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A NOTE ON DUALITY PROPERTIES

ZUOMING YU AND ZIQIU YUN∗

Abstract. We prove that if a topological space X is dis-
crete complete and the union of a countable family of dually-
discrete spaces, then X is a compact space. We also study
the properties of dually closed countable spaces. At the end of
this paper, we prove that regular meta-Lindelöf star-compact
spaces with Gδ-diagonals are metrizable.

1. Introduction

An open neighborhood assignment (ONA), for a topological space
(X, τ) is a function φ : X → τ such that x ∈ φ(x). A set Y ⊆ X is
a kernel of φ if φ(Y ) = {φ(y) : y ∈ Y } covers X [5]. If φ is an ONA
on X and φ(x) = U(x), we will sometimes abuse the notation and
write φ = {U(x) : x ∈ X}. Given a property P that a subset of a
topological space might have, the class P∗ dual to P (with respect
to an ONA) consists of spaces X such that for any ONA φ on X,
there is Y ⊆ X with property P and φ(Y ) = {φ(y) : y ∈ Y } covers
X. It is a development of an idea Eric K. van Douwen and Washek
F. Pfeffer [6] used to define D-spaces. Many dually-P classes have
been studied in [15], [5], [2], [1].
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In this paper, we study some properties of dually discrete spaces
and dually closed countable spaces. We also study the metrization
theorems of star-compact spaces with Gδ-diagonals.

2. Notation and terminology

All spaces under consideration are assumed to be T1.
A space X is discretely complete if every infinite discrete subspace

has a complete accumulation point in X [3]. Clearly, discretely com-
pleteness is a property between compactness and countable com-
pactness. A noncompact discretely complete space was constructed
in [3].

A space X is linearly Lindelöf if every open cover of X, linearly
ordered by the subset relation, has a countable subcover.

A subset S of space X is called preopen if S ⊆ int(clS). A
space is strongly Lindelöf if every preopen cover of X admits a
countable subcover. A space is d-Lindelöf if every cover of X by
dense subsets has a countable subcover. A space is said to be
monotonically-Lindelöf if one can assign to every open cover U a
countable open cover r(U) refining U such that r(U) refines r(V)
whenever U refines V.

Let m be a cardinal number. A space X is said to be m-
expandable (discretely m-expandable, respectively), if for every
locally finite (discrete, respectively) collection {Fλ : λ ∈ Λ} of a
subset of X with Λ ≤ m, there exists a locally finite collection
{Gλ : λ ∈ Λ} of open subset of X such that Fλ ⊆ Gλ for each
λ ∈ Λ. A topological space is said to be expandable, if it is m-
expandable for every cardinal number m [12].

Given a class P of topological spaces, say that a space X is star-
P if, for any open cover U of the space X, there is a subspace
Y ⊂ X, such that Y ∈ P and {st(y,U) : y ∈ Y } covers X, where
st(y,U) =

⋃{U ∈ U : y ∈ U} [14]. A space X is said to be star-
compact (finite, countable, respectively) if, for every open cover U
of X, there is a compact (finite, countable, respectively) subspace
Y such that {st(y,U) : y ∈ Y } covers X.

3. Union of dually discrete spaces

It is not difficult to prove that X is dually discrete if it is the
union of finitely many discrete subspaces. In [5], the authors asked
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whether X is dually discrete if it is a countable union of discrete
subspaces ([5, Problem 4.9]). It was proved in [1] that a space is
compact if and only if it is dually discrete and discrete complete.
The following theorem not only gives a partial answer to the above
question, but also improves the above result in [1]. The proof of
our result is a modification of that of [16, Theorem 2].

Theorem 3.1. Suppose that X is discrete complete and the count-
able union of dually-discrete spaces, then X is a compact space.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.2 ([9]). A space X is linearly Lindelöf if and only if
whenever U is an open cover of X of cardinality κ and U has no
subcover of cardinality < κ, then cf(κ) ≤ ω.

