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COINCIDENCE VALUES OF
COMMUTING FUNCTIONS

ERIC L. McDOWELL

ABSTRACT. Coincidence values of commuting functions from
a topological space into itself have been investigated for more
than the past 60 years. We survey some of the key results
of these investigations in the context of questions of current
interest.

1. INTRODUCTION

The author first became interested in the study of coincidence
values of commuting functions when he read the following ques-
tion on a web site that is maintained by Janusz R. Prajs and
Wilodzimierz J. Charatonik and which is dedicated to open prob-
lems in continuum theory [12].

Question 1. Does every pair of commuting self-maps of the simple
triod have a coincidence value?

The origin of this question is unknown. According to our re-
search, Question 1 appeared for the first time in the literature in
1983 as a question asked by David P. Bellamy [37]; however, at the
42nd Annual Spring Topology and Dynamics Conference in 2008,
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Bellamy noted that the question probably dates back to the early
1970s. We will show in section 5 that a negative answer to Question
1 would allow for the construction of a (simple triod)-like continuum
without the fixed point property; such an example would contribute
significantly to the collection of tree-like continua without the fixed
point property that began with the celebrated example by Bellamy
in 1978 [4].

As Question 1 might suggest, there is a strong relationship be-
tween the notions of coincidence values and commutativity of func-
tions; in particular, an interrelationship between the concepts of
commuting functions and common fixed points of functions will be
demonstrated in section 3. The focus of the most intensive investi-
gations of common fixed points of commuting mappings has been
on the unit interval; much of this work is surveyed in section 4.
In section 5, we will consider results regarding coincidence values
of mappings of more general spaces and show how several partial
answers to Question 1 follow from results in the literature.

2. DEFINITIONS AND NOTATION

A mapping is a continuous function and self-map of a set S is
a mapping f : S — S. For a pair of selfmaps f,g : S — S5, we
will use fg to denote the composition f o g. For any x € S, we
define f9(z) to be x (so that f¥ is the identity self-map of S), and
for any positive integer k we define f* to be ff*1. A fized point
of a self-map f: S — S is any z € S for which f(x) = x; we will
use F'P(f) to denote the set of fixed points of f. A point x € S is
said to be a periodic point of f provided that f*(x) = 2 for some
positive integer k; we will use P(f) to denote the set of all periodic
points of f. If f and g are self-maps of S and f(z) = g(x) for some
x €S, we will call f(x) a coincidence value of f and g; also, x will
be called a coincidence point of f and g.

A pair of self-maps f,g : S — S is said to commute provided
fg(x) = gf(z) for all x € S. The concept of commuting mappings
was extended by Gerald Jungck [32] in the setting of metric spaces
as follows: Self-maps f,g : X — X of a metric space (X,d) are
compatible provided limy, o d(fg(zn), 9f(xn)) = 0 whenever {z,}
is a sequence in X such that lim, o f(2,) = limy, o g(2,,) = ¢ for
some ¢t € X. Jungck proves in [33] that in the setting of compact
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metric spaces, f,g : X — X are compatible if and only if they
commute on the set A = {z € X : f(x) = g(z)} of coincidence
points of f and g; compatible self-maps of compacta for which A #
() are said to be nontrivially compatible. Examples of compatible
mappings that are not commutative (or even weakly commutative—
defined in [47]) are readily available (see, for example, [32]).

A metric space X is said to have the fized point property (FPP)
provided every self-map of X has a fixed point in X. John Philip
Huneke and Henry H. Glover [24] defined X to have the common
fized point property (CFP) provided that for every pair of commut-
ing self-maps f,g : X — X, there exists some x € X for which
f(z) =2 = g(x). We define X to have the coincidence value prop-
erty (CVP) provided that for every pair of commuting self-maps
fyg: X — X there is some x € X for which f(x) = g(x).

3. INTERDEPENDENCE BETWEEN
COMMON FIXED POINTS AND COMMUTING MAPPINGS

The hypothesis of commutativity in the definitions of CFP and
CVP appears at first to be arbitrary. However, the following obser-
vation by Jungck [29] illustrates an interdependence between the
concepts of common fixed points and commuting mappings.

