-
mal? This was one of the main questions in [12], and while there are
many partial results, very few positive results are known in ZFC.

Partial answers, almost all modulo set theoretic hypotheses, ap-
peared from the late 1970s to the mid 1980s, largely utilizing an
associated topology and depending on set theoretic axioms.

Definition 1.2. If x and y are functions with domain I, y =∗ x if
and only if {i ∈ I : y(i) 6= x(i)} is finite.

Definition 1.3. ∇n∈ωXn is the quotient topology of ¤i∈IXi under
the equivalence classes x∇ = {y : y =∗ x}.

Kenneth Kunen [5] showed that, if each Xn is compact, then
¤n∈ωXn is paracompact if and only if ∇n∈ωXn is paracompact. He
also noted without attribution that a regular space in which ev-
ery Gδ is open (such as ∇n∈ωXn) is paracompact if and only if it
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54 J. ROITMAN

is ultraparacompact, i.e., every open cover has a pairwise disjoint
covering refinement. So the ∇ product became an object of inves-
tigation, with the goal of finding out when it is ultraparacompact.

Definition 1.4. The unboundedness number b = inf{|F | : F ⊂ ωω

and ∀g ∈ ωω ∃f ∈ F f 6≤∗ g}. The dominating number d =
inf{|F | : F ⊂ ωω and ∀g ∈ ωω ∃f ∈ F g ≤∗ f}.

A series of papers in the 1970s and 1980s showed that

(1) if d = ω1 and each Xn is compact with weight ≤ ω1, then
¤n<ωXn is paracompact [13];

(2) if b = d and each Xn is compact metrizable, then ¤n<ωXn

is paracompact [3]1;
(3) if d = c and each Xn is compact first countable, then

¤n<ωXn is paracompact [9].

L. Brian Lawrence [8] showed that ¤(ω+1)ω1 is not normal, and
various results of Kunen [5], [6] and Eric K. van Douwen [1], [2]
showed that either one slightly large non-compact factor or com-
pact factors with large character preclude normality of the box
products.2 Lawrence [7] proved that ¤Qω is paracompact if either
b = d or d = c.3 But results (1), (2), and (3) above delineate the
landscape of most interest in this paper; in fact, we focus on the
simplest form of the question: Is ¤(ω+1)ω really paracompact? By
(1), (2), and (3), any model in which ¤(ω+1)ω is not paracompact
(or not normal) must satisfy b < d < c.

That this is not sufficient follows from the fact that if the Hechler
iteration [4] is used to add a dominating family of reals of order
type κ × λ for any κ, λ regular, then ¤n<ωXn is paracompact in
this model if each Xn is compact first countable (see [10]).

A key observation used in many of the positive results is that
the intersection of fewer than b open subsets of ∇n<ωXn is open.

While we want to know if ¤(ω + 1)ω is really paracompact, we
don’t answer this question. Instead, we ask, in ZFC, what subspaces

1This improves the pioneering result in [11], which assumed CH.
2Hence, one line of research asks, how nice can a space X be so X×¤(ω+1)ω

fails to be normal? See, e.g., [16].
3Another line of research involves generalizing this result, e.g., “Box products

twenty-five years later” by Scott W. Williams (unpublished) and [14].
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of ∇(ω + 1)ω are paracompact?4 We develop machinery which en-
ables us to find many paracompact subspaces of ∇(ω + 1)ω. The
hope is that these techniques will increase our understanding so we
may eventually show that ∇(ω + 1)ω really is paracompact. And if
it’s consistently not, we will know that many of its subspaces are.

The organization is as follows: §2 gives the basic topological lem-
mas, §3 describes a space closely associated with ∇(ω + 1)ω which
is much easier to work with, and §4 gives the basic facts about this
space. §5 defines the notion of good equivalence relation and shows
how resulting transversals are paracompact subspaces. §6 gives an
example of a good equivalence relation, and §7 gives another exam-
ple. §8 shows how to iteratively refine good equivalence relations
so that piecing together the resulting transversals also gives para-
compact subspaces. The paper ends with a conjecture that implies
the paracompactness of ¤(ω + 1)ω.

2. The basics

Recall the following familiar notions.

Definition 2.1. Let Y ⊆ X a space. Y is discrete if and only if
∃{Uy : y ∈ Y } an open family with each Uy ∩ Y = {y}.
Definition 2.2. Let A ⊆ P(X) where X is a space. A is discrete
if and only if ∀x ∈ X ∃U a neighborhood of x so U∩ clA 6= ∅ for at
most one A ∈ A. A is closed discrete if, in addition, each A ∈ A is
closed.

Now we formally define the kinds of subspaces we are looking
for.

Definition 2.3. Y is an ultraparacompact subspace of X if and
only if every open cover of X has a pairwise disjoint open refinement
covering Y .

Note that this is slightly stronger than “is a subspace and is
ultraparacompact.” For example, a discrete subspace is ultrapara-
compact, but not necessarily an ultraparacompact subspace.

4The reader can translate back to ¤(ω +1)ω by noting that, because equiva-
lence classes are countable and hence Lindelöf, if {x∇ : x ∈ X} is paracompact
for X ⊆ (ω + 1)ω, then X is paracompact.
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Not surprisingly, we will get our ultraparacompact subspaces by
piecing together spaces which are more than discrete.

Definition 2.4. Y is a separated subset of X if and only if there
is a pairwise disjoint open cover {Uy : y ∈ Y } where each y ∈ Uy.

Separated spaces are both discrete and ultraparacompact sub-
spaces.

In general, we need a stronger notion than separated.

Definition 2.5. Y is a strongly separated subset of X if and only
if there is a discrete pairwise disjoint clopen family {Uy : y ∈ Y }
where each y ∈ Uy.

Note that strongly separated subsets are closed.
In the right situation, we can piece strongly separated subspaces

together to get something stronger than an ultraparacompact sub-
space.

Definition 2.6. Y is a strongly ultraparacompact subspace of X if
and only if every open cover of X has a discrete clopen refinement
covering Y .

And what is the right situation?

Definition 2.7. X is a Pκ-space if and only if the intersection of
fewer than κ many open subsets of X is open.

Fact 2.8. If X is a Pκ-space, λ < κ, x ∈ X \ ⋃A, and A =
{Aα : α < λ} is a collection of closed discrete families, then x has
a neighborhood U so U ∩⋃A = ∅.

Proof: For all α < λ, let Uα be a neighborhood of x so Uα ∩⋃Aα = ∅. Let U =
⋂

α<λ Uα. ¤
Here’s how to put things together.

Lemma 2.9. Suppose X is a 0-dimensional Pκ-space, and that
X ⊇ Y =

⋃
α<λ Yα where λ < κ, {Yα : α < λ} is pairwise disjoint,

and each Yα is a strongly separated subspace of X. Then Y is
strongly separated.

