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DECOMPOSITIONS OF TOPOLOGICAL SPACES
AND TOTAL RECURRENCE

O. PETRENKO AND I. V. PROTASOV

Abstract. A topological space X is called totally (bijec-
tively) recurrent if every, not necessarily continuous, map-
ping (bijection) f : X → X has a recurrent point. Earlier
we proved that a Hausdorff space X is totally (bijectively)
recurrent if and only if X is either finite or X is a one-point
compactification of an infinite discrete space. In this paper
we extend this result to some classes of non-Hausdorff spaces
using decomposition of an arbitrary topological space into ap-
propriate “good” subspaces.

Let X be a topological space, f : X → X . A point x ∈ X is
called recurrent if x is a limit point of the orbit (fn(x))n∈ω. A
topological space X is called totally recurrent [2] (resp. bijectively
recurrent [3]) if every, not necessarily continuous, mapping (resp.
bijection) f : X → X has a recurrent point. By [3], a Hausdorff
space X is totally (bijectively) recurrent if and only if X is either
finite or X is a one-point compactification of an infinite discrete
space. This result was extracted from the following statement: an
infinite Hausdorff space X is either a disjoint union of countable1

discrete subspaces or X is a one-point compactification of an infinite
discrete space. To extend this statement onto non-Hausdorff spaces,
we need the following definitions.

2000 Mathematics Subject Classification. 54D10, 37B20.
Key words and phrases. Almost discrete space, cofinite space, recurrent

point, totally recurrent space.
c©2009 Topology Proceedings.
1Throughout this paper “countable” means “countably infinite”.
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We say that a topological space X is almost discrete if, for every
point x ∈ X, there exists a finite neighbourhood U of x. Every
almost discrete T1-space is discrete.

We say that an infinite topological space X is cofinite if each
proper closed subspace of X is finite. Given an infinite set X, there
exists only one cofinite T1-topology τ on X: U ∈ τ if and only if
either U = ∅ or X \ U is finite.

Theorem 1. Every topological space X can be partitioned X =
F ∪ AD ∪ CF where F is finite, AD is a disjoint union of count-
able almost discrete subspaces, CF is a disjoint union of cofinite
subspaces.

Theorem 2. Let X be a topological space without cofinite sub-
spaces. Then one of the following statements holds

(i) X is a disjoint union of countable almost discrete subspaces;
(ii) there exists a point x ∈ X such that X \U is finite for every

neighbourhood U of x.

Theorem 3. For every countable topological space X, one of the
following statements hold

(i) X is a disjoint union of countable almost discrete subspaces;
(ii) there exists a point x ∈ X such that, for every neighbour-

hood U of x, X\U has no infinite almost discrete subspaces.

For decomposition of another type, we use the following defini-
tions.

A subspace Y of a topological space X is called Hausdorff if, for
any x, y ∈ Y , there exist the neighbourhoods U, V of x, y in X such
that U ∩ V = ∅

A subspace Y of a topological space X is called linked (or anti-
Hausdorff ) if, for any x, y ∈ Y and any neighbourhoods U, V of
x, y in X, one has U ∩ V 6= ∅.

Theorem 4. Every topological space X can be partitioned X =
F ∪ H ∪ L where F is finite, H is a disjoint union of infinite
Hausdorff subspaces, L is a disjoint union of infinite linked sub-
spaces.

We apply the above decomposition theorems to total and bijec-
tive recurrence.
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Theorem 5. A topological space X is totally recurrent provided
that there exists a point x ∈ X such that, for every neighbourhood
U of x, X \ U has no infinite almost discrete subspaces.

Theorem 6. Let X be a topological space without cofinite sub-
spaces. Then the following statements are equivalent

(i) X is totally recurrent;
(ii) X is bijectively recurrent;
(iii) there exists a point x ∈ X such that X \U is finite for every

neighbourhood U of x.

Theorem 7. For a countable topological space X, the following
statements are equivalent

(i) X is totally recurrent;
(ii) X is bijectively recurrent;
(iii) there exists a point x ∈ X such that, for every neighbour-

hood U of x, X\U has no infinite almost discrete subspaces.

After some auxiliary lemmas, we prove all above theorems and
conclude the paper with some remarks and open questions.

Lemma 1. Every infinite topological space X contains either a
cofinite subspace or a countable almost discrete subspace.

Proof. We assume that X has no cofinite subspaces, take a point
x0 ∈ X and its open neighbourhood U0 such that X \U0 is infinite.
Suppose that we have chosen the points x0, . . . , xn ∈ X and its
open neighbourhoods U0, . . . , Un such that X \ (U0 ∪ . . . ∪ Un) is
infinite and xi+1 /∈ U0 ∪ . . . ∪ Ui for each i ∈ {0, . . . , n − 1}. Since
X\(U0∪. . .∪Un) is not cofinite, there exists xn+1 ∈ X\(U0∪. . .∪Un)
and its open neighbourhood Un+1 such that X \ (U0 ∪ . . . ∪ Un+1)
is infinite. After ω steps we get the sequence (xn)n∈ω of elements
of X and the sequence (Un)n∈ω of its open neighbourhoods such
that xn+1 /∈ U0 ∪ . . . ∪ Un for each n ∈ ω. Then the subspace
Y = {xn : n ∈ ω} of X is almost discrete. �
Lemma 2. Let X be an infinite topological space, Y be an infi-
nite subspace of X. Then Y contains either an infinite Hausdorff
subspace of X or an infinite linked subspace of X.

