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COCONNECTED SPACES
AND CLEAVABILITY

DERRICK STOVER

Abstract. A space X is said to be coconnected if |X| > 1
and for every connected subset C, X\C is connected. It is es-
tablished that every coconnected space can be mapped onto
a coconnected compactum by a continuous bijection. Also,
every coconnected compactum is the union of two linearly or-
dered continua intersecting only at end points. In particular,
every separable compact coconnected space is homeomorphic
to S1. Every continuum that is cleavable over the class of co-
connected spaces, together with the class of linearly ordered
topological spaces (LOTS), embeds into a coconnected space.
Thus, cleavability of continua over the class of LOTS can be
generalized to cleavability over coconnected spaces and their
connected subsets.

1. Introduction

The notion of coconnectivity was first presented in 2007 by
A. V. Arhangel’skii in a special seminar on general topology at
Ohio University. He posed this question: If a compact subset X of
R2 has the property that for every C ⊂ X such that C is connected,
X\C is also connected, then is it true that X is homeomorphic to
S1? An affirmative answer will follow from the more general results
of this paper.

We follow terminology from [3]. Recall that a connected set C is
said to be nondegenerate if |C| > 1. A space is said to be c-thick
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322 D. STOVER

if every nondegenerate connected subset has nonempty interior. A
space X is said to be c-simple if for every connected set C ⊂ X, C is
open in cl(C). Recalling that a LOTS is a linearly ordered topolog-
ical space, a space X is LOTS-connected if for any x, y ∈ X, there
exists L ⊂ X such that L contains x and y and is homeomorphic
to a LOTS. A space is hereditarily locally connected (hereditar-
ily LOTS-connected) if every connected subset is locally connected
(LOTS-connected). It is shown in [3] that every c-thick continuum
is hereditarily locally connected.

A space X is said to be cleavable over a class of spaces Γ if for each
A ⊂ X there exist Y ∈ Γ and a continuous function f : X −→ Y ,
such that f(A) = Y \f(X\A). We say that a space X is cleavable
over a space Y if X is cleavable over the family of all subsets of
Y . These concepts were originally introduced in [1]. One of the
first problems regarding cleavability was whether every continuum
which is cleavable over R could be embedded into R. In [3], this was
shown to be true. We ask a natural question: Is every continuum
which is cleavable over the class of LOTS linearly ordered? This
has been shown to be affirmative in [5].

In this paper, we seek to generalize this notion further. Put Ψ to
be the class of all coconnected spaces together with the class of all
linearly ordered spaces. In Theorem 2.12, we establish that every
coconnected space can be mapped onto a coconnected compactum
by a continuous bijection. From this result, we will see that it is
no loss of generality to assume all members of Ψ are compact. Fur-
thermore, Corollary 2.13 states that every coconnected compactum
is the union of two linear continua intersecting only at end points.
From this, cleavability over Ψ can be characterized as follows: A
continuum X is cleavable over Ψ if and only if for any A ⊂ X there
exist a coconnected space C and a continuous function f : X −→ C
such that f(A)

⋂
f(X\A) = ∅, provided we need not require that

f be onto. This paper aims to show that if a continuum X is cleav-
able over Ψ, then X is either linearly ordered or coconnected. In
either case, X embeds into a coconnected space.

All topological spaces are assumed to be Tychonoff.
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2. Coconnected spaces

Proposition 2.1. If X is coconnected and O is a nonempty open
connected subset of X, then either O = X or O = X\{a} where
a ∈ X, or there exists a, b ∈ X\O such that cl(O) = O

⋃{a, b}.
Proof: Assume O 6= X and O 6= X\{a} where a ∈ X. Cer-

tainly, O 6= cl(O). Suppose cl(O) = O
⋃{a} for some a ∈ X.

Then O is closed in X\{a} and hence, X\{a} is disconnected, but
{a} is connected. This is a contradiction. Now suppose that O is
dense. Assume there exist two distinct points a, b ∈ cl(O)\O. Then
X\{a, b} = cl(O)\{a, b} is connected, so {a, b} is connected, a con-
tradiction. Hence, cl(O) is not open, so choose c ∈ cl(O)\int(cl(O)).
Suppose there exist two distinct points a, b ∈ cl(O)\(O ⋃{c}). Both
cl(O) and X\cl(O) are connected. Also, c ∈ cl(X\cl(O)), which
implies (X\cl(O))

⋃{c}, is connected. But also c ∈ cl(O)\{a, b}.
Thus, ((X\cl(O))

⋃{c}) ⋃
(cl(O)\{a, b}) = X\{a, b} is connected,

which implies {a, b} is connected. This is a contradiction. There-
fore, we conclude that |cl(O)\O| = 2. ¤
Corollary 2.2. If X is coconnected and C is a nontrivial closed
connected subset of X, then C has exactly two noncut points a and
b, and C\{a, b} is an open connected set.