Proposition 1 (Jungck [29], 1976). Let X be any set and let f :
X — X be a function (not necessarily continuous). Then f has a
fized point if and only if there exists a constant map g : X — X
that commutes with f. Moreover, f and g have a unique common
fized point if this condition holds.

Proof: Suppose that a is a fixed point of f and define g : X — X
by g(z) = a for all z € X. Then f(g(z)) = f(a) = a and g(f(x)) =
a for all x € X. Thus, g is a constant map that commutes with f.

Conversely, suppose that g : X — X is given by g(z) = a for
all x € X and that g commutes with f. Then f(a) = f(g(a)) =
g9(f(a)) = a. Thus, a is a fixed point of f. (Clearly, a is a fixed
point of g as well.) O

The following result by Jungck further elucidates the interre-
lationship between fixed points and commuting mappings. (As a
corollary, Jungck obtains M. Edelstein’s theorem [17] that every
contractive self-map of a compactum has a unique fixed point.)
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Proposition 2 (Jungck [35], 2005). A self-map f of a compact
metric space (X,d) has a fized point if and only if there exists a
mapping g : X — f(X) which commutes with f and satisfies

() dlg(z),9(y)) <d(f(z), f()), f(x) # f(y)-

Moreover, f and g have a unique common fized point if (x) holds.

Solomon Leader [36, Proposition 3] shows that condition (%) in
Proposition 2 can be replaced with

() d(g(x),9(y)) < d(z,y), T #y.

We remark that in addition to appearing in [35], Proposition 2
also appears without proof in [29]. Moreover, Jungck shows that
Proposition 2 can be obtained as a corollary to a similar result
regarding periodic points of f [31, Theorem 2.1].

By strengthening the condition given in Proposition 2, Jungck
proves a similar result in the setting of complete metric spaces which
yields a generalization of the Banach contraction principle as a
corollary; we state this result as Proposition 3. Both Proposition 2
and Proposition 3 should be compared to a result of Raul Machuca
[38] which guarantees a coincidence value for self-maps f and g
(not necessarily commutative) of a compactum (X, d) provided that
g9(X) C f(X) and there exists some o < 1 for which d(g(x), g(y)) <

ad(f(x), f(y))-

Proposition 3 (Jungck [29], 1976). A self-map f of a complete
metric space has a fixed point if and only if there exists 0 < a < 1
and g : X — X that commutes with f such that

(*)  g(X) C f(X) and d(g(x),9(y)) < ad(f(x), f(y))
for all x,y € X.

Moreover, f and g have a common fized point if () holds.

In the same spirit as the above results, W. F. Pfeffer proves in
[44, Proposition 1] that an involution o of a circle has a fixed point if
and only if it commutes with a fixed-point free involution different
from o. (Recall that a mapping o : S' — S is an involution if
0?2 =0.)
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4. COMMON FIXED POINTS OF
COMMUTING SELF-MAPS OF THE UNIT INTERVAL

The earliest known paper which contributed to the study of co-
incidence values of commutative mappings was published by J. F.
Ritt in 1923 [45]. In his article, Ritt proved that if f and g are
commutative polynomials, then three cases are possible:

(i) f(x) = £2™ and g(z) = +x™ for positive integers m,n;
(ii) f and g are both iterates of a third polynomial A (up to a
linear transformation); or
(iii) f and g are both Tchebycheff polynomials (that is, both are
of the form cos(n arccos ) for some positive integer n).

While Ritt’s paper did not specifically address the topic of coinci-
dence values, it can be shown that common fixed points exist for
each of the three cases identified above when the polynomials under
investigation are considered on the unit interval. The first articles
in which coincidence values of functions are deliberately studied in
connection with commutativity appeared in 1946 [49], [50]; specifi-
cally, A. G. Walker provides a classification of the collection of pairs
of certain commutative monotone increasing self-maps of an inter-
val by considering coincidence values of iterates of such functions.

