

http://topology.auburn.edu/tp/

Decompositions of topological spaces AND TOTAL RECURRENCE

by

O. Petrenko and I. V. Protasov

Electronically published on April 8, 2009

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
COPYRIGHT \textcircled{O} by Topology Proceedings. All rights reserved.	

E-Published on April 8, 2009

DECOMPOSITIONS OF TOPOLOGICAL SPACES AND TOTAL RECURRENCE

O. PETRENKO AND I. V. PROTASOV

ABSTRACT. A topological space X is called totally (bijectively) recurrent if every, not necessarily continuous, mapping (bijection) $f: X \to X$ has a recurrent point. Earlier we proved that a Hausdorff space X is totally (bijectively) recurrent if and only if X is either finite or X is a one-point compactification of an infinite discrete space. In this paper we extend this result to some classes of non-Hausdorff spaces using decomposition of an arbitrary topological space into appropriate "good" subspaces.

Let X be a topological space, $f: X \to X$. A point $x \in X$ is called *recurrent* if x is a limit point of the orbit $(f^n(x))_{n \in \omega}$. A topological space X is called *totally recurrent* [2] (resp. *bijectively recurrent* [3]) if every, not necessarily continuous, mapping (resp. bijection) $f: X \to X$ has a recurrent point. By [3], a Hausdorff space X is totally (bijectively) recurrent if and only if X is either finite or X is a one-point compactification of an infinite discrete space. This result was extracted from the following statement: an infinite Hausdorff space X is either a disjoint union of countable¹ discrete subspaces or X is a one-point compactification of an infinite discrete space. To extend this statement onto non-Hausdorff spaces, we need the following definitions.

²⁰⁰⁰ Mathematics Subject Classification. 54D10, 37B20.

Key words and phrases. Almost discrete space, cofinite space, recurrent point, totally recurrent space.

^{©2009} Topology Proceedings.

¹Throughout this paper "countable" means "countably infinite".

We say that a topological space X is almost discrete if, for every point $x \in X$, there exists a finite neighbourhood U of x. Every almost discrete T_1 -space is discrete.

We say that an infinite topological space X is *cofinite* if each proper closed subspace of X is finite. Given an infinite set X, there exists only one cofinite T_1 -topology τ on X: $U \in \tau$ if and only if either $U = \emptyset$ or $X \setminus U$ is finite.

Theorem 1. Every topological space X can be partitioned $X = F \cup AD \cup CF$ where F is finite, AD is a disjoint union of countable almost discrete subspaces, CF is a disjoint union of cofinite subspaces.

Theorem 2. Let X be a topological space without cofinite subspaces. Then one of the following statements holds

- (i) X is a disjoint union of countable almost discrete subspaces;
- (ii) there exists a point $x \in X$ such that $X \setminus U$ is finite for every neighbourhood U of x.

Theorem 3. For every countable topological space X, one of the following statements hold

- (i) X is a disjoint union of countable almost discrete subspaces;
- (ii) there exists a point x ∈ X such that, for every neighbourhood U of x, X\U has no infinite almost discrete subspaces.

For decomposition of another type, we use the following definitions.

A subspace Y of a topological space X is called *Hausdorff* if, for any $x, y \in Y$, there exist the neighbourhoods U, V of x, y in X such that $U \cap V = \emptyset$

A subspace Y of a topological space X is called *linked* (or *anti-Hausdorff*) if, for any $x, y \in Y$ and any neighbourhoods U, V of x, y in X, one has $U \cap V \neq \emptyset$.

Theorem 4. Every topological space X can be partitioned $X = F \cup H \cup L$ where F is finite, H is a disjoint union of infinite Hausdorff subspaces, L is a disjoint union of infinite linked subspaces.

We apply the above decomposition theorems to total and bijective recurrence.

 $\mathbf{2}$

Theorem 5. A topological space X is totally recurrent provided that there exists a point $x \in X$ such that, for every neighbourhood U of x, $X \setminus U$ has no infinite almost discrete subspaces.

Theorem 6. Let X be a topological space without cofinite subspaces. Then the following statements are equivalent

- (i) X is totally recurrent;
- (ii) X is bijectively recurrent;
- (iii) there exists a point $x \in X$ such that $X \setminus U$ is finite for every neighbourhood U of x.