Proof: Each Yα is closed, so let Nα be a discrete clopen cover of
Yα so that

⋃Nα ∩
⋃

β 6=α Yβ = ∅. Since X is Pκ, if N ∈ Nα, then
N \⋃

β 6=α

⋃Nβ is open non-empty. Then M = {N \⋃
β 6=α

⋃Nβ :
N ∈ Nα, α < λ} is a discrete clopen cover of Y . ¤
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Lemma 2.10. (1) Suppose X is a 0-dimensional Pκ-space, that
X ⊇ Y =

⋃
α<λ Yα where λ ≤ κ, and each Yα is strongly separated

in Y \⋃
β<α Yβ. Then Y is an ultraparacompact subspace of X.

(2) Suppose X is a 0-dimensional Pκ-space, and that X ⊇ Y =⋃
α≤λ Yα where λ < κ, and if α < λ, then Yα is strongly separated

in Y \⋃
β<α Yβ, and Yλ is separated in Y . Then Y is an ultrapara-

compact subspace of X.

Proof: (1) Let U be an open cover of X. For each α < λ, let
Nα = {Ny : y ∈ Yα} be a discrete (in Y \ ⋃

β<α Yβ) separating
clopen cover of Yα refining U , with

⋃Nα ∩
⋃

β<α Yβ = ∅.
We construct a pairwise disjoint cover M =

⋃
α<λMα of Y

refining U by induction. At stage α let Sα = Yα \
⋃

β<αMβ. By
Fact 2.8, for each y ∈ Sα, My = Ny \

⋃
β<αMβ is non-empty. Let

Mα = {My : y ∈ Sα}.
(2) Note that you need only that Yλ is separated to extend the

above proof to stage λ. ¤
Lemma 2.10 is implicit in many of the proofs of the 1970s and

1980s.

3. Modifying ∇(ω + 1)ω

∇(ω+1)ω is a little awkward to talk about — since each x ∈ x∇,
you have to continually distinguish between places where x is finite
and places where x is infinite. So instead, we consider the set
P = {x : x is a partial function from ω to ω}. For x, y ∈ P , we
define x =∗ y if and only if dom x =∗ dom y and {n ∈ dom x ∩ dom
y : x(n) 6= y(n)} is finite. For x ∈ P , define x∇ = {y ∈ P : y =∗ x}.
If E ⊆ P , define E∇ = {z∇ : z ∈ E}.

Now consider the map ϕ : (ω + 1)ω → P defined by ϕ(x) =
x ∩ (ω × ω); i.e., ϕ(x) = {(n, x(n)) : x(n) < ω}. We define u to
be open in P if and only if

⋃
u∇ = u and (ϕ←[u])∇ is open in

∇(ω + 1)ω.
P is not even T0, but it is easy to talk about, and, as Fact 3.2

below shows, quite useful.

Definition 3.1. (1) X ⊂ P is a fine transversal if and only if for
all distinct x, y ∈ X, x 6=∗ y.

(2) X is a fine transversal of Q ⊆ P if and only if it is a fine
transversal and X ⊆ Q.
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(3) X ⊆ Q is a maximal fine transversal of Q ⊆ P if and only if
X is a fine transversal of Q and ∀y ∈ Q ∃x ∈ X x =∗ y. If Q = P ,
we say that X is a maximal fine transversal.

Note that fine transversals may be partial transversals; they need
not meet every equivalence class.

The following is immediate.

Fact 3.2. If X is a maximal fine transversal of Q ⊆ P , then
X ∼= (ϕ←[Q])∇; hence, every maximal fine transversal of P is
homeomorphic to ∇(ω + 1)ω.

So in looking for ultraparacompact subsets of ∇(ω + 1)ω, it suf-
fices to find ultraparacompact fine transversals of P .

Now we need some notation to describe basic open sets.

Definition 3.3. If x and y are functions whose range is an ordered
set, x ≤∗ y iff {i ∈ dom x ∩ dom y : x(i) > y(i)} is finite; x >∗ y
iff {i ∈ dom x ∩ dom y : x(i) ≤ y(i)} is finite.5

Definition 3.4. Given x ∈ P and f ∈ ωω, we define N(x, f) =
{y ∈ P : x ⊆∗ y and y \ x >∗ f}.

The N(x, f)’s form a base for the topology on P .
Finally, we note that if π is a permutation of ω and π(x) is

defined by π(x)(n) = x(π(n)), then Y ⊆ P is separated, strongly
separated, a paracompact subspace, or a strongly ultraparacompact
subspace if and only if {π(y) : y ∈ Y } is. So every time we find a
paracompact subspace, we find c many.

For the rest of this paper, x, y, z, w ∈ P and f, g, h, k are strictly
increasing functions in ωω.

4. Basic facts

Definition 4.1. (1) x is incompatible with y if and only if {n ∈
dom x ∩ dom y : x(n) 6= y(n)} is infinite.

(2) x is incompatible with N(y, f) if and only if x is incompatible
with y or x \ y 6>∗ f .

5An anomaly which will not affect us should be noted: if dom x ∩ dom y is
finite, then x ≤∗ y and x >∗ y.
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In either context, “compatible” means “not incompatible.”
We state three facts without proof. The first relates incompati-

bility to ⊃∗ and ≥∗.
Fact 4.2. (1) If x is incompatible with N(y, g) and z ⊇∗ x, then z
is incompatible with N(y, g)

(2) If x is compatible with y and incompatible with N(y, g) and
z ⊆∗ y, then x is incompatible with N(z, g).

(3) If x is incompatible with N(y, g) and h ≥∗ g, then x is in-
compatible with N(y, h).

The second tells us that incompatibility suffices to show that
basic open sets are disjoint.

Fact 4.3. (1) x is incompatible with y if and only if every N(x, f)∩
N(y, g) = ∅.

(2) x is incompatible with N(y, g) if and only if for every f ,
N(x, f) ∩N(y, g) = ∅.

(3) If N(x, f) ∩ N(y, g) = ∅, then either x is incompatible with
N(y, g) or y is incompatible with N(x, f).

And the third tells us what happens when x /∈ N(y, g).

Fact 4.4. If x /∈ N(y, g), then one of the following three conditions
holds:

(a) x is incompatible with y, or
(b) x is compatible with N(y, g) and y \ x is infinite, or
(c) x ⊇∗ y and x is incompatible with N(y, g).

Some simple observations on the general themes of strong sepa-
ration and closed sets are presented below.

Theorem 4.5. (1) Let B = {x ∈ P : x is bounded below some
constant function}. Then B is closed, and any fine transversal of
B is strongly separated.

