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ON DENSITY OF PERIODIC POINTS FOR
INDUCED HYPERSPACE MAPS

HECTOR MENDEZ

ABSTRACT. Let X be a continuum and 2% be the hyper-
space of all nonempty closed subsets of X endowed with the
Hausdorff metric. It is known that for each continuous map
f + X — X the density of periodic points of the induced
map 27 : 2% — 2% implies the density of periodic points of
the base map f provided that X is a graph. In this note we
describe a continuum X and a continuous map f : X — X
where the density of periodic points of the induced map 2f
does not imply the density of periodic points of the base map
f- Also we study a condition of f equivalent to the density
of periodic points of 2.

1. INTRODUCTION AND SOME DEFINITIONS

Let (X,d) be a compact metric space without isolated points.
Let f: X — X be a continuous mapping. As usual, N denotes the
set of all positive integers. Let f° be identity map in X, f! = f,
and for each n € N, f*t! = fo fn.

Given a point z in X, the orbit of x under f is the set

o(z, f) = {f"(x) :n = 0},

and the omega limit set of x under f is the set
w(z, f)={ye X :3I{n;} CN, nlimoo fi(z) =y}
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It is not difficult to prove that for each z € X, the w(z, f) is a
nonempty closed set in X, and f (w(z, f)) = w(=, f).

Let x € X. We say that x is a periodic point of f provided that
f"(z) = x for some n € N. The set of all periodic points of f is
denoted by Per(f). If x € Per(f) then the smallest n € N such
that f"(x) = x is called the period of x. The point z is said to be
recurrent if for every open set U containing x there exists n € N
such that f"(x) € U. And it is said to be regularly recurrent if
for every open set U containing x there exists N € N such that
fNk(z) € U for every k € N. The set of all recurrent points of f
and the set of all regularly recurrent points of f are denoted by
R(f) and RR(f) respectively.

Notice that = € w(x, f) if and only if z € R(f), and that

Per(f) € RR(f) C R(f).

We say that f: X — X is:

- transitive if for each pair of nonempty open sets, U and W, in
X there exists n € N such that f*(U)NW # {;

- weakly mizing provided that for each four nonempty open sets,
A, B, C and D, in X, there exists n € N such that f*(A)NC #0
and f"(B) N D # 0; and

- exact if for every nonempty open set U C X there exists n € N
such that f*(U) = X.

Notice that if f: X — X is weakly mixing, then it is transitive.

Let 2% denote the set of all nonempty closed subsets of X en-
dowed with the Hausdorff metric dy induced by d. Let 2/ : 2X —
2% be the induced mapping by f in the hyperspace 2X. Let us
recall that for each n € N and for each A € 2%, (Qf)n (A) = f*(A4).

We study in this note the connection between these two condi-
tions: Density of Per(f) in X, and density of Per (Qf) in 2%,

The reader can easily verify that the first condition implies the
second one (see also lemma 1 in [1]). The reverse implication is
more interesting.

A nonempty compact metric space X is a continuum if it is
connected as well.

Let X be a continuum. We say that X is

- an arc if it is homeomorphic to the closed interval [0, 1];

- a graph if X can be written as the finite union of arcs such that
every two of them meet at a subset of their end points.
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In [5], theorem 3.3, the authors proved the following claim: If
X is a graph, then the density of Per (2f ) implies the density of
Per(f).

In spite of the previous statement, the density of Per (2f ) implies
density of Per(f) is not always true. In Theorem 14 of [4] and in [1]
there are examples of transitive maps f : X — X where Per (2f )
is dense in 2% but Per(f) is not dense in X. In the first example
27 is transitive as well. In both cases the base space X is a Cantor
set. So, it seems natural to wonder if it is possible to produce an
example where X is a continuum and density of Per (2f ) does not
imply density of Per(f). The main goal of this note is to describe
such an example.

At the end of section 2 we present a condition of f that is equiv-
alent to the density of Per (2f).

In the last section we present some conjectures.

2. THE EXAMPLE

The continuum we are about to describe was previously pre-
sented, with different purposes, in [6].

First let us recall some results and definitions.

Let I be the closed interval [0, 1] in the real line R. For each
n €N, let r € {0,1,...,n—1}, and g, : I — I be the piecewise
linear function defined by the formula

[0,1],

nx —r, if r is even and x € &] C |0,
c [0,1].

T
)
gn (2) = { —nx+r+1, ifrisodd and z € [[%n,%]

Notice that g; is the identity function, and g, is the well known
tent map. It is known that for any two positive integers, n and m,
9n © Gm = Gm © n = Gnm (See [2])

It is not difficult to prove that for each n > 2 and for each
open interval (a,b) C [0,1], @ < b, there exists m € N so that
g ((a, b)) = [0,1]. That is, each g, is an exact mapping provided
that n > 2. Furthermore, for each n > 2, Per (g,) is a dense set of
[0, 1].