Theorem 7. For a countable topological space X, the following statements are equivalent

- (i) X is totally recurrent;
- (ii) X is bijectively recurrent;
- (iii) there exists a point $x \in X$ such that, for every neighbourhood U of x, $X \setminus U$ has no infinite almost discrete subspaces.

After some auxiliary lemmas, we prove all above theorems and conclude the paper with some remarks and open questions.

Lemma 1. Every infinite topological space X contains either a cofinite subspace or a countable almost discrete subspace.

Proof. We assume that X has no cofinite subspaces, take a point $x_0 \in X$ and its open neighbourhood U_0 such that $X \setminus U_0$ is infinite. Suppose that we have chosen the points $x_0, \ldots, x_n \in X$ and its open neighbourhoods U_0, \ldots, U_n such that $X \setminus (U_0 \cup \ldots \cup U_n)$ is infinite and $x_{i+1} \notin U_0 \cup \ldots \cup U_i$ for each $i \in \{0, \ldots, n-1\}$. Since $X \setminus (U_0 \cup \ldots \cup U_n)$ is not cofinite, there exists $x_{n+1} \in X \setminus (U_0 \cup \ldots \cup U_n)$ and its open neighbourhood U_{n+1} such that $X \setminus (U_0 \cup \ldots \cup U_n)$ is infinite. After ω steps we get the sequence $(x_n)_{n \in \omega}$ of elements of X and the sequence $(U_n)_{n \in \omega}$ of its open neighbourhoods such that $x_{n+1} \notin U_0 \cup \ldots \cup U_n$ for each $n \in \omega$. Then the subspace $Y = \{x_n : n \in \omega\}$ of X is almost discrete.

Lemma 2. Let X be an infinite topological space, Y be an infinite subspace of X. Then Y contains either an infinite Hausdorff subspace of X or an infinite linked subspace of X.

Proof. We define a coloring $\chi : [Y]_2 \to \{0,1\}$ of 2-subsets of Y by the rule: $\chi\{x,y\} = 1$ if and only if there exist disjoint neighbourhoods of x and y in X. By the Ramsey theorem [1, p.16],

there exists an infinite subset $Z \subseteq Y$ such that $\chi|_{[Z]_2}$ is constant. If $\chi|_{[Z]_2} \equiv 1$ then Z is Hausdorff, otherwise Z is linked. \Box

Lemma 3. Let $\{A_n : n \in \omega\}$ be a family of infinite subsets of a set X. Then there exists a disjoint family $\{B_n : n \in \omega\}$ of countable subsets of X such that $B_n \subseteq A_n$ for each $n \in \omega$.

Proof. It suffices to choose a countable subset $B_0 \subseteq A_0$ such that $A_n \setminus B_0$ is infinite for each $n \in \omega$ (and then repeat the argument for $\{A_{n+1} \setminus B_0 : n \in \omega\}$). We choose inductively an injective sequence

 $a_{00}, a_{10}, a_{11}, \ldots, a_{n0}, a_{n1}, \ldots, a_{nn}, \ldots$

in X such that $a_{n0} \in A_0, a_{n1} \in A_1, a_{n2} \in A_2, \dots, a_{nn} \in A_n$ for each $n \in \omega$. Put $B_0 = \{a_{n0} : n \in \omega\}$.

Proof of Theorem 1. We denote by \mathcal{F} the family of ordered pairs (Y, Z) of subsets of X where Y is a disjoint union of countable almost discrete subspaces, Z is a disjoint union of cofinite subspaces and $Y \cap Z = \emptyset$. The family \mathcal{F} is partially ordered by the rule:

$$(Y,Z) \leqslant (Y',Z') \Leftrightarrow Y \subseteq Y', Z \subseteq Z'.$$

By Zorn lemma, \mathcal{F} has a maximal element (AD, CF). Applying Lemma 1, we conclude that $X \setminus (AD \cup CF)$ is finite. \Box

Proof of Theorem 2. By Theorem 1, $X = F \cup AD$ where F is finite, AD is a disjoint union of countable almost discrete subspaces. We may suppose that $F \cup AD$ is the partition of X with minimal Fby cardinality. If $F = \emptyset$ then (i) holds. Assume that $F \neq \emptyset$, $x \in F$ and U is a neighbourhood of x. Let AD be a union of a disjoint family $\{Y_{\alpha} : \alpha \in I\}$ of countable almost discrete subspaces. If $Y_{\alpha} \cap U$ is finite for some $\alpha \in I$, then $Y_{\alpha} \cup \{x\}$ is almost discrete, so we can replace Y_{α} to $Y_{\alpha} \cup \{x\}$ and get a contradiction with the choice of F. Thus, $Y_{\alpha} \cap U$ is infinite for each $\alpha \in I$.