The paper credited for inspiring the flurry of research in the 1960s
and beyond concerning coincidence values of commuting mappings
was published by H. D. Block and H. P. Thielman in 1951 [5].
In their article, Block and Thielman define an entire set of com-
mutative polynomials to be a set of polynomials which contains
at least one polynomial of each positive degree, and such that
the polynomials in the set are pairwise commutative. They show
that F is an entire set of commutative polynomials if and only
if either F = {A7!p,\ : n = 1,2,---} (where p,(z) = z") or
F = {X"lcos(narccos)\ : n = 1,2,---} where, in both cases, \ is
any linear function. Moreover, they remark that for A(x) = ax + b,
the polynomials in the second case (that is, the linear transforms
of the Tchebycheff polynomials) all have fixed point (1 — b)/a.

It has been reported by multiple sources that in 1954, Eldon Dyer
was the first to conjecture that the unit interval I has the common
fixed point property, and that this conjecture was independently
raised by Allen Shields in 1955 and by Lester Dubins in 1956 (see [1],
for example). However, reference to this conjecture first appeared



370 E. L. McDOWELL

in the literature in 1957 when J. R. Isbell [25] asked the following
more general question:

Let T be a tree, i.e. a compact locally connected
space in which every two points are joined by a
unique arc. It can be seen that every commuta-
tive group I' of homeomorphisms of 7" has a com-
mon fixed point. [By Zorn’s lemma, it suffices to
show that there is a proper subcontinuum which is
mapped onto itself by every element of I'. Observe
that for f,g € I', g maps the set S of fixed points of
f into itself. So does g~ !; hence ¢g(S) = S. Similarly
g leaves invariant the least subcontinuum containing
S. But this is all of T" only if f leaves every end point
of T fixed.] Is this true for commutative semigroups
of continuous mappings? It is not known even for a
semigroup generated by two mappings on an arc.

The Dyer/Shields/Dubins/Isbell conjecture (hereafter referred to
as the common fixed-point conjecture) was independently settled
in the negative by William M. Boyce [7] and Huneke [22] in 1967
(both papers appearing in the literature in 1969). Interestingly,
the work settling this conjecture served as doctoral dissertations for
both Boyce (advisor Gail Young, Jr.) and Huneke (advisor Walter
Gottschalk); both men were awarded their degrees in 1967 [40]. In
1970, Huneke [23] provided an alternative proof that the interval
fails to have CFP. Moreover, Huneke and Glover published a paper
in 1971 [24] proving that no completely regular Hausdorff space
containing an arc has the common fixed-point property, thereby
completely settling the Isbell query discussed above.

When f and g are commuting self-maps of a tree, Isbell notes
above that g maps the set of fixed-points of f into itself; indeed, this
is true for commuting self-maps of any set. It is also easy to show
that f and g permute the fixed-point set of fg; in fact, the restric-
tions of f and g to FP(fg) are inverse permutations. Whenever f
and g are self-maps of I, even more is true. Glen Baxter [1] and
Baxter and J. T. Joichi [2] show that when F'P(fg) is partitioned
into three classes according to whether the graph of fg crosses up-
ward through the diagonal, crosses downward, or changes directions
at the values contained in F'P(fg), f and g also permute each one
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of these three equivalence classes. In [2], they show that these per-
mutations satisfy certain conditions which qualify them as being
s-admissible in their terminology. When f and g are restricted to
only the crossing points of fg, the resulting permutations are said
to be w-admissible. Permutations that are w-admissible were re-
named Baxter permutations by Boyce [6] who subsequently used
them as his main tool toward settling the common fixed point con-
jecture; a very readable account of Boyce’s approach to the problem
appears in [6]. Baxter permutations have since become an object
of study in their own right (see, for example, [9], [14], and [39]).

The examples of Huneke and Boyce prompt the following natural
question.

Question 2. Let f and g be commuting self-maps of I. What
additional conditions guarantee that f and ¢ have a common fixed
point?

We note that Proposition 1 provides the following partial answer
to Question 2.