(2) Fix f . Let Qf = {x ∈ P : x ≤∗ f}. Qf is closed, and any
fine transversal of it is strongly separated.

(3) Fix z. Let Qz = {x ∈ P : x ⊆∗ z}. Qz is closed, and any
fine transversal of it is strongly separated.

Proof: First, note that if A = B, Qf or Qy, and x ⊆∗ y ∈ A, then
x ∈ A. Also, note that (1) is a consequence of (2), since if x ∈ B,
then x ≤∗ the identity function.
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(2) For closed, if x /∈ Qf , then N(x, f) ∩Qf = ∅.
For separated, let N = {N(y, f) : y ∈ Qf}. We need to show

that N is pairwise disjoint. If x 6=∗ y are distinct elements of Qf ,
then, without loss of generality, y\x is infinite. So y is incompatible
with N(x, f).

For strongly separated, again, let N = {N(y, f) : y ∈ Qf}. We
need to show that

⋃N is closed. Suppose x /∈ Qf and y ∈ Qf . If
x /∈ N(y, f), then either x is incompatible with N(y, f) or, by Fact
4.4, y \ x is infinite. Since y \ x 6>∗ f , N(x, f) ∩ N(y, f) = ∅. So
either x ∈ N(y, f) for some y ∈ Qf or N(x, f)∩N(y, f) = ∅ for all
y ∈ Qf .

(3) For closed, if x /∈ Qz, then x 6⊆∗ y for all y ∈ Qz, so N(x, f)∩
Qz = ∅ for any f .

For separated, let f >∗ z and N = {N(y, f) : y ∈ Qz}. We need
to show that N is pairwise disjoint. If y, w ⊆∗ z and y 6=∗ w, then,
without loss of generality, y \ w is infinite. So y is incompatible
with N(w, f).

For strongly separated, again, let f >∗ z and N = {N(y, f) : y ∈
Qz}. We need to show that

⋃N is closed. Suppose x ∈ P \⋃N .
Then x /∈ Qz and x \ y is infinite for all y ∈ Qz. We will show
that N(y, f) ∩ N(x, f) = ∅, for all y ∈ Qz. Suppose, by way of
contradiction, that N(y, f) ∩ N(x, f) 6= ∅ for some y ∈ Qz. Then
x is compatible with y and x \ y >∗ f . Since y ⊆∗ z <∗ f , y \ x is
finite. So y ⊆∗ x ∩ z. Hence, x ∈ N(y, f). ¤

Corollary 4.6. Let F ∈ [ωω]≤b andX = {x : ∃f ∈ F x ≤∗ f}.
Let Y be a fine transversal of X. Then Y is an ultraparacompact
subspace of P .

Proof: Each Qf is closed and each Y ∩Qf is strongly separated,
so by Lemma 2.10, we’re done. ¤

Corollary 4.6 was implicit in the literature from the 1970s and
1980s.

The following machinery produces pairwise disjoint neighbor-
hoods in more general situations.

Definition 4.7. Let a ∈ [ω]ω. n+
a = inf(a\(n+1)), and if a∩n 6= ∅,

then n−a = sup(a ∩ n).
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Definition 4.8. (1) >(x) = {n ∈ dom x : ∀m ∈ dom x, if m ≤ n,
then x(m) ≤ x(n)}.

(2) x> = x|>(x).
(3) f À x iff ∀m f(m) > x(m+

>(x)). f À∗ x iff ∀∞m f(m) >

x(m+
>(x)).

In particular, if f À x, then f > x; if f À∗ x, then f >∗ x.
Here’s an example of how > works. Let x(6n) = 3n + 3, x(6n +

1) = 3n + 2, x(6n + 2) = 3n + 1, x(k) undefined otherwise. Then
>(x) = {6n : n < ω}, and x>(m) = m

2 +3 for all m ∈ >(x). If f À∗
x, then for all n ∈ [0, 6), f(n) > 6 (because x(6) = 6); for all n ∈
[6, 12), f(n) > 9 (because x(12) = 9); for all n ∈ [12, 18), f(n) > 12
(because x(18) = 12); and so on.

The > operation is problematic. If x is bounded by a constant
function, then >(x) may be finite; for example, suppose x(0) = 5,
but for all n > 0, x(0) = 2. Hence, if x =∗ y and x is bounded by
a constant function, we might have x> 6=∗ y>; in our example, let
y(n) = 2 for all n.

But if x is not bounded by a constant function, then ∀y =∗
x x> =∗ y>. By Theorem 4.5(1) and the proof of Lemma 2.10, a
fine transversal Y is a (strongly) paracompact subset of P if and
only if Y \ B is a (strongly) paracompact subset of P , where B is
as in Theorem 4.5.

Also, if we define Fin = {x ∈ P : dom x is finite} and ω̄ to
be the function in (ω + 1)ω whose constant value is ω, then x ∈
Fin iff ϕ←(x) =∗ ω̄. Hence, a fine transversal Y is a (strongly)
paracompact subset of P if and only if Y \ (B∪Fin) is a (strongly)
paracompact subset of P .

This leads us to the following.

Definition 4.9. P ∗ = P \ (B ∪ Fin).

From now on we restrict ourselves to P ∗ and reserve the letters
x, y, z, w for elements of P ∗.

Let us get back to >.

Lemma 4.10. Tx = {y : y> =∗ x} is closed and any fine transver-
sal of Tx is strongly separated.

Proof: Let f À x. Let N = {N(y, f) : y ∈ Tx}.
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For closed, if z ⊆∗ y and >(y) ⊆∗ >(z), then>(y) =∗ >(z).
Hence, if z /∈ Tx, y ∈ Tx, and y ⊃∗ z, then >(y) \ >(z) is infinite;
hence, y 6>∗ f . So if z /∈ Tx, then N(z, f) ∩ Tx = ∅.

For discrete, suppose y, z ∈ Tx. If y \ z is infinite, then ∀∞n ∈
dom (y \ z), n /∈ dom y> =∗ dom x, and y(n−>(y)) = x(n−>(y)). For
such n, let m = n−>(y). Then y(n) < y(m) = x(m) ≤ x(n+

>(y)) <

f(n). So y is incompatible with N(z, f) and N is a pairwise disjoint
cover of Tx.

For strongly separated, suppose z /∈ ⋃N . If y ∈ Tx and y ⊆∗ z,
then by Fact 4.4(c), z is incompatible with N(y, f), so N(z, f) ∩
N(y, f) = ∅. By the argument in the preceding paragraph, if y ∈ Tx

and y \ (z ∪ x) is infinite, then y is incompatible with N(z, f).
And if y ∈ Tx and y \ z ⊆∗ x, then dom (y \ z) ⊆∗ >(y) and
∀∞n ∈ >(y) y(n) < f(n). So y is incompatible with N(z, f). ¤

Section 6 is based largely on the following lemma.