Proof: X\C is open and connected, so, by Proposition 2.1, there
exists {a, b} = cl(X\C)\(X\C). We need only show that every
point of C, except a and b, is a cut point. Choose c ∈ C\{a, b}.
Then c /∈ cl(X\C). Thus, (X\C)

⋃{c} is disconnected, and hence,
C\{c} is disconnected. ¤
Corollary 2.3. If X is coconnected and C is a nontrivial connected
subset, then C has at most two noncut points.

Proof: Suppose C has (at least) three noncut points. Then cl(C)
has three noncut points, which contradicts Corollary 2.2. ¤
Proposition 2.4. If X is coconnected and C is a nontrivial con-
nected subset (both |C| and |X\C| exceed 1), then C is open if and
only if it has no noncut points, and C is closed if and only if it has
two noncut points.

Proof: Assume C has no noncut points. Let c ∈ cl(X\C). Then
since C is connected, X\C is connected, and thus, (X\C)

⋃{c} is
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connected. Hence, C\{c} is connected, so c /∈ C. Therefore, X\C
is closed, so C is open. The other direction follows from Proposition
2.1.

Assume C has exactly two noncut points a and b. Suppose there
exists c ∈ cl(C)\C. Then cl(C) is a connected set with at least
three noncut points a, b, and c, a contradiction. ¤
Proposition 2.5. If X is coconnected, then X has no proper co-
connected subspace.

Proof: Let Y be a coconnected subspace. Then Y is connected
and has no cut point. Therefore, Y is a trivial subspace Y = X. ¤

We will say a space X has the 2C-Property if, for all x ∈ X,
there does not exist nondegenerate pairwise disjoint connected sets
A, B, and C with x ∈ cl(A)

⋂
cl(B)

⋂
cl(C).

Proposition 2.6. Every coconnected space has the 2C-Property.

Proof: Let X be coconnected and suppose there exist pairwise
disjoint connected sets A, B, and C with x ∈ cl(A)

⋂
cl(B)

⋂
cl(C).

Without loss of generality, we can assume the sets to be open
by Corollary 2.2. Since A

⋃
B

⋃{x} is connected, it follows that
X\(A⋃

B
⋃{x}) is connected. Since C ⊂ X\(A ⋃

B
⋃{x}), x ∈

cl(X\(A⋃
B

⋃{x}), and hence, X\(A ⋃
B) is connected. Thus,

A
⋃

B is connected. But A and B are disjoint open sets, so we
have a contradiction. Therefore, X satisfies the 2C-Property. ¤
Proposition 2.7. Every coconnected space is c-thick.

Proof: Let C be a non-degenerate connected subset of a cocon-
nected space X. Then there exist distinct points a, b ∈ C. Now
X\C is connected. If cl(X\C) = X, then X\C ⊂ X\{a, b} ⊂
cl(X\C). Thus, X\{a, b} is connected, and hence, {a, b} is con-
nected, a contradiction. Therefore, cl(X\C) 6= X, and hence, C
has nonempty interior. ¤
Corollary 2.8. Every coconnected space is c-simple.

Proof: Let C be a connected subset of X. Then |cl(C)\C| ≤ 2;
thus, cl(C)\C is discrete, so, clearly, C is open in cl(C). ¤
Proposition 2.9. If L, V ⊂ X are linearly ordered continua with
L

⋂
V = {a, b} where a and b are the end points of both L and V ,

then L
⋃

V is coconnected.
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Proof: Let C be a connected subset of L
⋃

V . If C is empty
or C = L

⋃
V , we are done, so assume C 6= ∅ and there exists

d ∈ L
⋃

V such that d 6∈ C. X∗ = (L
⋃

V )\{d} is homeomorphic
to a linearly ordered space with no noncut points. Thus, C is an
interval.

Case 1. X∗\C is empty, in which case (L
⋃

V )\C = {d}, which
is connected.

Case 2. C is an interval bounded on both ends. Then X∗\C has
two components with d in the closure (in L

⋃
V ) of each and thus,

(L
⋃

V )\C is connected.