Proof of Theorem 3.1: Let X =
⋃{Xi : i ∈ N} where Xi is

a dually discrete space for each i ∈ N . It is well known that a
linearly Lindelöf countably compact space is compact; hence, we
need only to prove that X is linearly Lindelöf since X is discrete
complete. Assume the contrary that X is not linearly Lindelöf.
Then by Lemma 3.2, there is an open cover U = {Uα : α < κ} of
some cardinality κ with cf(κ) > ω, such that U has no subcover of
cardinality < κ. Without loss of generality, we can assume that κ
is the minimal cardinality satisfying the condition.

Consider the ONA defined by φ(x) = Uαx for each x ∈ X, where
αx is the least such that x ∈ Uαx . For each i ∈ N , there is a
discrete subset Di of Xi such that φ(Di) covers Xi. Since U has
no subcover of cardinality < κ, there is some i0 ∈ N such that
|{αd : d ∈ Di0}| = κ, and it follows from the definition of αd that
we can assume that if y, z ∈ Di0 and y 6= z, then αy 6= αz.

STEP 0:
Let H0 be the subset of X consisting of all the complete accu-

mulation points of Di0 . It is easy to prove that H0 is closed in
X.

Claim 1. H0 ∩
⋃

φ(Di0) = ∅.
Assuming the contrary, we can pick x ∈ H0 ∩

⋃
φ(Di0). Then

there is d ∈ Di0 such that x ∈ φ(d). Since x is a complete accumu-
lation point, it follows that |Di0 ∩ φ(d)| = κ. On the other hand,
αy ≤ αd < κ for each y ∈ Di0 ∩ φ(d), which is a contradiction.
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Claim 2. U has no subfamily U0 of cardinality < κ, such that
U0 covers H0.

Assuming the contrary, there is some β < κ, such that H0 ⊆⋃{Uα : α < β} = V1. Then |{αd : αd ∈ Di0 ∩ V1}| = κ. So there is
some d ∈ Di0 such that αd > β. Since d ∈ V1, there is some α0 < β
such that d ∈ Uα0 , a contradiction to the definition of αd.

Let V0 = {Xi : Xi ∩H0 = ∅}.
Suppose that we have defined a closed subset Hβ of X and Vβ

for each β < α < ω1, such that
(1) Hβ ⊆ ∩γ<βHγ ;
(2) U has no subfamily Uβ of cardinality < κ, such that Uβ

covers Hβ;
(3) Hβ ∩

⋃Vβ = ∅ and Vγ1 ∩ Vγ2 = ∅ whenever γ1, γ2 ≤ β, and
γ1 6= γ2.

STEP α:

Case 1: α = β + 1.
Note that Hβ = ∪{Hβ ∩Xi : Xi ∈ {Xi : i ∈ N} \ {Vγ : γ ≤ β}},

and Hβ∩Xi is closed in Xi for each Xi ∈ {Xi : i ∈ N}\{Vγ : γ ≤ β}.
For each Xi ∈ {Xi : i ∈ N}\{Vγ : γ ≤ β}, let φ(x) = Uαx∩(Hβ∩Xi)
for each x ∈ Hβ ∩Xi. Then φ is an ONA on Hβ ∩Xi; hence, there
is a discrete subset Di of Hβ ∩Xi such that φ(Di) covers Hβ ∩Xi.
Since U has no subfamily of cardinality < κ covering Hβ, there is
some iβ ∈ N such that |{αd : d ∈ Diβ}| = κ, and we can assume
that if y, z ∈ Diβ , then αy 6= αz. Let H ′ be the subset consisting
of all the complete accumulation points of Diβ , then H ′ ⊆ Hβ. It
is easy to see that H ′ is a closed subspace of Hβ, hence closed in
X. With a similar proof to Step 0, H ′ ∩⋃

φ(Diβ ) = ∅, and U has
no subfamily U ′ of cardinality < κ, such that U ′ covers H ′. Let
Hα = H ′ and Vα = {Xi : Xi ∩H ′ = ∅} \ {Vγ : γ ≤ β}.