Lemma 4.11. Let INC = {x : for all but finitely many pairs
n < m ∈ from dom x x(n) ≤ x(m)}. INC is closed in P ∗ and
every fine transversal of INC is strongly separated.

Proof: For closed, if x /∈ INC and y ⊃∗ x, then y /∈ INC, so
every N(x, f) ∩ INC = ∅.

For separated, for all x ∈ INC, let fx À x. For x, y ∈ INC,
suppose E = x \ y is infinite. For k ∈ E, let nk = k+

dom y. If x(k) >

y(nk), then, because x ∈ INC, nk ∈ dom (y \ x) and y(nk) <
x(k) ≤ x((nk)+dom x) < f(nk). If x(k) < y(nk), then x(k) < g(k).
At least one case holds infinitely often, so N(x, fx) ∩N(y, fy) = ∅.

For strongly separated, for all y ∈ INC, let fy À y. Fix x /∈
INC and let g = 1 + fx> . We will show, for all y ∈ INC, that
either N(y, fy) ∩ N(x, g) = ∅ or x ∈ N(y, fy). Since there is at
most one y ∈ INC with x ∈ N(y, fy), this will complete the proof.

So assume y ∈ INC and y and x are compatible. Assume that
N(y, fy)∩N(x, g) 6= ∅. Then we may assume, by finite modification,
that x|dom y∩dom x = y|dom y∩dom x, x \ y > fy, and y \ x > g. Sup-
pose m ∈ dom (y \ x). If m+

>(x) ∈ dom y, then y(m) ≤ y(m+
>(x)) =

x(m+
>(x)) < g(m). Hence, ∀m ∈ dom (y \ x) m+

>(x) /∈ dom y. But
for such m, y(m) > g(m) > x(m+

>(x)); hence, x(m+
>(x)) < fy(m) ≤



MORE PARACOMPACT SUBSPACES OF ¤(ω + 1)ω 63

fy(m+
>(x)). But by assumption, x \ y > fy. Hence, y ⊆∗ x. But

then x ∈ N(y, fy). ¤

Lemma 4.11 is one of the main theorems of [10].

5. Equivalence relations

Our main tool is a class of equivalence relations which are coarser
than =∗.

Definition 5.1. Let ≈ be an equivalence relation on P ∗. We say
that ≈ is a good equivalence relation if and only if there is a parti-
tion {Pα : α < λ} of P ∗, λ ≤ b, and there is a strict pre-order ≺≈
where

(a) if x =∗ y, then x ≈ y;
(b) each

⋃
β<α Pβ is a closed subset of P ∗;

(c) if x ∈ Pα and x ≈ y, then y ∈ Pα;
(d) if x ≈ y and z ≺≈ x, then z ≺≈ y;
(e) if x ∈ Pα and y ≺≈ x, then y ∈ Pβ for some β < α;
(f) if y, z ∈ Pβ and y, z ≺≈ x, then y ≈ z;
(g) ∀x ∈ P ∗∃fx so if N(x, fx)∩N(y, fy) 6= ∅, then either x ≺≈ y

or y ≺≈ x or x ≈ y;
(h) if x ⊆∗ y, then y 6≺≈ x.

If x ∈ Pα, we write rk≈(x) = α. Note that, by conditions (g)
and (h), if y ∈ N(x, fx), then either x ≺≈ y or x ≈ y.

Lemma 5.2. Let ≈ be a good equivalence relation and define Uα =
{N(x, fx) : x ∈ Pα} where fx and Pα are as in Definition 5.1. Let
Yα be an ≈-transversal of Pα and Vα = {N(y, fx) : y ∈ Yα}. Then

(a)
⋃

β<α Pβ ∩
⋃Uα = ∅;

(b) if x, y ∈ U ∩ Pα, U ∈ Uα, then x ≈ y;
(c) if x ∈ ⋃

β>α Pβ \
⋃Vα, then there is an open neighborhood

W of x with W ∩⋃Vα = ∅.
Hence, Yα is strongly discrete in Yα ∪ (P ∗ \⋃

β≤α Pα).

Proof: (a) follows by condition (h) in Definition 5.1.

(b) By conditions (e), (g), and (h), if x, y ∈ U ∩Pα and U ∈ Uα,
then x ≈ y.
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(c) By condition (f), if x ∈ ⋃
β>α Pβ \

⋃Vα, then there is at most
one y ∈ Yα with N(x, fx) ∩N(y, fy) 6= ∅. W = N(x, fx) \N(y, fy)
is the desired neighborhood. ¤

An immediate corollary to Lemma 5.2 is the following.

Corollary 5.3. Let ≈ be a good equivalence relation on P ∗, where
λ and Pα are as in Definition 5.1. Let Yα be an ≈-transversal of
Pα for each α.

1. Yα is strongly separated in Yα ∪ (P ∗ \⋃
β≤α Pβ).

2.
⋃

α<λ Yα is an ultraparacompact subspace of P ∗.

And a corollary to Corollary 5.3 is the following.

Corollary 5.4. If ≈ is a good equivalence relation on P ∗ and
ht(≈) < b, then every ≈-transversal is a strongly ultraparacompact
subspace of P ∗.

Proof: Given an ≈-transversal Y , define Yα = Y ∩ Pα, where
{Pα : α < ht (≈)} is as in Definition 5.1. We are done by Corollary
5.3. ¤

In fact, we can enlarge the Yα’s of Lemma 5.2.

Definition 5.5. Let ≈ be an equivalence relation. For y ∈ P ∗,
define y ↓≈= {x : x ≈ y and x ⊆∗ y}. Let Y be an ≈-transversal
of P ∗, and for each y ∈ Y , suppose Dy is a fine transversal of
{y ↓≈: y ∈ Y } with y ∈ Dy. We call

⋃
y∈Y Dy a downward ≈-

completion of Y .

Lemma 5.6. Let ≈ be a good equivalence relation. Let Yα be an
≈-transversal of Pα and let Dα be a downward ≈-completion of Yα.
Then Dα is strongly discrete in Dα ∪ (P ∗ \⋃

β≤α Pα).

Proof: Let Uα = {N(x, fx) : x ∈ Dα}, where fx is as in Definition
5.1. If y ∈ Yα and y ≈ x, let gx > y, fx. As in the proof of
Theorem 4.5(3), if x, z ∈ y ↓ and x 6=∗ z, then N(x, gx)∩N(z, gz) =
∅. As in the proof of Lemma 5.2, if x, z ∈ Dα and x 6≈ z, then
N(x, gx)∩N(z, gz) = ∅. So Dα is discrete. For strongly discrete, let
x ∈ P ∗ \⋃

β≤α Pα and let N = N(x, fx). Then N ∩N(z, fz) = ∅ for
all z ∈ Dα with z 6≺ x. There is at most one element Yα with y ≺ x.
By Theorem 4.5(3), x has a clopen neighborhood M so M ∩y ↓= ∅.
So N ∩M is the desired neighborhood with N ∩M ∩Dα = ∅. ¤

An immediate corollary to Lemma 5.6 follows.
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Corollary 5.7. Let ≈ be a good equivalence relation on P ∗, let
Yα be an ≈-transversal of Pα, where {Pα : α < λ} is as in Def-
inition 5.1, let Dα be a downward ≈-completion of Y , and let
D =

⋃
α<λ Dα.