Proposition 4 (Jungck [29], 1976). If f and g are commuting self-
maps of I and f is constant, then f and g have a common fized
point.

Until otherwise noted, we will always assume that f and g are
commuting self-maps of I.

Question 2 is tacitly suggested by the common fixed point conjec-
ture, and most of the work relating to the conjecture that appeared
prior to 1967 was focused on providing answers to it. Even after
the examples of Boyce and Huneke were announced, Question 2
remained a question of interest and continues to attract attention
still. Some of the most important answers to Question 2—from ei-
ther a mathematical or an historical perspective—are stated below.
Proofs are provided when they are short and illustrative.

The earliest result addressing Question 2 is due to Ritt who
published several papers in the 1920s regarding the algebraic prop-
erties of functional composition as a binary operation on the set
of rational complex functions. As discussed above, the following
proposition can be inferred from his results.
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Proposition 5 (Ritt [45], 1923). If f and g are polynomials, then
f and g have a common fixed point.

The first result to be published regarding Question 2 following
the appearance of Isbell’s question in 1957 appears to be the follow-
ing proposition due to Ralph DeMarr. (When DeMarr refers to the
common fixed-point conjecture as an “old question” that “remains
unanswered except in certain special cases,” we assume that he has
only Proposition 5 in mind.)

Proposition 6 (DeMarr [16], 1963). If |f(x) — f(y)| < |x —y| for
all x,y € 1, then f and g have a common fized point.

Actually, DeMarr proves a more general result: he shows that

for any o > 1 and any 0 < 3 < 2£1| f and ¢ have a common fixed

a—1"

point provided that |f(z) — f(y)| < alz —y| and |g(z) — g(y)| < B
for all z,y € I.

Jungck improved Proposition 6 with the following result.
Proposition 7 (Jungck [28], 1966). If there exists a > 0 such that

[f(@) = fW)l < o =yl + algf(x) — gf(y)] z,y €1,
then f and g have a common fized point.

Jungck also offers the following two propositions.

Proposition 8 (Jungck [28], 1966). If |f(z) — f(y)| < |g(=)

9+ |z —y| for allz,y € I such that f(z) = g(z) or f(y) = g(y),
then f and g have a common fized point.

Proposition 9 (Jungck [28], 1966). If there exists o > 0 such that

[z —g(2)| < algf(z) — f(z)| + |z = f(2)] for all z,y € I, then f
and g have a common fixed point.

The following proposition is due to J. E. Maxfield and W. J.
Mourant, as well as to S. C. Chu and R. D. Moyer. (Despite the
different publication years of these articles, both were received in
1965—in April and July, respectively—by the journals in which
they appeared.) In the process of developing their results, both
sets of authors prove and use the fact that if FP(f) = FP(f?),
then F'P(f) = FP(f") for all positive integers n. In fact, Chu and
Moyer prove that these conditions are both equivalent to f having
a fixed-point in every nonempty closed subset of I that is mapped
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into itself by f. Recalling from the statement of the Isbell query
that f maps the fixed-point set of g into itself, the proposition
below follows immediately.

Proposition 10 (Maxfield and Mourant [41], 1965 / Chu and
Moyer [13], 1966). If FP(f) = FP(f?), then f and g have a com-
mon fized point.

Haskell Cohen [15] defined a self-map of I to be full if the interval
may be subdivided into a finite number of subintervals on each of
which the function is a homeomorphism onto I. This condition
is equivalent to a self-map of I being open. Cohen proved the
following important result.

Proposition 11 (Cohen [15], 1964). If f and g are both open, then
f and g have a common fixed point.

Joichi [27] and Jon H. Folkman [18] independently strengthened
Cohen’s result.

Proposition 12 (Joichi [27], 1966 / Folkman [18], 1966). If f is

open, then f and g have a common fized point.

The following observation is made by both Joichi and Folkman
in their proofs of Proposition 12. The proof provided below is from
Folkman [18].

Proposition 13 (Joichi [27], 1966 / Folkman [18], 1966). If f is
monotone, then f and g have a common fixed point.