Case 2: α is a limit ordinal number.
Let Hα = ∩{Hβ : β < α}. Since X is discrete complete, hence

countably compact, Hα is a nonempty closed subset of X. U has
no subfamily Uα of cardinality < κ, such that Uα covers Hα, for
otherwise, there is some β < α, such that Uα covers Hβ by countable
compactness of X, which contradicts condition (2). Let Vα = {Xi :
Xi ∩Hα = ∅} \ {Vγ : γ < α}.

It is easy to prove that Hα and Vα satisfy conditions (1)–(3).
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Claim 3: There is some α < ω1, such that Hα ∩ (
⋃

({Xi : i ∈
N} \⋃{Vγ : γ ≤ α}) = ∅.

Otherwise, for each β < ω1, we can repeat the step above and
get disjoint families {Vβ : β < ω1}. But this contradicts the fact
that |{Xi : i ∈ N}| = ω.

On the other hand, Hα ∩
⋃{Vγ : γ < α} = ∅ by condition (3),

which means that Hα = ∅, which contradicts condition (2). This
contradiction implies that X is linearly Lindelöf. ¤
Remark 3.3. It is proved in [15, Example 2.3] that ω1 is dually
discrete; hence, the condition“discrete complete” can not be weak-
ened to “countably compact” in Theorem 3.1.

Proposition 3.4. If X is a union of finitely many strongly Lindelöf
subspaces, then X is a D-space.

Before we prove this proposition, we need the following lemmas.

Lemma 3.5 ([8, Proposition 2.2]). For a space X, the following
are equivalent:

(1) X is d-Lindelöf;
(2) X \ IX is countable, where IX is the set of isolated points

of X.

Lemma 3.6 ([8, Theorem 2.5]). For a space X, the following are
equivalent:

(1) X is strongly Lindelöf;
(2) X is Lindelöf and d-Lindelöf.

Lemma 3.7. d-Lindelöf is hereditary.

Proof: Let X be a d-Lindelöf space and A ⊆ X. Suppose that
{Aα : α < β} is a cover of A by dense subsets of A, then {Aα∪(X \
A) : α < β} is a cover of X by dense subsets. By the definition of
d-Lindelöf, there is a countable subcover {Aαn ∪ (X \ A) : n < ω}
of X. Then {Aαn : n < ω} covers A. ¤
Lemma 3.8. If X = X1 ∪X2, where X1 is a D-space and a closed
subspace of X such that for each open set U ⊇ X1, X \U is count-
able, then X is a D-space.

Proof: Suppose that φ is an ONA on X. Then there is a closed
discrete subset C of X such that

⋃
φ(C) ⊇ X1. Since X \⋃

φ(C)
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is a countable closed subset of X, there is a closed discrete subset
D of X such that

⋃
φ(D) ⊇ X \X1. It is obvious that C ∪D is a

closed discrete set in X and
⋃

φ(C ∪D) = X. ¤

Proof of Proposition 3.4: Suppose that X =
⋃k

i=1 Xi, where Xi

is strongly Lindelöf for each i ≤ k, and φ is an ONA on X.
Let Fi,1 = Xi \ IXi , where IXi is the set of isolated points of Xi.

By Lemma 3.5 and Lemma 3.6, Fi,1 is a countable subset of Xi.
Since Xi is strongly Lindelöf, for each open set U ⊇ Fi,1, Xi \ U is
countable. Hence, by Lemma 3.8, to prove that X is a D-space, we
only need to prove that Fi,1 is a D-space for each i ≤ k.

Let i1 ∈ {1, ..., k}, Kj,1 = Xj , and Kj,2 = Fi1,1 ∩ Kj,1, j ∈
{1, ..., k} \ {i1}. Then Kj,2 is strongly d-Lindelöf by Lemma 3.7.
Let Fj,2 = Kj,2 \ IKj,2 , where IKj,2 is the set of isolated points of
Kj,2. Since Fi1,1 ⊆ Fi1,1 ∪

⋃{Kj,2 : j ∈ {1, ..., k} \ {i1}} and for
each open set U ⊇ Fj,2, Kj,2 \ U is countable, by Lemma 3.8, to
prove that Fi1,1 is a D-space, we need only to prove that Fj,2 is a
D-space for each j ∈ {1, ..., k} \ {i1}.