1. Dα is strongly separated in D \⋃
β<α Pβ.

2.
⋃

α<λ Dα is an ultraparacompact subspace of P ∗.

And below is a corollary to Corollary 5.7.

Corollary 5.8. If ≈ is a good equivalence relation on P ∗ and
ht(≈) < b, then every downward ≈-completion of an ≈-transversal
is a strongly ultraparacompact subspace of P ∗.

Definition 5.9. Let {Pα : α < λ} be as in Definition 5.1 for the
good equivalence class ≈. We say that λ is a height of ≈. We define
ht(≈) to be the least such λ.

Hence, by Lemma 2.10, we have the following corollary.

Corollary 5.10. Let ≈ be a good equivalence relation where
ht(≈) < b, and suppose {Zβ : β < λ} is a pairwise disjoint family
of downward ≈-completions of ≈-transversals, where λ < b. Then
Z =

⋃
β<λ Zβ is a strongly ultraparacompact subspace of P ∗.

Proof: Let {Pα : α < ht(≈)} be as in Definition 5.1. Let Dα,β =
Zβ ∩ Pα and Wα =

⋃
β<λ Dα,β. It suffices to show that each Wα is

strongly ultraparacompact in Z \⋃
β<α Pβ. Each Dα,β is strongly

separated in Dα,β ∪ (P ∗ \⋃
γ<α Pγ). By condition (g) of Definition

5.1, if β < γ, then for each y ∈ Dα,γ , there is at most one z ∈ Dα,β

with N(y, fy)∩N(z, fz) 6= ∅ (where fy and fz are as in condition (g)
of Definition 5.1). So {N(y, fy)\

⋃
β<γ

⋃
z∈Dα,β

N(z, fz) : y ∈ Dα,γ}
is a closed discrete family separating Wα. ¤

Now that we know how useful good equivalence relations are, we
need to find some examples.

6. The ⊥ decomposition

We make use of Lemma 4.11 to define our first equivalence rela-
tion.

Definition 6.1. Let x ∈ P ∗. ⊥(x) = {n ∈ dom x : ∀m ∈ dom x if
n ≤ m, then x(n) ≤ x(m)};x⊥ = x|⊥(x).
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That is, ⊥ is a sort of inverse of >.
For example, again consider the function x(6n) = 3n+3, x(6n+

1) = 3n + 2, x(6n + 2) = 3n + 1. Then ⊥(x) = {6n + 2 : n < ω}
and each x⊥(m) = m

2 .
Note that each x⊥ is in INC and that x ∈ INC iff x =∗ x> =∗

x⊥.
Using ⊥, we decompose elements of P ∗.

Definition 6.2. For x ∈ P ∗, we define xn inductively: x0 = x⊥; if
x \⋃

i≤n xi is infinite, then xn+1 = (x \⋃
i≤n si)⊥; if x \⋃

i≤n xi is
finite, then xn+1 = ∅.
Fact 6.3. x =∗ ⋃

n<ω xn.

Proof: For all i < ω inf range(xi) ≥ i. Hence, if k ∈ dom(xi)
for some i, i ≤ inf range(xi) ≤ x(k). We have only to consider the
case where there is k ∈ dom(x) such that ∀i < ω, k /∈ dom(xi).
Then k /∈ ⋃

i≤x(k) dom(xi). If all xi 6= ∅ for i ≤ x(k), then x(k) >

inf range(xx(k)) ≥ x(k), a contradiction. So there is i ≤ x(k) with
xi = ∅, and by definition, x =∗ ⋃

i<ω xi. ¤

The next fact says that taking subsets cannot increase the levels
of the ⊥ decomposition and taking supersets cannot decrease it.

Fact 6.4. (1) If w ⊆ x and k ∈ dom xn ∩w, then k ∈ dom wm for
some m ≤ n.

(2) If x ⊆ w and k ∈ dom xn, then k ∈ dom wm for some m ≥ n.

The next lemma tells us what happens vis-a-vis initial segments
and tails of functions.

Lemma 6.5. (1) If k ∈ dom xn, then ∀m ≤ n; if j < k and j ∈
dom xm, then xm(j) < xn(k) = x(k).

(2) Suppose k ∈ dom xn and let w = x|ω\k. Then k = inf dom
wn.

Proof: (1) is immediate.

As for (2), by definition, each wi = xi|ω\k. ¤

Here is the equivalence relation.

Definition 6.6. Let x, y ∈ P ∗. x ≈⊥ y if and only if each xn =∗ yn.
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Note that if x =∗ y, then x ≈⊥ y, so condition (a) of Definition
5.1 holds.

We define a rank function which will establish the stratification
of Definition 5.1.

Definition 6.7. For n < ω, rk x = n if and only if each xm is
infinite for m ≤ n and x =∗ ⋃

m≤n xm; if xn is infinite for all n,
then rk x = ω.

Here is the stratification.

Definition 6.8. For n ≤ ω, define Pn = {x ∈ P ∗ : rk x = n}.
We relate > and ⊥.

Fact 6.9. (1) If rk x = n < ω, then x> =∗ xn and x =∗ y for all
y ≈⊥ x.

(2) If f À x>, then f > xn for all n < rk x.

Proof: (1) is clear.
For (2), ∀k ∈ dom xn, f(k) > x>(k+

>(x)) ≥ x(k) = xn(k). ¤

In [10], it is shown (using different notation) that any fine trans-
versal of

⋃
n<ω Pn∪{x ∈ Pω : ∀n < ω inf dom xn < inf dom xn+1}

is paracompact, along with some generalizations. In this paper, we
concentrate on ≈⊥.

Here is the associated pre-order.

Definition 6.10. Let x, y ∈ P ∗. x ≺≈⊥ y iff rk x < rk y and ∀m ≤
rk x xm =∗ ym.

≺≈⊥ is clearly transitive. Conditions (a), (c), (d), (e), (f), and
(h) of Definition 5.1 clearly hold.

We prove condition (b).

Fact 6.11. (1) If y ⊇∗ x, then rk y ≥ rk x.
(2) Let f À x>. If rk y < rk x, then y /∈ N(x, f).