Let M be a sequence of positive integers > 2,

M = {’I’Ll,ng,ng,...}.
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Consider the inverse limit space taking gn,, gnys gns,--- as bonding
maps,

Koy =1{% = (71,22, 23,...) 1 ¥ = gn, (vi41) for each i € N}.

The metric in Ky, is given by the formula:

o0
PP In — Y
d(z,y) =d((z1,22,23,...), (Y1,Y2,Y3, .- .)) = Z |n27nn|
n=1

It is known that Ky is a continuum (see [7]). Some authors
refer to this space as a Knaster Continuum.

Since for each n > 2, g, and go commute, gs induces a mapping
of K¢y into itself, G : Ky — Ky, given by

G(:El,:Eg,:Eg, .. ) = (gg (:El) , g2 (:Eg) , g2 (:Eg) g o ) .

Given ¢ € N, m; : Kyjry — I denotes the corresponding projec-
tion.
Notice that for each i € N the following diagram commutes

G
Koy — Koy
7Tz'l l7Tz'
I 2 1

Furthermore, for each | € N, we have that m; 0 G = gé om;. Also,
for each 7 € N, 7; is an open function since g,, : I — I is an open
function for each ny € M.

Given a point ¥ € Ky} and € > 0, B (7,¢) denotes the set

{]/J\E K{M}:d(:/ﬁ,]/j) <€}.

Example. From now on in the definition of Ky, we consider
the sequence:

M ={2,4,6,8,...} = {n; = 2i}>°, .

In [6] it is proved that G : Ky, — K{pry is a homeomorphism.

Our first goal is to show that Per(G) is not dense in Kyyy. This
result is a consequence of the next proposition. The reader can find
its proof in [6] as well.

Proposition 2.1. If 7 € K,y is a periodic point under G, then
z=(0,0,0,...).
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Proposition 2.2. The mapping G : Ky, — Ky is weakly miz-
mng.

Proof. Let A, B, C'and E be four nonempty open subsets of Kpr}.
LetaeA,ZEB,EGC’andge E. Let ¢ > 0 be such that
B(a,s)C A B (B,e) C B, B(¢¢)C Cand B(é,¢) C E.

Let k € N be such that

— 1
Z 2_n <e.
n=k+1
Then for each t € [0, 1], diam (77,;1(75)) <e.
Now, 7 (B (a, €)) and 7y, (B (3, z—:)) are open subsets of I. Hence
there exists [ € N such that

g5 (i (B (@,¢))) = [0,1],

gb <7Tk (B (3, e))) —[0,1].

There exist ¢ € B (d,¢) and § € B (E, €> such that

gé (7Tk @) =c =7k (C),

and

and
g5 (m; (8)) = e, = 7k ().

It follows that 7 o G (;5) = 7 (), and 7, 0 G' (5) = 74 ().

Hence,
d (Gl 0 E) <e, and d (Gl (§),€> <e.
Therefore,
GHA)NC #0, and GY(BYNE # 0.

Thus, G : K{y1y — Ky is weakly mixing. O

Corollary 2.3. The mapping G : Kyyry — Ky ts transitive.

In Theorem 2 of [1] J. Banks proved that for a compact metric
space X and for each continuous map f : X — X, f is weakly
mixing if and only if the map 2/ : 2X — 2% is transitive. Thus,
using proposition 2.2 we have the following result.
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Corollary 2.4. The induced mapping 2 : oy — oKy 4 tran-
sitive.
We have already seen that Per(G) is not dense in K,y (propo-

sition 2.1). In order to prove that 2¢ : 250 — 2Ky has dense
set of periodic points we introduce another definition.
Given f : X — X and € > 0, consider the following set:

RR.(f) = {:EEX :dN € N, so that d(:n,ka(:E)> <€,Vk‘€N}.

The proof of the next proposition follows an idea given in the
proof of Lemma 1 of [4].

Proposition 2.5. Assume that for each € > 0, the set RR.(f) is
dense in X. Then Per (2f) is dense in 2%

Proof. Step one. Let zg € X and § > 0.

First we show that there exist A € 2% and N € N so that
A C B(zg,6) and fV(A) = A.

By hypothesis there exists y € RR% N B (:E(), g) Then there
exists N € N such that d(y,ka(y)) < g for every k € N. It
follows that

w(y, ) ccl (B <y g)) C B (x0,6).

Take A =w (y, fV). Then A C B(z¢,0) and fV(A) = A.

Step two. Let B € 2%X and ¢ > 0.

Since B is compact, there exist a finite collection of points

{bl,...,bm} CcB

so that B C U, B (bi, g) For each 1 <7 < m, take A; in 2% and
N; in N so that dy ({b;},4;) < § and fNi(4;) = A;. Let A =
U™, A; and N = lem (N, ..., Np,). It follows that dg(B,A) < 6
and fV(A) = A. O

In the next proposition we return to our example.

Proposition 2.6. For each £ > 0 the corresponding set RR. (G)
is dense in Kpry.