At last, suppose that $X \setminus U$ is infinite. By Lemma 1, there exists a countable almost discrete subspace Y of X such that $Y \subseteq X \setminus U$. Clearly, $Y \cup \{x\}$ is almost discrete. Since $Y_{\alpha} \cap U$ is infinite, $Y_{\alpha} \setminus U$ is also infinite. We consider the family \mathcal{F} of countable almost discrete pairwise disjoint subsets

$$\{Y \cup \{x\}\} \cup \{Y_{\alpha} \setminus Y : \alpha \in I\}.$$

4

Then $X \setminus \bigcup \mathcal{F} \subseteq F \setminus \{x\}$ and again we get a contradiction with the choice of F. Hence $X \setminus U$ is finite for every neighbourhood U of x, and (ii) holds.

Proof of Theorem 3. We assume that (ii) does not hold and prove (i). We enumerate $X = \{x_n : n \in \omega\}$ and, for every $n \in \omega$, choose a neighbourhood U_n of x_n and a countable almost discrete subspace $A_n \subseteq X \setminus U_n$. Then we apply Lemma 3 to choose a family $\{B_n : n \in \omega\}$ of pairwise disjoint countable almost discrete subspaces of X such that $B_n \subseteq A_n$ for each $n \in \omega$. We put $D_0 =$ $\{x_0\} \cup B_0$, pick the minimal $m \in \omega$ such that $x_m \notin D_0$ and put $D_1 = (\{x_m\} \cup B_m) \setminus \{x_0\}$. We pick the minimal $k \in \omega$ such that $x_k \notin D_0 \cup D_1$, put $D_2 = (\{x_k\} \cup B_k) \setminus \{x_0, x_m\}$ and so on. After ω steps we get a decomposition of X in the almost discrete countable subspaces $\{D_n : n \in \omega\}$.

Proof of Theorem 4. Repeat proof of Theorem 1 with Lemma 2 in place of Lemma 1. $\hfill \Box$

Proof of Theorem 5. Let $f: X \to X$ be an arbitrary mapping. If x is not a recurrent point, we choose a neighbourhood U of x and $n_0 \in \omega$ such that $f^n(x) \in X \setminus U$ for each $n \in \omega$. We put $x_0 = f^{n_0}(x)$. If x_0 is not a recurrent point, we choose a neighbourhood U_0 of x_0 and $n_1 \in \omega$ such that $f^n(x_0) \notin U_0$ for each $n \ge n_1$. We put $x_1 = f^{n_1}(x_0)$. If x_1 is not a recurrent point, we choose a neighbourhood U_1 of x_1 and $n_2 \in \omega$ such that $f^n(x_1) \notin U_1$ for each $n \ge n_2$. Repeating these arguments, we either find a recurrent point or construct the sequence $(x_n)_{n\in\omega}$ in $X \setminus U$ and the sequence $(U_n)_{n\in\omega}$ of its neighbourhoods such that $x_{n+1} \notin U_0 \cup \ldots \cup U_n$ for each $n \in \omega$. But the second variant is impossible because the subspace $\{x_n : n \in \omega\}$ of $X \setminus U$ is almost discrete.

Proof of Theorem 6. The implication (iii) \Rightarrow (i) follows from Theorem 5, (i) \Rightarrow (ii) is trivial. We assume that X satisfies (ii) but (iii) does not hold. By Theorem 2, X is a disjoint union of family $\{Y_{\alpha} : \alpha \in I\}$ of countable almost discrete subspaces. Let $f : X \to X$ be a bijection of X without periodic points such that each subspace Y_{α} is f-invariant. Since each Y_{α} is almost discrete, f has no recurrent points contradicting (ii). \Box Proof of Theorem 7. The implication (iii) \Rightarrow (i) follows from Theorem 5, (i) \Rightarrow (ii) is trivial. We assume that X satisfies (ii) but (iii) does not hold. By Theorem 3, X is a disjoint union of a family $\{Y_n : n \in I\}$ of countable almost discrete subspaces. Let $f : X \to X$ be a bijection of X without periodic points such that each subspace Y_n is f-invariant. Since each Y_n is almost discrete, f has no recurrent points contradicting (ii).