Proof: (1) follows from Fact 6.4.
For (2), if y ∈ N(x, f), then y ⊇∗ xn; so rk y ≥ rk x by (1). ¤
Condition (b) is immediate from Fact 6.11(2). It remains to

prove condition (g).
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Lemma 6.12. If n < ω is least so xn 6=∗ yn, then either (xn \yn)∩
(x \ y) is infinite or (yn \ xn) ∩ (y \ x) is infinite.

Proof: By finite modification, we may assume x|dom x∩dom y =
y|dom x∩dom y and ∀j < n xj = yj . Hence, (xn ∪ yn) ∩ ⋃

j<n xj is
empty and

⋃
j<n xj =

⋃
j<n yj ⊆ x ∩ y.

Suppose there are infinitely many pairs m and k, where m ∈
dom xn, m < k ∈ dom yn, and xn(m) > yn(k). Then k /∈ dom xj

for all j ≥ n, and we already know that k /∈ dom xj for any j < n,
so (yn \ xn) ∩ (y \ x) is infinite.

Similarly, if there are infinitely many pairs m and k, where m ∈
dom yn, m < k ∈ dom xn, and yn(m) > xn(k), then (xn\yn)∩(x\y)
is infinite.

So we may assume that xn∪yn ∈ INC. Suppose xn\yn is infinite.
Fix m ∈ dom xn\ dom yn. Let j = m−

dom yn
and k = m+

dom yn
. For

all i > n, if s ∈ (j, k)∩ dom yi, then yi(s) > yn(k). So m /∈ dom y.
Hence, (xn \ yn) ∩ (x \ y) is infinite. ¤
Lemma 6.13. Suppose for all m < n, xm =∗ ym and (xn \ yn) ∩
(x \ y) is infinite. Suppose f À∗ xn and g À∗ yn. Then N(x, f) ∩
N(y, g) = ∅.

Proof: Let z = (xn\yn)∩(x\y). For i ∈ dom z, let mi = i−dom yn
.

Define E = {i ∈ dom z : xn(i) ≤ yn(mi)}, G = dom z \ E.
For all ∞i ∈ E, x(i) = xn(i) ≤ yn(mi) < g(i). Hence, if E is

infinite, x is incompatible with N(y, g).
So suppose E is finite. For all i ∈ G, y(mi) = yn(mi) < xn(i);

since i = (mi)+dom x, ∀∞i ∈ G xn(i) < f(mi).
If there are infinitely many i ∈ G with mi /∈ dom xn, then y is

incompatible with N(x, f).
Otherwise, let ki = i+dom yn

for all i ∈ G. If there are infinitely
many i ∈ G with xn(i) ≥ yn(ki), then infinitely many ki /∈ dom x
and y is incompatible with N(x, f).

The only remaining possibility is that ∀∞i ∈ G, xn(i) < yn(ki),
in which case, x is incompatible with N(y, g). ¤
Corollary 6.14. If rk x ≤ rk y, f À∗ xn for all n and g À∗ yn

for all n, and N(x, f) ∩N(y, g) 6= ∅, then x ≺≈⊥ y or x ≈⊥ y.

Proof: Otherwise, the least n so xn 6=∗ yn satisfies the hypoth-
esis of Lemma 6.13 (possibly exchanging the roles of x and y), so
N(x, f) ∩N(y, g) = ∅. ¤
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Corollary 6.14 immediately proves condition (g). Hence,

Theorem 6.15. ≈⊥ is good.

Applying corollaries 5.4, 5.8, and 5.10, we have the following
theorem.

Theorem 6.16. (1) An ≈⊥-transversal is strongly ultraparacom-
pact.

(2) If Y is an ≈⊥-transversal, then Y ↓ is strongly ultraparacom-
pact.

(3) If λ < b and Z is the union of λ many downward ≈⊥-
completions of ≈⊥-transversals, then Z is strongly ultraparacom-
pact.

7. An unbounded family and its equivalence relation

In this section, we define a different decomposition and use it to
define a different good equivalence relation.

Fix ~h = {hβ : β < b} an unbounded subset of ωω where each hβ

is strictly increasing, and if β < γ, then hβ <∗ hγ .
The next definition uses this unbounded family to decompose

each element of P ∗.

Definition 7.1. (1) For x ∈ ωω, L(x, f) = {n : x(n) ≤ f(n)}.
(2) β(x, 0) is the least β with L(x, hβ) infinite; xβ(x,0) =

x|L(x,hβ(x,0)).
(3) We define β(x, γ) by induction: it is the least β with L(x \⋃

ρ<γ xβ(x,ρ), hβ) infinite; xβ(x,γ) = (x|L(x\⋃ρ<γ xβ(x,ρ),hβ(x,γ))).
(4) Ex = {β < b : ∃γ β = β(x, γ)}.
For β = β(x, γ) ∈ Ex, we write xβ instead of xβ(x,γ).

Fact 7.2. (1) If β 6= γ ∈ Ex, then xβ ∩ xγ = ∅.
(2) Ex is countable.
(3) x =∗ ⋃

β∈Ex
xβ.

Proof: (1) is by definition.
For (2), x ⊇ ⋃

β∈Ex
xβ and x is countable.

For (3), let y = x \⋃
β∈Ex

xβ. If y is infinite, then there is α /∈
Ex α ≥ sup Ex with L(y, hα) infinite, contradicting the definition
of Ex. ¤
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Given Fact 7.2, we write rk x = order type of Ex, δ(x) = inf b \
Ex. Note that Ex is a proper end-extension of Ey if and only if
Ex ∩ δ(y) = Ey.

Given ~h as above, we use this decomposition to define an equiv-
alence relation ≈~h

and a strict pre-order ≺~h
, and we show that ≈~h

is good.

Definition 7.3. (1) x ≈~h
y if and only if Ex = Ey and ∀β ∈

Ex xβ =∗ yβ.
(2) y ≺~h

x if and only if Ex is a proper end-extension of Ey, and,
for all β ∈ Ey, xβ =∗ yβ.

(3) Pα = {x ∈ P ∗ : rk x = α}.
Note that Ex is finite if and only if (x ≈~h

y iff x =∗ y).
By definition, we have the following fact.

Fact 7.4. Conditions (a), (c), (d), (e), (f), (h) of Definition 5.1
hold.

We relate this decomposition to the topology.

Lemma 7.5. For all x, let fx > hδ(x).
(a) If y ∈ N(x, fx), then x ≈~h

y or x ≺~h
y.

(b) If N(x, fx) ∩N(y, fy) 6= ∅, then either x ≺~h
y or y ≺~h

x or
x ≈~h

y.

Proof: (a) Assume y ∈ N(x, fx). y ⊃∗ x and, for all β < δ(x), if
y 6=∗ x, then y \x >∗ hβ, so Ey ∩ δ(x) = Ex and ∀β ∈ Ex xβ =∗ yβ.