Case 3. C is an interval bounded on one side. Then X∗\C is
connected with d in its closure (in L

⋃
V ) and thus, (L

⋃
V )\C is

connected. ¤

Theorem 2.10. If X is coconnected and H is a finite set of n
elements, then X\H has exactly n components.

Proof: Put H = {x, x1, ..., xn−1} ⊂ X. Let X∗ be the set X\{x}.
We will define a new topology on X∗ coarser than or equal to the
subspace topology. Take as a base for the topology of X∗ the collec-
tion Ψ = {O|O is an open connected subset of X and x /∈ O}. Note
that for any O, U ∈ Ψ, we see that X\O and X\U are connected
with x ∈ (X\O)

⋂
(X\U), so (X\O)

⋃
(X\U). Therefore, O

⋂
U is

connected. Thus, O
⋂

U ∈ Ψ, so Ψ is a base, and X∗ is a locally
connected, connected space. We shall say a subset B of X∗ is open,
closed, or connected in the topology defined on X∗ by the base Ψ
by writing BΨ is open, closed, or connected.

We claim that every open connected subset of X∗
Ψ is connected

in X. Let OΨ be open and connected where O ⊂ X∗. There
exists a collection {Aα|α ∈ I} where each Aα ∈ Ψ is an open
connected subset of X such that O =

⋃{Aα|α ∈ I}. Now, if O
is not connected, there exists a separation K, O\K where K,O\K
are both open and closed subsets of O. Since each Aα is connected,
either Aα ⊂ K or Aα ⊂ O\K. Thus, both K and O\K are the
union of open sets from X∗. Hence, KΨ, (O\K)Ψ is a separation of
OΨ, so the separation is trivial, a contradiction.

Now, if x1, ...xn−1 are points in X∗, we wish to show that
X∗\{x1, ..., xn−1} has n components (in the subspace topology).
We will proceed by induction. Clearly, X∗ (in either topology)
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is connected and as such has only one component. Assume X∗\
{x1, ..., xk−1} has exactly k components (in the topology inherited
from X). Then each is open and connected in X. There exists one
of these components A with xk ∈ A. A is also an open connected
(nontrivial) subset of X; thus, xk is a cut point of A by Proposition
2.4, and so A\{xk} is disconnected, implying there are at least two
components of A\{xk}. Now AΨ is connected. Each component of
(A\{xk})Ψ is open and connected in X∗

Ψ, thus open and connected
in X. Hence, each component of (A\{xk})Ψ is also a component in
X; therefore, each such component must have xk in its closure (in
X) by the connectivity of A. It then follows that there are at most
two by the 2C-Property. Thus, there are precisely two components
of A\{xk}. By our inductive assumption, this yields k + 1 compo-
nents for X∗\{x1, ..., xk−1, xk}. So the result is established. ¤

Proposition 2.11. Let L be a connected space with two noncut
points a and b such that for every point x ∈ L\{a, b}, L\{x} has
two components with a in one and b in the other. Then L can be
mapped by a continuous bijection onto a linearly ordered space with
end points a and b.

Proof: For each x ∈ L\{a, b}, let Cx be the component of L\{x}
containing a and let Dx be the component containing b. Define
an order on L by x < y if Cx ⊂ Cy and a < x and b > x for
all x ∈ L. Then any two elements are comparable. For if x ∈
Cy, then Dy

⋃{y} is a connected set containing b in L\{x}; thus,
Dy

⋃{y} ⊂ Dx, and hence, Cx ⊂ Cy. Similarly, if x ∈ Dy, then
Cy ⊂ Cx. That this is transitive follows from transitivity of “⊂.”
We need now to show that L∗, L with the topology induced by
this ordering, is a subtopology of L (L∗ is a coarser topology than
L). Let (x, y) ⊂ L∗. Then (x, y) = {z|Cx ⊂ Cz ⊂ Cy}. For each
z ∈ (x, y), we must have z ∈ Cy; otherwise, Cy is a connected set
containing a in X\{z}, and thus, Cy

⋃{y} ⊂ Cz, a contradiction.
Similarly, z ∈ Dx; hence, (x, y) ⊂ Dx

⋂
Cy. Let v ∈ Dx

⋂
Cy;

then since v ∈ Cy, we have Cv ⊂ Cy, and since x ∈ Cv, we have
Cx ⊂ Cv; thus, (x, y) = Dx

⋂
Cy, which is open. That (x, b] and

[a, x) are open follows similarly. Hence, L∗ is a coarser topology
on the same set, and L can be canonically mapped onto L∗ by a
one-to-one continuous mapping. ¤
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Theorem 2.12. If X is coconnected, then there exists a compact
coconnected space X∗ and a continuous bijection f : X −→ X∗.
Furthermore, X∗ is the union of two linearly ordered continua in-
tersecting only at end points.