Proof: Let x be a fixed point of g. Then f™(z) € FP(g) for
all n = 1,2,---. It follows easily that lim, o, f™(x) belongs to
FP(f) N FP(g). O

Joichi makes the following observation in his proof of Proposition
12. While this result is clearly implied by Proposition 12, we include
it to highlight an elegant argument in common fixed point theory.

Proposition 14 (Joichi [27], 1966). If f is open and g(I) # I,
then f and g have a common fized point.

Proof: Let J = g(I). Then we have that f(J) = fg(I) = gf(I).
But since open maps are surjective, this gives that f(J) = g(I) = J.
So f|J : J — J is surjective. Since f is open and J # I, this
implies that f|J is monotone. Clearly, we have that g(J) C J. It
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now follows from Proposition 13 that f|J and g|J have a common
fixed point p; therefore, p € FP(f) N FP(g). O

Recall that a family of mappings {¢, : n € 1,2,---} between
metric spaces is said to be equicontinuous when for a given € > 0
the choice of § (in the traditional definition of continuity of ¢,,) is
independent of n. In 1971, Boyce provided the following answer to
Question 2.

Proposition 15 (Boyce [8], 1971). If the family {f™* :n=1,2,---}
of iterates of f is equicontinuous, then f and g have a common fixed
point.

Let B={¢: 1 —1:{¢":n=1,2,---}is equicontinuous on I}
and let G be a subset of B whose members are pairwise commut-
ing. Theodore Mitchell [42, Theorem 3] improved Boyce’s result
by showing that if f is a self-map of I that commutes with each
member of G, then f and G have a common fixed point.

Julio Cano proved the next two results in 1982.

Proposition 16 (Cano [11], 1982). If FP(f) is a closed interval
then f and g have a common fized point.

Proposition 17 (Cano [11], 1982). If FP(f) = P(f), then f and
g have a common fixed point.

For organizational purposes, we summarize most of the results
presented thus far in this section as the following theorem.

Theorem 3. Let f and g be commuting self-maps of the unit in-
terval I. Then f and g have a common fixed-point if any of the
following conditions hold:

e f is constant (Proposition 4);

e f and g are polynomials (Proposition 5);

|f(z) — fy)| < |z —y]| for all x,y € I (Proposition 6);

o there exists o > 0 such that |f(x) — f(y)| < |z —y| +
algf(x) — gf(y)| for all x,y € I (Proposition 7);

[f(@) = fW)l < lg(x) — gW)| + & =yl for all z,y € I such
that f(x) = g(x) or f(y) = g(y) (Proposition 8);

there exists o > 0 such that |z — g(x)| < algf(z) — f(x)] +
|z — f(x)| for all z,y € I (Proposition 9);

f is open (Proposition 12);
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f is monotone (Proposition 13);

the family {f™ :n=1,2,---} of iterates of f is equicontin-
uous (Proposition 15);

FP(f) is a closed interval (Proposition 16);

e FP(f)= P(f) (Proposition 17).

For the remainder of this section, f and g will continue to denote
self-maps of I; however, we will no longer assume that f and g
commute on all of I. By restricting the set of values on which f
and g are assumed to commute, the results of Boyce (Proposition
15) and of Cano (propositions 16 and 17) can be extended to several
stunningly elegant characterizations.

Recall from section 2 that f and g are said to be nontrivially
compatible provided that A = {z : f(x) = g(x)} is nonempty and f
and g commute on A. For a given self-map f : I — I, let K; denote
the collection of all self-maps of I that are nontrivially compatible
with f. Jungck proved the following extension of Proposition 17.

Proposition 18 (Jungck [34], 1992). f has a common fized point
with every g € Ky if and only if FP(f) = P(f).

Using the Mean Value Theorem, Jungck observes that if f is
differentiable on (0,1) with f/(x) # —1 for all € (0,1), then
P(f) = FP(f); thus, as an immediate corollary to Proposition 18,
we have that such a map f : I — I shares a fixed point with all
self-maps of I that are nontrivially compatible with f. Jungck also
gives an example to show that families of nontrivially compatible
self-maps of I, each of whose periodic and fixed points coincide,
need not have a common fixed point.