(b) Let z ∈ N(x, fx) ∩ N(y, fy). By (a), either (i) x, y ≺~h
z, or

(ii) y ≺~h
z and x ≈~h

z, or (iii) x ≺~h
z and y ≈~h

z. We need only to
consider (i): then by the definition of ≺~h

, either x ≺~h
y or y ≺~h

x
or x ≈~h

y. ¤
Theorem 7.6. ≈~h

is good.

Proof: Let fx be as in Lemma 7.5. Condition (g) follows from
Lemma 7.5(b). For condition (b): by Lemma 7.5(a), if rk x > β,
then N(x, fx) ∩ Pβ = ∅. ¤

As in the proof of Theorem 6.16,

Theorem 7.7. (1) An ≈~h
-transversal is strongly ultraparacompact.

(2) If Y is an ≈~h
-transversal, then Y ↓ is strongly ultraparacom-

pact.
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(3) If λ < b and Z is the union of λ many downward ≈~h
-

completions of ≈~h
-transversals, then Z is strongly ultraparacom-

pact.

8. Refining equivalence relations

In this section, we show how to iteratively refine equivalence
relations so that we get bigger paracompact subspaces.

Suppose we have a good equivalence relation ≈. Fix some y and
consider y∇≈ = {z : z ≈ y}. How can we partition each of these
equivalence classes further so that we can get bigger paracompact
subspaces? One way is to apply ≈ to {z \ y : z ∈ y∇≈}.
Definition 8.1. For a good equivalence relation ≈, and y ∈ P ∗,
we define z ≈y w if and only if z ≈ w ≈ y, z ∩ y =∗ w ∩ y, and
z \ y ≈ w \ y. If Y is a maximal ≈-transversal, we define ≈Y as
z ≈Y w if and only if ∃y ∈ Y z ≈y w. If ≺ is the partial order
associated with ≈ as in Definition 5.1, we write z ≺Y w if and only
if z ≺ y, or z ≈ w and z ∩ y =∗ w ∩ y and z \ y ≺ w \ y.

Each ≈y is an equivalence relation on y∇≈ . Since Y is a maximal
≈-transversal, the definition of ≈Y is unambiguous: For each z
there is exactly one y so that z ≈y w is possible for some w. Hence,
≈Y is an equivalence relation which refines ≈.

Now we generalize the definition of good so that the notion of
rank has two parameters.

Definition 8.2. Let ≈ be a good equivalence relation via {Pα :
α < λ}. Let Y be a maximal ≈-transversal. For α, β < λ, Pα,β =
{x ∈ Pα : ∃y ∈ Y x \ y ∈ Pβ}.
Definition 8.3. Given a good equivalence relation ≈ via {Pα : α <
λ} and Y an ≈-transversal, we say that the ordered pair (≈,≈Y )
is 2-good if and only if

(a) if x =∗ y, then x ≈Y y;
(b) each

⋃
ρ<α Pρ ∪

⋃
γ<β Pα,γ is a closed subset of P ∗;

(c) if x ∈ Pα,β and x ≈Y w, then w ∈ Pα,β;
(d) if x ≈Y w and z ≺≈Y x, then z ≺≈Y w;
(e) if x ∈ Pα,γ and y ≺≈Y x, then y ∈ Pα,β ∪

⋃
ρ<α Pρ for some

β < γ;
(f) if w, z ∈ Pα,β and w, z ≺≈Y x, then w ≈Y z.
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(g) ∀x ∈ P ∗∃gx so if N(x, gx)∩N(y, gy) 6= ∅, then either x ≺≈Y

y or y ≺≈Y x or x ≈Y y;
(h) if x ⊆∗ y; then y 6≺≈Y x.

Theorem 8.4. Suppose ≈ is good and Y is a maximal ≈-transversal.
Then (≈,≈Y ) is 2-good.

Before giving the proof, we need to look at projections of subsets
of P ∗.

Definition 8.5. Let A ∈ [ω]ω. xA = x|domx∩A. fA = f |A. If
Q ⊆ P ∗, then QA = {xA : x ∈ Q}.

Now we prove Theorem 8.4.

Proof: Again, (a), (c), (d), (e), (f), (h) in Definition 8.3 are
immediate.

For (b): if x /∈ ⋃
ρ≤α Pρ, then since ≈ is good, there is f with

N(x, f) ∩⋃
ρ≤α Pρ = ∅, and we’re done.

Otherwise, x ∈ Pα\
⋃

γ<β Pα,γ . There is f so N(x, f)∩⋃
β<α Pβ =

∅ and if z ∈ N(x, f) ∩ Pα, then z ≈ x. There is a unique y ∈ Y
with x ≈ y. Let A = dom (x \ y). There are two cases.

Case 1. A is infinite. By hypothesis, x \ y /∈ ⋃
γ<β Pγ . There is

g > f so N(x, g)A ∩ (
⋃

γ<β Pγ)A = ∅. Then N(x, g) is the desired
neighborhood disjoint from

⋃
ρ<α Pρ ∪

⋃
γ<β Pα,γ .

Case 2. A is finite. Then x ( y. Let g > y, f . Again, N(x, g) is
the desired neighborhood.

For (g): for each x, let y(x) be the unique element of Y with
x ≈ y(x), and define gx À y(x), fx, fx\y(x), where fx, fx\y(x) satisfy
condition (g) in Definition 5.1. Suppose N(x, gx) ∩ N(w, gw) 6= ∅.
Either x ≺ w or w ≺ x or x ≈ w. In the first two cases, we’re done.
In the latter case, y(x) ≈ x ≈ w ≈ y(w), so set y = y(x) = y(w).
Since each gx À y(x), by the technique of the proof of Theorem
4.5(3), if z ∈ N(x, gx) ∩ N(w, gw), then x ∩ y =∗ z ∩ y =∗ w ∩ y.
Hence, either x \ y ≺ w \ y or w \ y ≺ x \ y or x \ y ≈ w \ y, which
completes the proof. ¤

To get strongly paracompact subspaces out of a 2-good sequence
(≈,≈Y ), we need another definition.

Definition 8.6. For E ⊆ P ∗, E∇≈ = {y∇≈ : y ∈ E}
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Theorem 8.7. If ≈ is good, ht(≈) < b, Y is a maximal ≈-
transversal, (≈,≈Y ) is 2-good, and Z ⊃ Y is a maximal ≈Y -
transversal of P ∗, then Z is strongly ultraparacompact.