Proof: Let a and b be distinct points of X. By Theorem 2.10,
X\{a, b} has two components: C1 and C2. Now every point x ∈ C1

is a cut point such that C1\{x} has two components: D1 and D2. If
a, b ∈ cl(D1), then since cl(C2) = C2

⋃{a, b}, then a and b are each
in the closure of C2, and a, b /∈ cl(D2); therefore, cl(D2) = D2

⋃{x}.
It follows that D2 is open and closed in X\{x}, so x is a cut point
of X, a contradiction. Thus (without loss of generality), a ∈ cl(D1)
and b ∈ cl(D2), so cl(D1) and cl(D2) are the two components of
C1

⋃{a, b}\{x}; a is in one and b is in the other. Therefore, by
Proposition 2.11, C1 can be mapped onto a linearly ordered space
C∗

1 by a continuous bijection with a and b mapping to the end
points. By properties of connected linearly ordered spaces, C∗

1 is
compact. Similarly, there exists a compact linearly ordered space
C∗

2 such that C2 can be mapped by a continuous bijection onto
C∗

2 with a and b mapping to end points. Let f and g be these
functions, respectively. Let X∗ be the space obtained as follows.
Put f(a) = g(a) and f(b) = g(b). Take as a base for the topology
for all points in C∗

1\{f(a), f(b)} to be the topology inherited from
C∗

1 . Treat C∗
2 similarly. For f(a), a set O with f(a) ∈ O is open if

O
⋃

C∗
1 and O

⋃
C∗

2 are open in C∗
1 and C∗

2 , respectively. Then X
maps onto X∗ by a one-to-one continuous function in a canonical
way. X∗ is compact and is coconnected by Proposition 2.9. ¤

Corollary 2.13. Every compact coconnected space is the union of
two linearly ordered continua sharing only endpoints.

Proof: By Theorem 2.12, every coconnected space can be mapped
onto such a space by a continuous bijection, and if the space is com-
pact, then this is a homeomorphism. ¤

Corollary 2.14. Every proper connected subset of a compact co-
connected space is linearly ordered.

Proof: Let X be a compact coconnected space and let C be
a proper subset. Choose a point p 6∈ C. Now by Corollary 2.13,
X = L

⋃
V where L and V are linearly ordered continua and L

⋂
V
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consists only of the end points of L and V . Without loss of gen-
erality, p ∈ L. Now L\{p} has at most two components. Each
component shares an end point with V . Since the union of two
linearly ordered subspaces sharing only an end point is linearly
ordered, it follows that X\{p} is linearly ordered. Since C is a
connected subspace, it is linearly ordered as well. ¤

Theorem 2.15. Every separable coconnected compactum is home-
omorphic to S1.

Proof: Let Y be a separable coconnected compactum. By Corol-
lary 2.13, there exist (separable) compact connected LOTS Y and
Z, such that X is obtained by associating the first and last points
of Y and Z with each other. By [9], Y and Z are homeomorphic
to [0, 1] and hence, X is homeomorphic to S1. ¤

Proposition 2.16. It is consistent with ZFC that every coconnected
compactum with countable Souslin number is homeomorphic to S1.

Proof: Let X be compact and coconnected with c(X) = ℵ0. By
Theorem 2.15, it will be sufficient to show that X is separable.
Since c(X) = ℵ0, it is sufficient to show that X is locally separable.
X has a base of linearly ordered connected sets. Since each such
set also has countable Souslin number, it follows from [8] that it is
consistent with ZFC to assume it is separable. ¤

Example 2.17. Let F be a Souslin line (which exists assuming
Martin’s axiom and not CH). That is, F is linearly ordered and has
countable Souslin number but is not separable. Let F ∗ = F

⋃
[0, 1]

where we put 0 and 1 to be the end points of F . Then F ∗ is
coconnected and c(F ∗) = ℵ0, but F ∗ is not homeomorphic to S1.

Theorem 2.18. If f : X −→ Y is a continuous bijection where X
is connected and locally connected and Y is a LOTS, then f is a
homeomorphism.

Proof: Let O be a nontrivial open connected subset of X. Then
f(O) is an interval. Now O = f−1(f(O)) is not closed, so f(O) is
not a closed interval.