The remaining characterizations that we include are due to Jacek
R. Jachymski; together, these propositions rank as being amongst
the most beautiful set of results in the study of common fixed points
of the unit interval. Jachymski credits Proposition 18 as being his
inspiration for their discovery.

Proposition 19 (Jachymski [26], 1996). Let f be a self-map of I.
Then the following conditions are equivalent.

(1) FP(f) = P(f);

(2) the sequence {f"}°° , is pointwise convergent on I;
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(3) f has a common fized point with every self-map g : I — I
that commutes with f on FP(g).

Proposition 20 (Jachymski [26], 1996). Let f be a self-map of I.
Then the following conditions are equivalent.

(1) FP(f) is a closed interval;

(2) the family {f" :n=1,2,---} is equicontinuous on FP(f),
or FP(f) is a singleton;

(3) f has a common fized point with every self-map g : I — I
that commutes with f on FP(f).

Proposition 21 (Jachymski [26], 1996). Let f be a continuous self-
map of I such that FP(f) is not a singleton. Then the following
conditions are equivalent.
(1) {f":n=1,2,---} is equicontinuous;
(2) the sequence {f"}°2 is uniformly convergent on I;
(3) f has a common fized point with every self-map g : I — I
that commutes with f either on FP(f), or on FP(g).

It is clear that propositions 19, 20, and 21 are extensions of
propositions 17, 16, and 15, respectively. As Jachymski points out,
Proposition 19 implies the sufficiency part of Proposition 18: As-
sume that FP(f) = P(f) and let g commute with f on the set of
their coincidence points. Choose a € I with f(a) = g(a). By Propo-
sition 19, {f™(a)}5°; converges to some b. Nontrivial compatibility
easily implies that f"(a) = ¢"(a); thus, {f™(a)}22, converges to b
as well. Continuity gives that f(b) = b= g(b).

5. COINCIDENCE VALUES OF
COMMUTING SELF-MAPS OF COMPACT METRIC SPACES

As mentioned in the introduction, the author’s interest in the
study of coincidence values of commuting mappings was inspired by
the question of whether the simple triod has the coincidence value
property. As we will show in Proposition 23, a negative answer to
this question would allow for the construction of a (simple triod)-
like continuum that admits a fixed-point free map. The proof that
we present for Proposition 23 will use the following proposition that
expresses an interesting relationship between the coincidence value
property (CVP) and the fixed point property (FPP) in the setting
of continua. To our knowledge, the result is unattributed.
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Proposition 22. If every inverse limit of a continuum X with a
single bonding map has FPP, then X has CVP. In particular, if
f and g are commuting self-maps of X with no coincidence values
and P 1is the inverse limit of X with bonding map f, then P fails
to have FPP.

Proof: Suppose that X does not have CVP, and let f and g be
commuting self-maps of X with no coincidence values. Let P be
the limit of the inverse sequence for which each factor space is X
and each bonding map is f. Observe that since fg = gf, g induces
the map G : P — P given by G(zo,z1, ) = (9(20), g(z1),- ).
Let F : P — P denote the shift homeomorphism (xg, x1, 2, ) —
(f(z0),70,71,--+). Then it is easily seen that F~'G : P — P is
fixed-point free. O

We remark that since every arc-like continuum has the fixed point
property, Proposition 22 can be used to show that the unit interval
has CVP; a more elementary proof of this result can be found in
[28, Lemma 1].

As mentioned in the introduction, the existence of a pair of
commuting self-maps of the simple triod would allow for the con-
struction of a (simple triod)-like continuum without the fixed point
property; this assertion is justified by the proof of the following
proposition.

Proposition 23. If the simple triod fails to have CVP, then there
exists a (simple triod)-like continuum that admits a fized point free

mapping.