Proof: Y is strongly ultraparacompact; it remains to show that
Z \Y ∇≈Y is strongly ultraparacompact in P ∗ \Y ∇≈Y . Define Zα =
(Z \ Y ∇≈Y ) ∩ Pα, Zα,β = (Z \ Y ∇≈Y ) ∩ Pα,β. Imitating the proofs
in section 5, for each α, β < λ, Zα,β is ultraparacompact in P ∗ \
(Y ∇≈Y ∪ ⋃

γ<α Pγ ∪
⋃

γ<β Pα,γ). Hence, for each α < λ, Zα is
strongly ultraparacompact in P \⋃γ<α Zγ . So Z\Y ∇≈Y =

⋃
α<λ Zα

is strongly ultraparacompact in P ∗ \ Y ∇≈Y . ¤
As in corollaries 5.4 and 5.8, we have the following corollary.

Corollary 8.8. If ≈ is good, ht(≈) < b, Y is a maximal ≈-
transversal, (≈,≈Y ) is 2-good, Z ⊃ Y is a maximal ≈Y -transversal
of P ∗, and D is a downward ≈Y -completion of Z, then D is strongly
ultraparacompact.

Now we iterate this process: By induction, we define the notion
of α-good for α ≤ b. Note that 1-good = good.

First, we provide some notation.

Definition 8.9. (1) If τ, σ ∈ λβ, then τ < σ iff ∃γ < β τ |γ = σ|γ
and τ(γ) < σ(γ) (lexicographic order). We write ∆(σ, τ) = γ.

(2) If σ ∈ λβ and γ < λ, then σ_γ : β + 1 → λ, σ_γ|β = σ, and
σ_γ(β) = γ.

(3) If σ ∈ λβ, then ||σ|| = β.
(4) If σ ∈ λβ, then Sσ = {τ : τ < σ and ∆(σ, τ) = ||τ || − 1}.

Fact 8.10. If σ ∈ λβ andβ ≤ λ, then |Sσ| ≤ λ.

Proof: Let Sα = {τ < σ : τ |α = σ|α and τ(α) < σ(α)}. Each
|Sα| < λ, and Sσ =

⋃
α<β Sα. ¤

Definition 8.11. Given a sequence of equivalence relations {≈β:
β < α}, we say that {≈β: β < α} is coherent if and only if there is
a pairwise disjoint family of sets {Yβ : β < α} where each

⋃
γ≤β Yγ

is a maximal ≈β-transversal and
(a) if γ < β, then ≈β refines ≈γ ;

(b) each ≈β+1= ≈
⋃

γ≤β Yγ

β ;
(c) if β is a limit, then x ≈β w if and only if ∀γ < β x ≈γ w;
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(d) x ≺β+1 w if and only if either ∃γ ≤ β x ≺γ w or ∃y ∈⋃
γ≤β Yγ x ≈β y ≈β w, x ∩ y =∗ w ∩ y, and x \ y ≺β w \ y;

(e) if β is a limit, then x ≺β w if and only if ∃γ < β x ≺γ w.

Definition 8.12. A coherent sequence of equivalence relations {≈β:
β < α} is α-good if and only if there is λ < b and a family
{Pσ : σ ∈ λ<α} where

(a) if x =∗ y, then x ≈β y for all β;
(b) each

⋃
||τ ||<α Pτ is a closed subset of P ∗;

(c) each
⋃
||τ ||≤||σ|| Pτ ∪

⋃
γ<β Pσ_γ is a closed subset of P ∗;

(d) if x ∈ Pσ_β and y ≺≈||σ||+1
x, then y ∈ Pσ_γ for some

γ < β or y ∈ Pτ for some τ ( σ;
(e) if w, z ∈ Pσ and w, z ≺≈||σ|| x, then w ≈||σ|| z;
(f) ∀β ∀x ∈ P ∗ ∃gx,β so if N(x, gx,β) ∩ N(y, gy,β) 6= ∅, then

either x ≺≈β
y or y ≺≈β

x or x ≈β y;
(g) if x ⊆∗ y, then y 6≺≈β

x for all β.

The following is immediate.

Lemma 8.13. (1) If {≈β: β ≤ α} is coherent via {Yβ : β ≤ α}
and is α-good, then {≈β: β ≤ α} is α+1-good, where ≈α is defined
as in Definition 8.11 (with respect to

⋃
β≤α Yβ).

(2) If α is a limit and for all β < α there is Yγ so {≈γ : γ < β}
is coherent via {Yγ : γ < β} and is β-good, then {≈β: β < α} is
α-good.

(3) If α is a limit and for all β < α there is Yβ so {≈β: β < β <
α} is coherent via {Yβ : β < α} and is α-good, Yα ∩

⋃
β<α Yβ =

∅, Yα∪
⋃

β<α Yβ is a maximal ≈α-transversal, and ≈α+1 is defined as
in Definition 8.11 with respect to Yα ∪

⋃
β<α Yβ, then {≈β: β ≤ α}

is α + 1-good.

Theorem 8.14. If α ≤ b and {≈β: β < α} is α-good via {Yβ : β <
α}, then

⋃
β<α Yβ is ultraparacompact; if α < b, then

⋃
β<α Yβ is

strongly ultraparacompact; if Dβ is a downward ≈β-completion of
Yβ for each β < α, then

⋃
β<α Dβ is ultraparacompact and strongly

ultraparacompact if α < b.

Proof: At successor stages, the proof that each Yβ+1 is strongly
paracompact in P ∗ \⋃

γ≤β Y
∇β+1
γ is similar that of Theorem 8.7.
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Consider β a limit, and by induction, assume that
⋃

γ<β Yγ is
strongly paracompact. For each y ∈ Yβ, let yγ be the unique ele-
ment of Yγ with yγ ≈γ y, and let fy,γ so that {N(yγ , fy,γ) : y ∈ Yβ}
is a closed separated cover of Yγ . Let fy >∗ fy,γ for all γ. Then
N = {N(y, fy) : y ∈ Yβ} is a pairwise disjoint cover of Yβ by condi-
tion (f).

⋃N is closed, since, for each x ∈ P ∗, there is at most one
y(x) ∈ Yβ with x ≈β y(x). If x is compatible with N(y, fy) ∈ N ,
then y = y(x). So either x ∈ N(y(x), fy(x)) or there is a neighbor-
hood M of X with M ∩N(y(x), fy(x)) = ∅.

For downward ≈β-completions, use the techniques of Corollary
5.8. ¤

So the following conjecture would prove that ¤(ω + 1)ω is para-
compact.

Conjecture. There is a µ ≤ b and a µ-good sequence of equivalence
relations {≈β: β < µ} so that if {Yβ : β < µ} witnesses {≈β: β < µ}
is µ-good and Dβ is a downward ≈β-extension of Yβ for each β < µ,
then

⋃
β<µ Dβ is a maximal fine transversal.

By diagonalization, if b = c, the conjecture is true (for µ = b).
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