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ON Y¥-PONOMAREV-SYSTEMS

NGUYEN VAN DUNG

ABSTRACT. In this paper, we introduce the ¥-Ponomarev-
system (f, M, X,{P;}) to investigate relations between the
mapping f from a metric space M onto a space X with the
o-network | J{P;, : n € N}. By this system, we give necessary
and sufficient conditions for f to be an (a) s-(compact, msss-,
mssc-, cs-)mapping, and a sufficient condition for f to be a
m-mapping. Also, we give necessary and sufficient conditions
for f to be a mapping with covering-properties.

1. INTRODUCTION

Finding characterizations of nice images of metric spaces is one
of the most important problems in general topology. Related to
this problem, various kinds of characterizations of s-(resp., com-
pact, -, msss-, mssc-, cs-)images of metric spaces have been
obtained by means of certain point-countable (resp., point-finite
o-strong, o-strong, o-locally countable, o-locally finite, compact-
countable) networks [14], [20]. The key to prove these results is to
construct s-(resp., compact, m-, msss-, mssc-, cs-)mappings with
covering-properties from metric spaces onto spaces with certain net-
works. In [16], S. Lin and P. Yan introduced Ponomarev-systems
(f,M,X,P) and (f, M, X,{P,}) to give general conditions for f
to be a compact-covering mapping onto a space X from some met-
ric space M, where P is a strong network and | J{P,, : n € N} is a
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o-strong network for X. After that, Y. Ge and S. Lin have been ob-
tained necessary and sufficient conditions for f to be an s-mapping
with covering-properties in a Ponomarev-system (f, M, X,P) [6],
[8], [9]. Also, the authors have been obtained necessary and suf-
ficient conditions for f to be a compact mapping with covering-
properties in a Ponomarev-system (f, M, X,{P,}) [7], [8]. Note
that, in a Ponomarev-system (f, M, X,{P,}), the mapping f is a
m-mapping [16]. So far it seems not to be known whether a nec-
essary and sufficient condition for f to be a compact mapping can
be obtained in a Ponomarev-system (f, M, X,P). Also, we do not
know whether necessary and sufficient conditions for f to be an
(a) msss-(mssc-, cs-)mapping with covering-properties can be ob-
tained in Ponomarev-systems (f, M, X,P) and (f, M, X,{Pn}).

By the above, we are interested in finding a general system to
give necessary and sufficient conditions for the mapping f to be
an (a) s-(compact, 7, msss-, mssc-, cs-)mapping with covering-
properties from some metric space M onto a space X with certain
networks.

In this paper, we introduce the notion of a >-Ponomarev-system
(f,M,X,{P}}) to investigate relations between the mapping f
from a metric space M onto a space X with the o-network
U{P; : n € N}. By this system, we give necessary and suffi-
cient conditions for f to be an (a) s-(compact, msss-, mssc-, cs-)
mapping, and a sufficient condition for f to be a m-mapping. Also,
we give necessary and sufficient conditions for f to be a mapping
with covering-properties.

Throughout this paper, all spaces are Hausdorff, all mappings
are continuous and onto, a convergent sequence includes its limit
point, N denotes the set of all natural numbers, w = N U {0},
and py denotes the projection of [[, .y Xn onto Xj. Let X be
a space, x € X, and P be a family of subsets of X, we denote
st(x,P) = J{P € P:x € P}. We say that a convergent sequence
{zy, : n € N} U{z} converging to x is eventually in A if {z, : n >
no} U {z} C A for some ny € N.

For terms are not defined here, please refer to [3] and [14].

2. MAIN RESULTS

Definition 2.1. Let f: X — Y be a mapping.
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(1) f is an msss-mapping [12], if X is a subspace of the product
space [,y Xn of a family {X,, : n € N} of metric spaces, and
for each y € Y, there exists a sequence {V,,,, : n € N} of open
neighborhoods of y in Y such that each p,(f~*(V,.)) is a separable
subset of X,,.

(2) f is an mssc-mapping [12], if X is a subspace of the product
space | [, oy Xn of a family {X,, : n € N} of metric spaces, and
for each y € Y, there exists a sequence {V,, : n € N} of open
neighborhoods of y in Y such that each p,(f~1(V,»)) is a compact
subset of X,,.

(3) f is an s-mapping (resp., compact mapping) [1], if for each
y €Y, f~(y) is a separable (resp., compact) subset of X.

(4) f is a cs-mapping [18] if, for each compact subset K of Y,
f~1(K) is a separable subset of X.

(5) f is a m-mapping [1], if for each y € Y and each neighborhood
UofyinY,d(f 1(y), X — f~1(U)) > 0, where X is a metric space
with a metric d.

(6) f is an I-sequence-covering mapping [13] if, for each y € Y,
there exists z, € f~!(y) such that whenever {y, : n € N} is a
sequence converging to y in Y there exists a sequence {z,, : n € N}
converging to x, in X with each z, € f~1(yy,).