Proof. We define a coloring χ : [Y ]2 → {0, 1} of 2-subsets of Y
by the rule: χ{x, y} = 1 if and only if there exist disjoint neigh-
bourhoods of x and y in X. By the Ramsey theorem [1, p.16],
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there exists an infinite subset Z ⊆ Y such that χ|[Z]2
is constant.

If χ|[Z]2
≡ 1 then Z is Hausdorff, otherwise Z is linked. �

Lemma 3. Let {An : n ∈ ω} be a family of infinite subsets of a set
X. Then there exists a disjoint family {Bn : n ∈ ω} of countable
subsets of X such that Bn ⊆ An for each n ∈ ω.

Proof. It suffices to choose a countable subset B0 ⊆ A0 such that
An \B0 is infinite for each n ∈ ω (and then repeat the argument for
{An+1 \ B0 : n ∈ ω}). We choose inductively an injective sequence

a00, a10, a11, . . . , an0, an1, . . . , ann, . . .

in X such that an0 ∈ A0, an1 ∈ A1, an2 ∈ A2, . . . , ann ∈ An for each
n ∈ ω. Put B0 = {an0 : n ∈ ω}. �

Proof of Theorem 1. We denote by F the family of ordered pairs
(Y,Z) of subsets of X where Y is a disjoint union of countable
almost discrete subspaces, Z is a disjoint union of cofinite subspaces
and Y ∩ Z = ∅. The family F is partially ordered by the rule:

(Y,Z) 6 (Y ′, Z ′) ⇔ Y ⊆ Y ′, Z ⊆ Z ′.

By Zorn lemma, F has a maximal element (AD,CF ). Applying
Lemma 1, we conclude that X \ (AD ∪ CF ) is finite. �

Proof of Theorem 2. By Theorem 1, X = F ∪AD where F is finite,
AD is a disjoint union of countable almost discrete subspaces. We
may suppose that F ∪ AD is the partition of X with minimal F
by cardinality. If F = ∅ then (i) holds. Assume that F 6= ∅,
x ∈ F and U is a neighbourhood of x. Let AD be a union of a
disjoint family {Yα : α ∈ I} of countable almost discrete subspaces.
If Yα ∩U is finite for some α ∈ I, then Yα ∪ {x} is almost discrete,
so we can replace Yα to Yα ∪ {x} and get a contradiction with the
choice of F . Thus, Yα ∩ U is infinite for each α ∈ I.

At last, suppose that X \U is infinite. By Lemma 1, there exists
a countable almost discrete subspace Y of X such that Y ⊆ X \U .
Clearly, Y ∪{x} is almost discrete. Since Yα∩U is infinite, Yα\U is
also infinite. We consider the family F of countable almost discrete
pairwise disjoint subsets

{Y ∪ {x}} ∪ {Yα \ Y : α ∈ I}.
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Then X \
⋃

F ⊆ F \ {x} and again we get a contradiction with
the choice of F . Hence X \ U is finite for every neighbourhood U
of x, and (ii) holds. �

Proof of Theorem 3. We assume that (ii) does not hold and prove
(i). We enumerate X = {xn : n ∈ ω} and, for every n ∈ ω,
choose a neighbourhood Un of xn and a countable almost discrete
subspace An ⊆ X \ Un. Then we apply Lemma 3 to choose a
family {Bn : n ∈ ω} of pairwise disjoint countable almost discrete
subspaces of X such that Bn ⊆ An for each n ∈ ω. We put D0 =
{x0} ∪ B0, pick the minimal m ∈ ω such that xm /∈ D0 and put
D1 = ({xm} ∪ Bm) \ {x0}. We pick the minimal k ∈ ω such that
xk /∈ D0 ∪D1, put D2 = ({xk} ∪Bk) \ {x0, xm} and so on. After ω
steps we get a decomposition of X in the almost discrete countable
subspaces {Dn : n ∈ ω}. �

Proof of Theorem 4. Repeat proof of Theorem 1 with Lemma 2 in
place of Lemma 1. �

Proof of Theorem 5. Let f : X → X be an arbitrary mapping. If
x is not a recurrent point, we choose a neighbourhood U of x and
n0 ∈ ω such that fn(x) ∈ X \ U for each n ∈ ω. We put x0 =
fn0(x). If x0 is not a recurrent point, we choose a neighbourhood
U0 of x0 and n1 ∈ ω such that fn(x0) /∈ U0 for each n > n1.
We put x1 = fn1(x0). If x1 is not a recurrent point, we choose
a neighbourhood U1 of x1 and n2 ∈ ω such that fn(x1) /∈ U1 for
each n > n2. Repeating these arguments, we either find a recurrent
point or construct the sequence (xn)n∈ω in X \U and the sequence
(Un)n∈ω of its neighbourhoods such that xn+1 /∈ U0 ∪ . . . ∪ Un for
each n ∈ ω. But the second variant is impossible because the
subspace {xn : n ∈ ω} of X \ U is almost discrete. �

Proof of Theorem 6. The implication (iii)⇒(i) follows from
Theorem 5, (i)⇒(ii) is trivial. We assume that X satisfies (ii)
but (iii) does not hold. By Theorem 2, X is a disjoint union of
family {Yα : α ∈ I} of countable almost discrete subspaces. Let
f : X → X be a bijection of X without periodic points such that
each subspace Yα is f -invariant. Since each Yα is almost discrete,
f has no recurrent points contradicting (ii). �
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Proof of Theorem 7. The implication (iii)⇒(i) follows from
Theorem 5, (i)⇒(ii) is trivial. We assume that X satisfies (ii)
but (iii) does not hold. By Theorem 3, X is a disjoint union of a
family {Yn : n ∈ I} of countable almost discrete subspaces. Let
f : X → X be a bijection of X without periodic points such that
each subspace Yn is f -invariant. Since each Yn is almost discrete,
f has no recurrent points contradicting (ii). �

Remark 1. We construct a bijectively recurrent space X which is
not totally recurrent. This example also shows that the implication
(ii)⇒(iii) in Theorem 7 does not hold for uncountable spaces. Let
X = C∪D where C is an open uncountable cofinite subspace of X,
D is an open countable discrete subspace of X. Let f : X → X be
an arbitrary bijection. Since D is countable, X is uncountable and
f is a bijection, there exists x ∈ C such that {fn(x) : n ∈ ω} ⊆ C.
Using the arguments proving Theorem 5, we conclude that at least
one point fm(x) is recurrent, so X is bijectively recurrent. To
see that X is not totally recurrent, we note that D is not totally
recurrent and closed in X. By [2, Lemma 1], every closed subspace
of totally recurrent space is totally recurrent.

Question 1. Let X be a totally recurrent space. Does there exists
a point x ∈ X such that, for every neighbourhood U of x, X \ U
has no infinite almost discrete subspaces?

Remark 2. Let us assume that a topological space X is partitioned
X = Y ∪ Z so that Y is totally recurrent space without cofinite
subspaces, Z has no infinite almost discrete subspaces. We show
that X is totally recurrent. By Theorem 6, there exists a point
y ∈ Y such that Y \ U is finite for every neighbourhood U of y.
Let f : X → X be an arbitrary mapping. If y is not recurrent,
there exist a neighbourhood U of y and m ∈ ω such that fn(y) /∈ U
for each n > m. If the sequence (fn(y))n∈ω meets the finite subset
Y \ U infinitely often, then at least one point of this sequence is
recurrent. Otherwise, there exist k ∈ ω such that fn(y) ∈ Z for
each n > k. Using the arguments proving Theorem 5, we see that
at least one point of the sequence (fn(y))n>k is recurrent.

Question 2. Can every totally recurrent space X be partitioned
as X = Y ∪ Z so that Y is totally recurrent space without cofinite
subspaces, Z has no infinite almost discrete subspaces?
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Remark 3. Let (X, τ) be a topological space. We say that a
topology τ1 on X is a T1-refinement of τ if τ1 is the smallest T1-
topology such that τ ⊆ τ1. The family

{U \ F : U ∈ τ, F is a finite subset of X}
forms a base for τ1. Let f : X → X be an arbitrary mapping. If
the orbit {fn(x) : n ∈ ω} is infinite then x is recurrent in (X, τ) if
and only if x is recurrent in (X, τ1). It follows that (X, τ) is totally
(bijectively) recurrent if (X, τ1) is also totally (bijectively) recur-
rent. Thus, the problem of characterization of totally (bijectively)
recurrent spaces is reduced to the case of T1-spaces.

Remark 4. Let ϕ be a filter on a set X, ϕ̇ = ϕ∪{∅}. Then ϕ̇ is a
linked topology on X. If X \Φ is finite for every Φ ∈ ϕ then (X, ϕ̇)
is cofinite and, by Theorem 5 (X, ϕ̇) is totally recurrent. On the
other hand, let (X, ϕ̇) be totally recurrent. Clearly, the subspace
X \ Φ, Φ ∈ φ is closed and discrete in (X, ϕ̇). By [2, Lemma 1],
X \ Φ is finite.

Let (X, τ) be an arbitrary linked space. Then τ is a base for
some filter ϕ on X and τ ⊆ ϕ̇. If (X, ϕ̇) is totally recurrent then
so is (X, τ) but the converse statement is not true.
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