Proof. Fix € > 0. Take t = (t1,tp,...) in Ky, and 6 > 0.
Consider N so that E;‘L":NH% < min {g, 6}.
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Since g2, g4, -+, g2(n—1) are continuous functions, there exists
v, 0<y < g, such that if |s — tx| < 7, then

lg2(v—1)(s) — tn—1| < %,
|(92(N—2) o ga(n-1)) (s) — tn_o| < %,

‘ )
|(92 00940 --0gyN-2)° 92(1\/—1)) (s) — t1| < 3-

Now, since Per (g2) is dense in [0, 1], there is a periodic point of
g2, say sy, such that [sy —ty| <. Let 5 € K, be a point such
that 7 () = sy

~ [ N 1 )

Note that d (s,%) <S(Zi5)+95 <6

Assume that ng € N is the period of sy under go. Notice that
for each 1 <7 < N — 1, we have that

95° (mi (3)) = 93° ((g2i0- -0 gan—1)) (sN))
= (92i 0---0 92(N—1)) (930 (sn))
= (in 0---0 92(N—1)) (sn)
= Ty (/8\) .
Therefore, for each 1 <1i < N, m; (8) is a periodic point of gy of
a period that is a factor of ng. It follows that for each 1 <i < N
and for each k € N,

i (Gno’f (g)) = i (5).

Hence
— 1
a (6 @3),3) < —
(5),5) < Z o <€
n=N+1
Thus, 5 is in the set RR. (G). O

Corollary 2.7. The mapping 2C : 2501 — 2800 pas dense set
of periodic points.

Remark 2.8. Corollaries 2.4 and 2.7 and proposition 2.1 say that
the induced map 2¢ : 280y — 2Ky is chaotic (according to the
R. Devaney’s definition, see [3]) while the map G : Ky — Ky
is not.

The proposition 2.5 lead us to the following result.

Theorem 2.9. The set Per (2f) is dense in 2% if and only if for
each € > 0, the set RR.(f) is dense in X.
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Proof. Assume Per (2f) is dense in 2%. Fix € > 0.

Let g € X, and § > 0. There exist A € 2X and N € N such
that (21)" (4) = A and dy ({zo}, A) < min {6, 5}. Take y € A.
It follows that for each k € N,

Py eac B (n,3).
Therefore, for each k € N, d (y, ka(y)) <e.
Since d (xg,y) < 6, RR-(f) is a dense set of X.
The other part of this theorem is contained in proposition 2.5.
O

3. SOME CONJECTURES

Given f : X — X we have two conditions at hand:

a) The set of regularly recurrent points is dense in X.

b) For each € > 0, the set RR.(f) is dense in X.

In [4] the authors proved that condition a) implies density of
Per (Qf) in 2%,

Question 3.1. Are conditions a) and b) equivalent?

Remark 3.2. Since for each ¢ > 0 we have that RR(f) C RR.(f),
then condition a) implies condition b).

It seems interesting to study in which continua the density of
Per (Qf) implies the density of Per(f).

Let X be a continuum. We say that X is

- a dendrite if X is locally connected and it contains no simple
closed curves;

- decomposable provided that X contains two proper subcon-
tinua, A and B, such that X = AU B;

- hereditarily decomposable provided that each subcontinuum of
X with more than one point is decomposable;

- indecomposable if X is not decomposable;

- arc-like provided that for each € > 0 there exists an onto and
continuous function f : X — [0, 1] such that for each t € [0, 1],
diam (f~1(1)) <e.

The following result is already known. The proof we present here
follows an idea from [5].
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Proposition 3.3. Let f : [0,1] — [0,1]. If Per(2/) is dense in
2001 then Per(f) is dense in [0, 1].

Proof. Let 0 < a < b < 1. Consider xy = “T+b and € = b_T“. Since

Per(27) is dense in 2(%1 there exist A € 2[01 and N € N such that
di ({0}, A) < e and (27)" (4) = A. Tt implies that A C (a,b)
and fN(A) = A.

Let @ = min A and 3 = max A. Then fN(a) > a and fV(B) <
B. Since fV is continuous in [0, 1], there exists = € [a, 3] C (a,b)
so that fV(z) = 2. O

In [5], theorem 3.3, the authors proved the following claim: If
X is a graph, then the density of Per (2f ) implies the density of
Per(f). This result is a generalization of the previous proposition.
In this setting the following conjecture could be interesting.

Conjecture 3.4. Let X be a dendrite. Then for each continuous
map f : X — X the density of Per (2f) implies the density of
Per(f).

The space Ky, described in the previous section is an arc-like
continuum. It is indecomposable as well (see [7]). As we have
seen before, in this example the density of Per (2f ) does not imply
the density of Per(f). Hereditarily decomposable arc-like continua
and the arc are, somehow, more alike. With this in mind, it seems
possible that the following result were true.

Conjecture 3.5. Let X be a hereditarily decomposable arc-like con-
tinuum. Then for each continuous map f : X — X, the density of
Per (2f) implies the density of Per(f).
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