Case 1. Suppose f(O) = [a, b) for some a, b ∈ Y . Then f(O)
⋃{b}

is closed, so cl(O) = O
⋃{f−1(b)}. It follows that O is closed and

open in X\{f−1(b)}. Now by local connectivity, f−1(b) must be
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in the closure of each component and it can be in the closure of
at most two disjoint connected sets. Note that O is a component
in X\{f−1(b)} being closed and open. Thus, X\(O ⋃{f−1(b)})
is connected, so f(X\(O ⋃{f−1(b)})) = (−∞, a)

⋃
(b,∞) is con-

nected; therefore, (−∞, a) = ∅, and hence, f(O) is open. Similarly,
if f(O) = (a, b], then f(O) is open.

Case 2. Suppose f(O) = [a,∞) for some a ∈ X. Then f−1(−∞, a)
= X\O is open, so O is open and closed, and hence, O = X, a con-
tradiction. Therefore, f(O) is open.

Since open connected sets form a base, f is an open mapping
and as such is a homeomorphism. ¤
Theorem 2.19. Every locally connected, coconnected space is com-
pact.

Proof: Let X be locally connected and coconnected. There ex-
ist a compact coconnected space X∗ and a continuous bijection
f : X −→ X∗. Let K be a nontrivial closed connected subset of X.
Then f(K) is a connected LOTS. Thus, f restricted to K is a home-
omorphism by Theorem 2.18. Since K is closed and connected, it
has two noncut points, so f(K) has two noncut points and thus is
compact. Applying the same argument to cl(X\K), we have X as
the union of two compacta, implying that it is compact. ¤
Proposition 2.20. If X is coconnected and locally compact at x,
then X is locally connected at x.

Proof: By Theorem 2.12, there exist a coconnected compact
space X∗, which is LOTS-connected, and a continuous bijection
f : X −→ X∗. For notational convenience, we will regard X∗ as the
same set as X but with a coarser topology. Fix y ∈ X\{x}. Let U
be open with x ∈ U . Let O be open with cl(O) ⊂ U and cl(O) com-
pact. Take a collection Γ of connected open sets at x in X∗ where
each V ∈ Γ is of the form (a, b) for some a, b ∈ X∗\{y}. This collec-
tion need not form a base but will be a pseudobase since

⋂
Γ = {x}.

In fact,
⋂{cl(V ))|V ∈ Γ} = {x}; hence, {X\cl(V ))|V ∈ Γ} is an

open cover of cl(O)\O which is compact. Thus, there exists a finite
subcollection V1, ..., Vk ∈ Γ such that {X\cl(Vi)|i = 1, ..., k} cov-
ers cl(O)\O. It follows that

⋂{cl(Vi)|i = 1, ..., k}⋂
(cl(O)\O) =

∅; thus, cl(O
⋂{cl(Vi)|i = 1, ..., k}) = O

⋂{cl(Vi)|i = 1, ..., k},
so this is closed and open in

⋂{cl(Vi)|i = 1, ..., k}. Now each
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cl(Vi), and thus each X\cl(Vi), is connected. Since y ∈ X\cl(Vi),⋃{X\cl(Vi)|i = 1, ..., k} is connected. Hence, the complement⋂{cl(Vi)|i = 1, ..., k} is connected, and thus,
⋂{cl(Vi)|i = 1, ..., k} ⊂

O. We now observe that each Vi = (ai, bi). Take a = max(a1, ..., ak)
and b = min(b1, ..., bk). Then x ∈ (a, b) ∈ ⋂{cl(Vi)|i = 1, ..., k} ⊂
O ⊂ U . We can conclude that X is locally connected at x. ¤

To summarize we have the following theorem.

Theorem 2.21. For a coconnected space X, the following are equiv-
alent.

(i) X is compact;
(ii) X is locally compact;
(iii) X is locally connected;
(iv) X is hereditarily locally connected;
(v) X is hereditarily LOTS-connected.

Proof: (i) implies (ii). That (ii) implies (iii) follows from Propo-
sition 2.20. That (iii) implies (i) is shown in Theorem 2.19.

That (i) implies (v) follows from Corollary 2.13. That (v) implies
(iv) implies (iii) is clear. ¤
Corollary 2.22. For a separable coconnected space the following
are equivalent.

(i) X is compact;
(ii) X is locally compact;
(iii) X is locally connected;
(iv) X is hereditarily locally connected;
(v) X is hereditarily path-wise connected;
(vi) X is homeomorphic to S1.