Remark 1. We construct a bijectively recurrent space X which is not totally recurrent. This example also shows that the implication $(ii) \Rightarrow (iii)$ in Theorem 7 does not hold for uncountable spaces. Let $X = C \cup D$ where C is an open uncountable cofinite subspace of X, D is an open countable discrete subspace of X. Let $f : X \to X$ be an arbitrary bijection. Since D is countable, X is uncountable and f is a bijection, there exists $x \in C$ such that $\{f^n(x) : n \in \omega\} \subseteq C$. Using the arguments proving Theorem 5, we conclude that at least one point $f^m(x)$ is recurrent, so X is bijectively recurrent. To see that X is not totally recurrent, we note that D is not totally recurrent and closed in X. By [2, Lemma 1], every closed subspace of totally recurrent space is totally recurrent.

Question 1. Let X be a totally recurrent space. Does there exists a point $x \in X$ such that, for every neighbourhood U of $x, X \setminus U$ has no infinite almost discrete subspaces?

Remark 2. Let us assume that a topological space X is partitioned $X = Y \cup Z$ so that Y is totally recurrent space without cofinite subspaces, Z has no infinite almost discrete subspaces. We show that X is totally recurrent. By Theorem 6, there exists a point $y \in Y$ such that $Y \setminus U$ is finite for every neighbourhood U of y. Let $f: X \to X$ be an arbitrary mapping. If y is not recurrent, there exist a neighbourhood U of y and $m \in \omega$ such that $f^n(y) \notin U$ for each $n \ge m$. If the sequence $(f^n(y))_{n \in \omega}$ meets the finite subset $Y \setminus U$ infinitely often, then at least one point of this sequence is recurrent. Otherwise, there exist $k \in \omega$ such that $f^n(y) \in Z$ for each $n \ge k$. Using the arguments proving Theorem 5, we see that at least one point of the sequence $(f^n(y))_{n \ge k}$ is recurrent.

Question 2. Can every totally recurrent space X be partitioned as $X = Y \cup Z$ so that Y is totally recurrent space without cofinite subspaces, Z has no infinite almost discrete subspaces?

 $\mathbf{6}$

Remark 3. Let (X, τ) be a topological space. We say that a topology τ_1 on X is a T_1 -refinement of τ if τ_1 is the smallest T_1 -topology such that $\tau \subseteq \tau_1$. The family

 $\{U \setminus F : U \in \tau, F \text{ is a finite subset of } X\}$

forms a base for τ_1 . Let $f: X \to X$ be an arbitrary mapping. If the orbit $\{f^n(x) : n \in \omega\}$ is infinite then x is recurrent in (X, τ) if and only if x is recurrent in (X, τ_1) . It follows that (X, τ) is totally (bijectively) recurrent if (X, τ_1) is also totally (bijectively) recurrent. Thus, the problem of characterization of totally (bijectively) recurrent spaces is reduced to the case of T_1 -spaces.

Remark 4. Let φ be a filter on a set $X, \dot{\varphi} = \varphi \cup \{\emptyset\}$. Then $\dot{\varphi}$ is a linked topology on X. If $X \setminus \Phi$ is finite for every $\Phi \in \varphi$ then $(X, \dot{\varphi})$ is cofinite and, by Theorem 5 $(X, \dot{\varphi})$ is totally recurrent. On the other hand, let $(X, \dot{\varphi})$ be totally recurrent. Clearly, the subspace $X \setminus \Phi, \Phi \in \phi$ is closed and discrete in $(X, \dot{\varphi})$. By [2, Lemma 1], $X \setminus \Phi$ is finite.

Let (X, τ) be an arbitrary linked space. Then τ is a base for some filter φ on X and $\tau \subseteq \dot{\varphi}$. If $(X, \dot{\varphi})$ is totally recurrent then so is (X, τ) but the converse statement is not true.

References

- R. Graham, B. Rothschild, and J. Spencer, *Ramsey Theory*, Wiley, New York, 1990.
- [2] O. Petrenko, I. V. Protasov, Discontinuous Birkhoff Theorem, Ukr. Math. Bull., 4(2007), 429-431.
- [3] O. Petrenko, I. V. Protasov, *Remark on Birkhoff Theorem*, Travaux Math (to appear)

Dept. of Cybernetics, Kiev University, Volodimirska 64, 01033 Kiev Ukraine

E-mail address: opetrenko720gmail.com

E-mail address: protasov@unicyb.kiev.ua