Proof: Let T denote the simple triod and assume that there
exist self-maps f,g : T — T with no coincidence values. If P
is the inverse sequence of T' with each bonding map f, then, by
Proposition 22, we have that P does not belong to FPP; thus, P is
not arc-like. It follows that some of the images of the projections
of P into T cannot be contained in an arc; thus, these images must
be simple triods. Therefore, P is (simple triod)-like. O

Many of the results regarding commuting self-maps of compacta
depend upon the following lemma. While several authors justify the
statement below with a casual appeal to Zorn’s lemma, we choose to
present a more illustrative argument; the proof we provide contains
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the most elegant portions of the proofs of Proposition 4.1 in [33]
and Proposition 2 in [36].

Lemma 4. If f and g are commuting self-maps of a compact metric
space X, then there exists a compact subspace K C X such that
f(K)=g(K)= K. Moreover, if X is a continuum, then K can be
chosen to be a continuum.

Proof: Let ¢ be any self-map of X and let K = (2, ¢"(X).
Since {¢"(X)} is a nested sequence of nonempty compacta, K is

nonempty and compact; moreover, if X is a continuum, then so is
K.

We now show that K = ¢(K). Clearly, we have that K C ¢"(X)
for each n; thus, ¢(K) C ¢"*(X) for each n. It follows that
H(K) C N0, ¢o""H(X) = K. Conversely, if y € K C ¢""(X),
then y = ¢(z,,) for some x,, € ¢"(X). By compactness, some sub-
sequence {xy,} of {z,} converges to a point p € K; thus, {¢(zn,)}
converges to ¢(p). Since ¢(x,,) = y for each i, it follows that
¢(p) =y. Thus, y € ¢(K) and so K C ¢(K).

Observe that if h is any self-map of X that commutes with ¢,
then

h(K)=h [ﬂ ¢"<X>] C () he"(X)
n=1 n=1
= () ¢"h(X) C ) &"(X) =K.
n=1 n=1

In particular, if ¢ = fg, then f(K) C K and g(K) C K since f
and g both commute with ¢. It follows that f(K) C K = ¢(K) =
flg(K)] C f(K), and so K = f(K). Similarly, K = g(K). This
proves the lemma. [l

Let X be a compact metric space and let f and g be commuting
self-maps of X. We have already mentioned that f and g necessarily
have a coincidence value in the case that X is the unit interval.
While the literature is rich with results regarding common fixed
points of the unit interval, surprisingly little work been published
regarding the following question.
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Question 5. What additional conditions on X, f, and g will guar-
antee that f and g have a coincidence value?

In 1938, O. H. Hamilton [21, Theorem II] showed that every
hereditarily unicoherent, hereditarily decomposable metric contin-
uum has the fixed-point property for homeomorphisms. William
J. Gray significantly extended Hamilton’s result with the following
partial answer to Question 5.

Proposition 24 (Gray [19], 1969). If X is hereditarily unicoher-
ent and hereditarily decomposable, then any abelian semigroup of
monotone self-maps of X has a common fized point.

Gray and Carol M. Smith published the following result; (we note
that a dendroid is an hereditarily unicoherent, arcwise connected
continuum).

Proposition 25 (Gray and Smith [20], 1975). If X is a dendroid
and G is an abelian semigroup of monotone self-maps of X, then
every self-map of X that commutes with each element of G has a
common fixed point with G.

With reference to Cohen’s result (see the discussion preceding
Proposition 12), Gray and Smith asked the following question (re-
call that a dendrite is a locally connected, hereditarily unicoherent
continuum).

Question 6 (Gray and Smith [20], 1975). If X is a dendrite and G
is an abelian semigroup of continuous open self-maps onto X, must
G have a fixed point?

At this point we turn our attention again to Question 1 and
observe that in the case that X is a tree (in particular, a triod),
either one of the above two propositions can be used to argue that
every pair of monotone commuting self-maps of X has a common
fixed point. As we will see, several additional partial answers to
Question 1 follow quickly from results in the literature. We first
recall several definitions: If Z; and Z5 are compact metric spaces,
then f: Z1 — Z5 is said to be confluent provided that for any sub-
continuum B of Z3 and any component A of f~!(B), we have that
f(A) = B. For continua X and Y, a surjective mapping f : X — Y
is said to be weakly monotone provided that for any subcontinuum
B of Y having nonempty interior in Y and any component A of
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f~1(B), we have that f(A) = B. If f is weakly monotone and
f~1(B) has at most finitely many components for every subcon-
tinuum B of Y having nonempty interior, then f is said to be
quasi-monotone.