Let i2 ∈ {1, ..., k} \ {i1} and Kj,3 = Fi2,2 ∩Kj,2, j ∈ {1, ..., k} \
{i1, i2}. Let Fj,3 = Kj,3 \ IKj,3 , where IKj,3 is the set of isolated
points of Kj,3. Since Fi2,2 ⊆ Fi1,1 ∪ Fi2,2 ∪

⋃{Kj,3 : j ∈ {1, ..., k} \
{i1, i2}} and for each open set U ⊇ Fj,3, Kj,3 \ U is countable, by
Lemma 3.8, to prove that Fi2,2 is a D-space, we need only to prove
that Fj,3 is a D-space for each j ∈ {1, ..., k} \ {i1, i2}.

We continue in this way. Let ik−1 ∈ {1, ..., k} \ {i1, ..., ik−2}
and Kj,k = Fik−1,k−1 ∩ Kj,k−1, j ∈ {1, ..., k} \ {i1, ..., ik−1}. Let
Fj,k = Kj,k \ IKj,k

, where IKj,k
is the set of isolated points of

Kj,k. Since Fik−1,k−1 ⊆ Fi1,1 ∪ Fi2,2 ∪ · · · ∪ Fik−1,k−1 ∪ Kj,k for
j ∈ {1, ..., k} \ {i1, i2, · · · , ik−1}, and for each open set U ⊇ Fj,k,
Kj,k \ U is countable, by Lemma 3.8, to prove that Fik−1,k−1 is
a D-space, we need only to prove that Fj,k is a D-space for j ∈
{1, ..., k} \ {i1, ..., ik−1}.

Since |Fj,k| ≤ ω and Fj,k ⊆ Fi1,1 ∪Fi2,2 ∪ · · · ∪Fik−1,k−1 ∪Fj,k for
j ∈ {1, ..., k} \ {i1, i2, · · · , ik−1}, Fj,k is a countable D-space.

Therefore, X is a D-space. ¤

Question 3.9. If X is a union of countably many strongly Lindelöf
subspaces, then is X a D-space (or dually discrete)?
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4. dually closed countable spaces

In [15, Corollary 2.9], dually countable was proved to be equiva-
lent to Lindelöf; hence, dually closed countable spaces are Lindelöf.
One can see that Lindelöf D-spaces and strongly Lindelöf spaces are
dually closed countable spaces, but dually closed countable spaces
need not be monotone Lindelöf, since there is a countable space
which is not monotone Lindelöf [13]. It is a long standing ques-
tion whether a regular Lindelöf space is a D-space, and a negative
answer to the following question also gives a negative one to the
following question.

Question 4.1. Is every Lindelöf space dually closed countable?

It is obvious that closed subspaces of dually closed countable
spaces are dually closed countable spaces. Open subspaces of dually
closed countable spaces may fail to be dually closed countable. For
example, the open subspace [0, ω1) of the compact space [0, ω1] is
not dually closed countable.

Proposition 4.2. If X is the countable union of closed dually
closed countable spaces, then X is dually closed countable.

Proof: Let X=
⋃

n<ω Fn, where Fn is a closed dually closed count-
able space for each n < ω. Suppose that φ is an ONA on X. Pick a
closed countable subset H1 of F1 such that φ(H1) covers F1. Since
F2 \

⋃
φ(H1) is closed in F2, we can find a closed countable subset

H2 of F2 \
⋃

φ(H1) such that φ(H2) covers F2 \
⋃

φ(H1). Note
that H2

∗ = H1 ∪ H2 is a closed countable subset of F1 ∪ F2 such
that φ(H2

∗) covers F1 ∪ F2. Inductively, as the collection φ(Fn \⋃
φ(H∗

n−1)) consisting of open subsets of X covers Fn \
⋃

φ(H∗
n−1),

we can pick a closed countable subset Hn of Fn \
⋃

φ(H∗
n−1) such

that φ(Hn) covers Fn \
⋃

φ(H∗
n−1). Note that H∗

n = H∗
n−1 ∪Hn is

closed countable subset of
⋃n

i=1 Fi such that φ(H∗
n) covers

⋃n
i=1 Fi.