(7) f is a 2-sequence-covering mapping [13] if, for each y € Y,
zy € f71(y), and sequence {y,, : n € N} converging to y in Y, there
exists a sequence {z,, : n € N} converging to x, in X with each
Tn € f _l(yn)~

(8) f is a sequence-covering mapping [19] if, for each convergent
sequence S in Y, there exists a convergent sequence L in X such
that f(L) = S. Note that a sequence-covering mapping is a strong
sequence-covering mapping in the sense of [11].

(9) f is a subsequence-covering mapping [15] if, for each conver-
gent sequence S in Y, there exists a compact subset K of X such
that f(K) is a subsequence of S.

(10) f is a sequentially-quotient mapping [2] if, for each conver-
gent sequence S in Y, there exists a convergent sequence L in X
such that f(L) is a subsequence of S.

Definition 2.2. Let P be a subset of a space X. P is a sequential
neighborhood of x [4], if for every convergent sequence S converging
to xz in X, S is eventually in P.
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Definition 2.3. Let P be a family of subsets of a space X.

(1) P is a network at x in X [17], if z € P for every P € P, and
whenever z € U with U open in X, then there exists P € P such
that zx €¢ P C U.

(2) P is a strong network for X if, for every x € X, there exists
P C P such that P, is a countable network at = in X.

Definition 2.4. Let P = [J{P, : n € N}, where each P, is a
family of subsets a space X.

(1) Py = {Pa, :n € N} C Pisao-network at x in X, if P, is a
network at x in X, and P,, € P, for every n € N.

P is a o-network for X, if for each x € X, there exists P, C P
such that P, is a o-network at x in X.

(2) P is a o-strong network for X [10], if {st(x,P,) : n € N} is
a network at x in X for every z € X.

(3) P is a o-cs-network for X, if whenever S is a convergent
sequence converging to = in X there exists {P,, : n € N} C P such
that {P,, : n € N} is a o-network at z in X, and S is eventually
in P,, for every n € N.

(4) P is a o-cs*-network for X, if whenever S is a convergent
sequence in X there exists a subsequence L of S and {P,, : n €
N} € P such that {P,, : n € N} is a o-network at = in X, and L
is eventually in P,, for every n € N.

(5) P is a o-sn-network for X, if for each x € X there exists
{P,, :n € N} C P such that {P,, : n € N} is a o-network at x in
X, and P,, is a sequential neighborhood of z for every n € N.

(6) P is a o-so-network for X, if for each x € X there exists
{P,, : n € N} C P such that {P,, : n € N} is a o-network at x
in X, and whenever {P,, : n € N} C P is a o-network at x in X,
then P, is a sequential neighborhood of x for every n € N.

(7) P is a o-strong cs-(resp., o-strong cs*-, o-strong sn-, o-strong
so-)network for X, if P is a o-strong network and a o-cs-(resp., o-
cs*-, o-sn-, o-so-)network for X.

(8) P is a o-(P) (resp., o-(P) strong, o-(P) (p)-, o-(P) strong
(p)-)network for X, if P is a o-(resp., o-strong, o-(p)-, o-strong
(p)-)network and each P, has property (P), where (P) is point-
countable (point-finite, locally countable, locally finite, compact-
countable), and (p) is cs- (cs*-, sn-, so-).
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Definition 2.5. (1) Let P be a strong network for a space X. Put
P ={P,:«ac A}. For every n € N, put 4, = A and endow A,
with a discrete topology. Put

M ={a=(an) € HAn:{Pan:nEN}
neN
forms a network at some point x, in X }

Then M, which is a subspace of the product space [], cn An, is
a metric space, x, is unique, and z, = (), ey Pa, for every a €
M. Define f : M — X by f(a) = x4, then f is a mapping, and
(f, M, X, P) is a Ponomarev-system [16].

(2) Let |J{Pn : n € N} be a o-network for X. For every n € N,

put P, = {P, : a € A,} and endow A, with a discrete topology.
Put

M:{a:(an)GHAn:{Pan:neN}
neN

forms a network at some point x, in X }

Then M, which is a subspace of the product space [], oy An, is
a metric space, x, is unique, and x, = ﬂneN P,, for every a €
M. Define f: M — X by f(a) = x4, then f is a mapping, and
(f, M, X, {P,}) is a Ponomarev-system [21]|. Under | J{P,, : n € N}
being a o-strong network for X, (f, M, X,{P,}) is a Ponomarev-
system in the sense of [16].