For any two topological spaces C' and D, a mapping f : C — D
is called wuniversal provided that it has a coincidence value with
every mapping g : C — D. In 1967, Helga Schirmer [46, Theo-
rem 1] proved that weakly monotone mappings from continua onto
trees are always universal. The following proposition follows imme-
diately.

Proposition 26. If f and g are surjective self-maps of a tree and
f is weakly monotone, then f and g have a coincidence value.

Surjective mappings which are also open, monotone, quasi-mono-
tone or confluent are also weakly monotone [43, 13.18]. Therefore,
Proposition 26 immediately implies the following partial answers
to Question 1.

Corollary 7. If f and g are surjective self-maps of a tree, then f
and g have a coincidence value if f is also

(i) monotone;
(ii) weakly monotone;
(iii) quasi-monotone;
(iv) confluent;

(v) open.

When considering Question 1, the condition that f and g be
surjective in the preceding result is less restrictive than it might
appear. In the first place, surjectivity is a condition of the defi-
nitions of open, weakly monotone, and quasi-monotone mappings.
Moreover, the answer to Question 1 is affirmative if and only if an
affirmative answer exists under the additional assumption that f
and g are surjective. Consider the following two statements regard-
ing self-maps of a compact metric space X.

S1: Every pair of commuting self-maps of X has a
coincidence value.

So : Every pair of commuting surjective self-maps of X has
a coincidence value.
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Assume that S5 is true and let f and g be any two commuting self-
maps of X. Using Lemma 4, we can find a compact subset K C X
on which the restrictions of f and g to K are both surjective. By
S9, these restrictions have a coincidence value; thus, f and g have
a coincidence value. Therefore, So implies S;. Since S; clearly
implies S92, we have that these statements are equivalent.

We conclude this section with three partial answers to Question
5 for which the spaces under consideration are not necessarily com-
pact metric. The first of these provides a sufficient condition for
commuting self-maps of a metric space to have a common fixed
point.

Proposition 27 (Cano [10], 1968). Let X be any metric space
and let f,g : X — X be commuting mappings. If (1) FP(g) is
compact and nonempty, and (ii) d(f*(x), f(x)) < d(f(z),z) for all
x & FP(f), then f and g have a common fized point.

A nested space is an arcwise connected Hausdorff space in which
the union of any nest of arcs is contained in an arc; dendrites and
dendroids are examples of nested spaces. R. E. Smithson offers
the following partial answer to Question 5. Recall that a map is
strongly monotone if point inverses are arcwise connected.

Proposition 28 (Smithson [48], 1979). Any two strongly monotone
self-maps of a nested space have a common fized point.

The final proposition that we present offers a remarkable and
insightful answer to Question 5. It follows immediately from [35,
Corollary 3.7] and [35, Theorem 3.8] and was motivated by the
result that we highlighted as Proposition 18 in section 4; the author
is grateful to the referee for making us aware of the following result
and for enhancing the present article by recommending its inclusion.

For a continuous self-map g of a topological space X, let K,
denote the set of continuous maps f : X — X such that M = {z €
X : f(z) =g(x)} #0 and fg = gf on M. (This is the condition
that was used to define nontrivial compatibility in the setting of
compact metric spaces in section 2.) Also, recall that x € X is
said to be a recurrent point of ¢ if x is an accumulation point of

{g"(z) :mn=1,2,---}.



382 E. L. McDOWELL

Proposition 29 (Jungck [35], 2005). Let g be a continuous self-
map of a compact Hausdorff space X. If g has no recurrent points
and FP(g) = P(g), then g has a common fized point with each

f e Ky. (Specifically, g has a fixed point.)
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