Let H =
⋃

n<ω Hn. Then H is a countable subset of X such that
φ(H) covers X, and hence, we need only to prove that H is closed
in X. For each x /∈ H, take nx < ω and y ∈ Hnx such that x ∈ φ(y).
Then φ(y)∩Hn = ∅ whenever n > nx. Since H∗

nx
is closed, there is

a neighborhood U of x such that U ∩H∗
nx

= ∅. Then U ∩ φ(y) is a
neighborhood of x and (U ∩ φ(y)) ∩H = ∅. Therefore, H is closed
in X. ¤
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Corollary 4.3. Fσ subspaces of dually closed countable spaces are
dually closed countable.

Proposition 4.4. Dually closed countable spaces are invariant un-
der closed maps.

Proof: Let f : X → Y be a closed map between X and Y , such
that X is dually closed countable, and let φ = {U(y) : y ∈ Y } be an
ONA on Y . Define an ONA φ′ on X as follows: φ′(x) = f−1(U(y)),
if x ∈ f−1(y) for each x ∈ X. Since X is dually closed countable,
there is a closed countable subset F ⊆ X such that φ′(F ) covers X.
Hence, f(F ) is a closed countable subset of Y such that φ(f(F ))
covers Y . ¤
Proposition 4.5. Dually closed countable spaces are inversely in-
variant under countable-to-one closed maps.

Proof: Let f : X → Y be a closed map between X and Y such
that Y is dually closed countable. Assume that φ = {U(x) : x ∈ X}
is an ONA on X. Since f is closed, for each y ∈ Y , we can take
an open set V (y) in Y such that f−1(y) ⊆ V (y) ⊆ ⋃{U(x) : x ∈
f−1(y)}. Then {V (y) : y ∈ Y } is an ONA on Y . Take a countable
closed A of Y , such that {V (y) : y ∈ A} covers Y . Then f−1(A)
is a countable closed subset of X, since f is countable to one. It is
obvious that {U(x) : x ∈ f−1(A)} covers X. Therefore, X is dually
closed countable. ¤
Question 4.6. Is every dually closed countable space inversely
preserved under perfect mappings?

Notice that a negative answer to the above question will also
give us a Lindelöf space which is not a D-space, since Lindelöfness
is inversely preserved under closed mappings with Lindelöf fibers.

Remark 4.7. For a dually closed countable space X, X2 may fail
to be Lindelöf. For example, let X be the Sorgenfrey line. Then X
is a Lindelöf D-space, and hence X is dually closed countable. But
it is well known that X2 is not Lindelöf.

5. When are star-compact spaces with
Gδ-diagonals metrizable?

Lemma 5.1. If X is an ℵ0-expandable (discretely ℵ0-expandable,
respectively) star-compact space, then X is countably compact.
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Proof: We only prove for the case of ℵ0-expandable. Assume
the contrary, let D = {xn : n < ω} be an infinite closed discrete
subset of X. Since X is ℵ0-expandable, there is a locally finite
collection of open subsets U = {Un : n < ω} such that xn ∈ Un.
Let U ′ = {(Un \D) ∪ {xn} : n < ω} = {U ′

n : n < ω}. Clearly, each
U ′ of U ′ contains only one element of D. Let W = U ′⋃{X \ D}.
Obviously, W is a point-finite open cover of X. Since X is star-
compact, there is a compact subspace K of X such that {st(z,W) :
z ∈ K} covers X. Since st(a,W)∩D = ∅ for each a /∈ ⋃U ′, we have
K∩⋃U ′ 6= ∅. Because st(xn,W) = U ′

n for each xn ∈ D, K∩U ′
n 6= ∅

for each n < ω, else we have xn /∈ ⋃{st(z,W) : z ∈ K}. Pick
zn ∈ K ∩ U ′

n for each n < ω. Therefore, we get an infinite locally
finite subset of K since U ′ is locally finite, which is a contradiction
to the compactness of K. Hence, X is countably compact. ¤

Since normal spaces are discretely ℵ0-expandable, we have the
following corollary.