Example 2.23. A coconnected space need not be compact. Let
T = {(x, sin(x−1))|1 > x > 0} and let F be a set in R2 homeomor-
phic to a line segment disjoint from T with end points (1, sin(1))
and (0, 0). Put X = T

⋃
F . Then X is coconnected and even

path-wise connected but not locally connected at (0, 0) and thus
not compact. However, from Theorem 2.12, we see that X can be
mapped onto S1 by a continuous bijection.

3. Cleavability of continua over coconnected spaces

Proposition 3.1. If a space X is cleavable over the class of c-thick
spaces, then X is c-thick.
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Proof: Let A be a connected nontrivial subset of X. Let x ∈ A.
There exist a c-thick space Y and a continuous function f : X −→
Y such that f−1(f(A\{x})) = A\{x}. Now A\{x} is not closed,
so f(A\{x}) is not a point. Hence, f(A) is a nontrivial connected
set. Thus, there exists a nonempty open set O such that O ⊂ f(A).
Hence, O\{f(x)} is a nonempty open set and f−1(O\{f(x)}) ⊂ A.
It follows that X is c-thick. ¤

The following example answers a question posed in [3].

Example 3.2. There exists a c-thick, second countable continuum
which is not c-simple.

Proof: Observe that the space N×(0, 1] ⊂ R2 is locally compact.
Let X = N × (0, 1]

⋃{x} be the one point compactification of this
space. If C is any connected subset of X, then C

⋂
({n} × (0, 1]) is

a nontrivial connected subset of {n}× (0, 1] for some n ∈ N . Thus,
by c-thickness of (0, 1], there exists a nonempty open set O ⊂ (0, 1]
such that O ⊂ C, and since x 6∈ O, O is open in X. Therefore,
X is c-thick. That X is a continuum is clear and that it is second
countable follows from a standard argument.

Now {n} × (0, 1)
⋃{x} is connected for all n ∈ N . Put K =

N × (0, 1)
⋃{x}. Then K is connected and K is dense in X, but

X\K is homeomorphic to N , which is not compact; thus, K is not
open in cl(K). Therefore, X is not c-simple. ¤

We say a space X has the DCD-Property if for every nontrivial
connected subset C ⊂ X there exists a subset A of C such that A
and C\A are both dense in C.

Proposition 3.3. Every connected LOTS satisfies the DCD-
Property.

Proof: In [7], it was shown that every locally compact space
without isolated points has two disjoint dense subsets. ¤

Proposition 3.4. Every space with the DCD-Property that is cleav-
able over Ψ has the 2C-Property.

Proof: Let X have the DCD-Property and suppose that X is
cleavable over Ψ. Let x ∈ X and suppose there exist A,B,C ⊂ X,
all connected and pairwise disjoint with x ∈ cl(A)

⋂
cl(B)

⋂
cl(C).

Then let D be a dense subset of C with C\D dense in C. Choose a ∈
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A. Now put F = B
⋃

D
⋃{a} and G = (C\D)

⋃
(A\{a})⋃{x}.

There exist a coconnected space K and a continuous function f :
X −→ K such that f separates F and G. Now A

⋃{x} is connected;
hence, f(A

⋃{x}) is connected, and since f(a) 6= f(x), f(A
⋃{x})

is not a point. Thus, f(A
⋃{x}) is an interval. Furthermore, there

exists an open interval I such that I ⊂ f(A\{a}) and f(x) ∈ cl(I).
f(B) is not a point as x ∈ cl(B), but f(x) 6∈ f(B). Now B

⋃{x} is
connected, so f(B

⋃{x}) is a nontrivial connected set. Thus, there
exists an open interval J such that J ⊂ f(B) and f(x) ∈ cl(J).
f(D) and f(C\D) are dense subsets of f(C), and since f(D) is
disjoint from f(A\{a}), then f(D) is disjoint from I, and since
I

⋂
f(C) is an open subset of f(C), we conclude that I

⋂
f(C) = ∅.

Similarly, J
⋂

f(C) = ∅. f(C) is connected and, certainly, f(C) is
not a single point. Since f(x) is an isolated point in K\(I ⋃

J),
f(x) 6∈ f(C). Since I

⋃
J

⋃{x} is an open set containing f(x), then
f−1(I

⋃
J

⋃{x}) is an open set containing x which is disjoint from
C. This is a contradiction. Therefore, X has the 2C-Property. ¤
Proposition 3.5. If X is a hereditarily locally connected contin-
uum that is irreducible between a and b, and F is a subcontinuum
irreducible between a and c where b 6= c, then F 6= X.

Proof: There exists an open connected set O with b 6∈ cl(O) such
that c ∈ O. Let C be the component of X\cl(O) with a ∈ C. Now
if b ∈ C, then cl(C) is a continuum between a and b with c 6∈ cl(C),
which is a contradiction to irreducibility. Thus, b 6∈ C, and hence,
b 6∈ cl(C). By connectivity, cl(C)

⋂
cl(O) 6= ∅, so cl(C)

⋃
cl(O) is a

continuum containing a and c with b 6∈ cl(C)
⋃

cl(O). This would
contradict the irreducibility of F if we had F = X. ¤
Proposition 3.6. Every hereditarily locally connected continuum
irreducible between two points is linearly ordered.

Proof: Let X be a hereditarily locally connected continuum irre-
ducible between a and b. Let c ∈ X\{a, b}. Let L be an irreducible
continuum between a and c, and let K be an irreducible continuum
between b and c. Suppose there exists g ∈ K

⋂
L\{c}. Now let G

be a continuum irreducible between a and g in L, and let H be a
continuum irreducible between g and b in K. Now by Proposition
3.5, G < L implying c 6∈ G, and similarly, c 6∈ H. Thus, G

⋃
H is

a continuum containing a and b, and c 6∈ G
⋃

H. This contradicts
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the irreducibility of X. Thus, K
⋂

L = {c}. Since K
⋃

L is a con-
tinuum containing a and b, we have X = K

⋃
L. Thus, K\{c} is

closed and open in X\{c}. Therefore, c is a cut point such that
X\{c} has two components with a in one and b in the other. Hence,
by Proposition 2.11, X is linearly ordered. ¤

Proposition 3.7. If X is a locally connected space with the 2C-
Property and L and H are connected compact linearly ordered sub-
spaces of X with L

⋂
H 6= ∅, then L

⋃
H is either linearly ordered

or coconnected. In the latter case, X = L
⋃

H.

Proof: L\H is an open subspace of a locally connected space, so if
it is empty, then we are done. Otherwise, there exists a component
of L\H.

Case 1. This component is of the form (a, b). Then b is in the
closure of (a, b) and in the closure of each component of H\{b}
provided each is nonempty. So, by the 2C-Property, b must be an
end point of H. Similarly, a is the other end point of H. Thus,
(a, b) is the only component of L, and the same argument applied
to H shows that a and b are the end points of L. Hence, H

⋃
L

is coconnected. Since it is compact, X\(H ⋃
L) is connected and

open and the components have closure points in H
⋃

L. But every
point in H

⋃
L is in the closure of two disjoint connected sets in

H
⋃

L. This contradicts the 2C-Property, and X = L
⋃

H.

The above argument shows that every component of L\H has
a boundary point that is also an end point for H. Thus, by the
2C-Property, there are at most two such components.

Case 2. Each component is a half open interval with its bound-
ary point being the end point of H. Now if L\H has only one
component, then by taking its closure, we see that X can be writ-
ten as the union of two linearly ordered continua sharing a sin-
gle end point; thus, it is linearly ordered. Otherwise, L\H has
two components: A1 and A2. Then cl(A1)

⋃
H is the union of

two linearly ordered continua sharing a single end point and hence
is linearly ordered. Similarly, by noting that cl(A2) must share
a different end point with H than does cl(A1), we conclude that
X = cl(A1)

⋃
H

⋃
cl(A2) is linearly ordered by the same reason-

ing. ¤
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Recall that a continuum X is said to be atriodic if there does not
exist subcontinua A, B, and C with A

⋂
B = A

⋂
C = B

⋂
C = V

where V is a nonempty continuum, and none of A, B, and C is
equal to V .

Proposition 3.8. Every hereditarily locally connected continuum
with the 2C-Property is atriodic.

Proof: Let X be a continuum with the 2C-Property. Suppose
there exist subcontinua A, B, and C with A

⋂
B = A

⋂
C =

B
⋂

C = V where V is a nonempty continuum, and none of A, B,
and C is equal to V . Choose points a ∈ A\V , b ∈ B\V , c ∈ C\V ,
and v ∈ V . Form an irreducible continuum I(a, v) between a and v.
Similarly construct I(b, v) and I(c, v). Now by Proposition 3.6, each
of these is linear. Then by Proposition 3.7, I(a, v)

⋃
I(b, v) is linear

or coconnected and, in the latter case, I(a, v)
⋃

I(b, v) = X. Since
c 6∈ I(a, v)

⋃
I(b, v), this is not the case. Thus, I(a, v)

⋃
I(b, v) is

linear, and a and b must be end points since both are noncut points.
But now I(a, v)

⋃
I(b, v)

⋃
I(c, v) must be linearly ordered with a,

b, and c, all noncut points. This is a contradiction. Therefore, X
is atriodic. ¤

Proposition 3.9. Every hereditarily locally connected continuum
which is c-simple has the DCD-Property.