Corollary 5.2. Normal star-compact spaces are countably com-
pact.

Remark 5.3. Indeed, the result that normal star-compact spaces
are countably compact also follows from the fact that star-compact
spaces are pseudocompact [7, Theorem 2.1.6]. With a proof similar
to that of [7, Example 2.3.3], one can show that the Tychonoff plank
is star-compact but not countably compact.

Proposition 5.4. A Hausdorff star-compact space X with Gδ-
diagonal is metrizable if it is a countably paracompact space or a
wM-space.

Proof: Since wM-spaces are expandable [17], and countably para-
compact spaces are ℵ0-expandable [12], the proposition above fol-
lows from Lemma 5.1. ¤
Lemma 5.5. Let X be a star-compact space with Gδ-diagonal.
Then X is star-countable.

Proof: Assume that U = {Uα : α ∈ Γ} is an open cover of X.
Since X is star-compact, there is a compact subspace K of X, such
that st(K,U) = X. Since K also has a Gδ-diagonal, K is a compact
metrizable space, and hence K is separable. Let H be a countable
dense subset of K, and let U ′ = {U ∈ U : U ∩K 6= ∅}. Obviously,
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H ∩U 6= ∅ for each U ∈ U ′, and hence {st(y,U) : y ∈ H} covers X.
So, X is star-countable. ¤

Definition 5.6 ([10, Definition 1.2]). A topological space X is said
to have property (]) if, for each (uncountable) closed discrete subset
Z ⊂ X, there is an open neighborhood Vz for each z ∈ Z such that

(1) Vz ∩ Z = {z};
(2) V = {Vz : z ∈ Z} is point-countable.

It is known that separable spaces with property (]) are ω1-compact
[10, Theorem 1.1]. In fact, separable spaces are star-countable, but
the converse is not true; for example, [0, ω1) is star-countable but
not separable. We can improve the result above by the following
lemma.

Lemma 5.7. Star-countable spaces with property (]) are ω1-compact.

Proof: Let X be a space with property (]) and let Z be an un-
countable closed discrete subset of X. Pick an open neighborhood
Vz for each z ∈ Z such that

(1) Vz ∩ Z = {z};
(2) V = {Vz : z ∈ Z} is point-countable.

Let U = V⋃{X\Z}. Notice that st(x,U)∩Z is at most countable
for each x ∈ X; hence, X is not star-countable, a contradiction. So,
X is ω1-compact. ¤

A space is an aD-space [4] if for each closed subset F of X and
each open cover U of X, there exists a subset A of F , locally finite in
F , and a mapping φ of A into U such that a ∈ φ(a) for each a ∈ A,
and φ(A) = {φ(a) : a ∈ A} covers F . Obviously, T1 ω1-compact
aD-spaces are Lindelöf spaces.

Proposition 5.8. Regular star-compact aD-spaces with Gδ-diagonals
and property (]) are metrizable.

Proof: Let X be a regular star-compact aD-space with Gδ-
diagonal and property (]). Since X is an aD-space, X is a regular
Lindelöf space by Lemma 5.5 and Lemma 5.7. Hence, X is normal
and metrizable by Corollary 5.2. ¤

Corollary 5.9. Regular meta-Lindelöf star-compact spaces with
Gδ-diagonal are metrizable.
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Corollary 5.10. Star-compact Moore spaces with property (]) are
metrizable.

Acknowledgment. The authors sincerely thank the referee for a
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