Proof: Let X be a c-simple, hereditarily locally connected con-
tinuum. Let Y be a nondegenerate subcontinuum. We will show
that Y has a pairwise disjoint collection of linearly ordered sub-
continua with dense union. Choose x, y ∈ Y . Put P1 to be an
irreducible continuum between x and y. Then, by Proposition 3.6,
P is linearly ordered. Now, if Y \cl(⋃{Pβ|β < α} = ∅, then we are
done. Otherwise, by regularity and local connectivity, there exists
a nonempty connected open set O with compact closure such that
cl(O) does not meet any Pβ for β < α. Choose v, w ∈ cl(O). Now
put Pα to be an irreducible continuum between v and w. Then
Pα is linearly ordered. This process must exhaust at some point.
Thus, we have Y = cl(

⋃{Pα|α ∈ I}). Now, by Proposition 3.3, it
follows that Y has a dense subset with dense complement.

Now let D be a connected subset of X. Then cl(D) is a contin-
uum and hence has a dense subset with dense complement. But by
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c-simplicity, D is open in cl(D); thus, D has a dense subset with
dense complement. Therefore, X satisfies the DCD-Property. ¤
Corollary 3.10. Every continuum that is cleavable over Ψ satisfies
the 2C-Property.

Proof: Let X be a continuum that is cleavable over Ψ. Then by
Proposition 3.1, X is c-thick. It has been shown in [3] that every
c-thick continuum is hereditarily locally connected and that every
continuum which is cleavable over the class of c-simple spaces is c-
simple. Thus, by Proposition 3.9, X has the DCD-Property, and,
by Proposition 3.4, X has the 2C-Property. ¤
Corollary 3.11. Every continuum that is cleavable over Ψ is atri-
odic.

Theorem 3.12. Every nonlinear hereditarily locally connected con-
tinuum with the 2C-Property is coconnected.

Proof: Let X be a nonlinear hereditarily locally connected con-
tinuum with the 2C-Property. By nonlinearity, there exist noncut
points a, b, and c. Let L be an irreducible continuum between a
and b. Then L is linearly ordered. Now let K be a linearly ordered
continuum between b and c. Then by Proposition 3.7, L

⋃
K is lin-

early ordered or coconnected and, in the latter case, L
⋃

K = X.
So assume L

⋃
K is linearly ordered. Thus, one of a, b, or c is not

an end point. Without loss of generality, it is c. Now X\{c} is con-
nected. Choose d between a and c. By local connectivity and the
2C-Property, X\{c, d} has at most two components. Let C be the
component containing (c, d). [c, d] is compact, so, (c, d) is closed
in C. Therefore, by local connectivity, each component of C\(c, d)
has a closure point in (c, d), a contradiction to the 2C-Property
unless C\(c, d) = ∅. Thus, C = (c, d), so X\[c, d] is connected and
X\(c, d) is also connected. Since (c, d) is a component of X\{c, d},
it is open. Therefore, X\(c, d) is compact, and hence, a contin-
uum. Now take F to be an irreducible continuum between c and
d in X\(c, d). Then F and [c, d] are linearly ordered continua in-
tersecting only at end points; thus, F

⋃
[c, d] is coconnected and

X = F
⋃

[c, d], again by Proposition 3.7. ¤
Theorem 3.13. If X is a continuum cleavable over Ψ, then X is
either linearly ordered or coconnected.
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Proof: By Corollary 3.10, X satisfies the 2C-Property. By c-
thickness, X is hereditarily locally connected; thus, the result fol-
lows from Proposition 3.13. ¤

Therefore, we have established the desired result. However, by
making a simple observation, we will obtain a nice corollary.

Theorem 3.14. If X is a coconnected continuum, then X is not
cleavable over the class of linearly ordered spaces.

Proof: Choose a, b ∈ X. Then let C and D be the two com-
ponents of X\{a, b}. Then cl(C) and cl(D) are continua, and
cl(C)

⋂
cl(D) = {a, b} which is disconnected; hence, X is not uni-

coherent. The result follows from [3]. ¤

Corollary 3.15. If X is a continuum which is cleavable over the
class of LOTS, then X is a LOTS.

This result has been established by Raushan Z. Buzyakova in [5]
using a construction different from what we have considered.
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