Definition 2.6. Let P = [J{P,, : n € N} be a o-network for X.
For every n € N, put P = P, U{' 1 P : P, € Pi,i < n} =
{P,:a€ A,} and endow A,, with a discrete topology. Put

M ={a=(an) € HAn:
neN
{P,, : n € N} forms a network at some point z, in X }.
Then, M is a metric space, z, is unique, and x4 = (),cy Pa, for
every a € M. Define f : M — X by f(a) = x4, then f is
a mapping by the following Lemma 2.7, and (f, M, X,{P;}) is a
>:-Ponomarev-system.

Lemma 2.7. Let (f,M,X,{P;;}) be the system in Definition 2.6.
Then the following hold.
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(1) f is onto.
(2) f is continuous.

Proof. (1). For each z € X, since P is a o-network for X, there
exists P,, € Py for every n € N such that {P,, : n € N} forms a
network at x in X. Put a = (ay,), then a € M and f(a) = z. This
proves that f is onto.

(2). For each a = (ay,) € M and f(a) = x4, let V be an open
neighborhood of x, in X. Then there exists k € N such that z, €
P, CcV.PutU={b=(0,) € M : By =a}. Then U is an open
neighborhood of a in M and f(U) C P,, C V. It implies that f is
continuous. ]

Remark 2.8. (1) For each n € N, P, has property (P) if and only
if P has property (P), where (P) is point-countable (point-finite,
locally countable, locally finite, compact-countable).

(2) U{Pn : n € N} is a o-strong network for X if and only if
U{P; : n € N} is a o-strong network for X.

(3) If U{Pn : n € N} is a o-network (resp., o-cs-network, o-cs*-
network, o-sn-network, o-so-network) for X, then (J{P} : n € N}
is a o-network (resp., o-cs-network, o-cs*-network, o-sn-network,
o-so-network) for X.

(4) The Y-Ponomarev-system (f, M, X, {P*}) where X is a
space with o-network (J{P, : n € N} is the Ponomarev-system
(f, M, X,{P}}) where X is a space with o-network [ J{P} : n € N}.

Lemma 2.9. Let (f,M,X,{P,}) be a ¥-Ponomarev-system, a =
(o) € M where {P,,, : n € N} is a network at some point x, in
X, and

Uy,=1{b=(8) e M: 0 =« ifi <n},
for every n € N. Then the following hold.
(1) {U,, : n € N} is a base at a in M.
(2) f(Un) =iy Pa, for every n € N.
Proof. (1). It is obvious.

(2). For each n € N, let € f(U,). Then x = f(b) for some
b= (8;) € Un. Therefore, x = (e Ps; € Niz1 Ps; = iz P
This proves that f(U,) C (i, Pa,-
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Conversely, let € () Pn;. Then z = f(b) for some b = (3;) €
M. Put ¢ = (v;), where P, = Py, if i < n and Py, = (\;_; P
if i > n. Then ¢ € U, and f(c) = x. It implies that (\;_; Pa, C

f(Un).
By the above, we get f(Up) = iey P, - O

In [6], [8], Y. Ge and S. Lin obtained necessary and sufficient
conditions such that f is an s-mapping for the Ponomarev-system
(f,M,X,P) and f is a compact mapping for the Ponomarev-system
(f,M,X,{Pn}). In the following, we give necessary and suffi-
cient conditions for f to be an (a) s-(compact, mssc-, msss-, cs-)
mapping in a X-Ponomarev-system (f, M, X, {P;}).

Theorem 2.10. Let (f,M,X,{P}}) be a X-Ponomarev-system.
Then the following hold.
(1) f is an s-mapping if and only if | J{P} : n € N} is a o-
point-countable network for X.
(2) f is a compact mapping if and only if | J{P} : n € N} is a
o-point-finite strong network for X.
(3) f is an msss-mapping if and only if | J{P: : n € N} is a
o-locally countable network for X.
(4) f is an mssc-mapping if and only if J{P}: : n € N} is a
o-locally finite network for X.
(5) f is a cs-mapping if and only if | J{P}: : n € N} is a o-
compact-countable network for X.
Proof. (1). Necessity. Let f be an s-mapping. If there exists k € N
such that P; is not point-countable, then, for some z € X, we
have that A, = {o € Ay : © € P,} is uncountable. For each
a€ Ay, put Uy ={b=(B,) € M : By = o}, then U, is open. If
b= (8,) € f~1(z), then x = f(b) € Pg,. It implies that 3 = «
for some o € Ay, hence b € U,. Therefore, {U, : a € Ay} is
an uncountable open cover for f~!(z), but it has not any proper
subcover. So f~1(x) is not separable, hence f is not an s-mapping.
It is a contradiction.

Sufficiency. Let |J{P} : n € N} be a o-point-countable network
for X. Then for each x € X, we have that A,, = {a € A, :
r € P,} is countable for every n € N. Therefore, [], oy Azn is
hereditarily separable. It follows from f~!(z) C [[,cy Aen that
f~1(z) is separable. Then f is an s-mapping.
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(2). Necessity. Let f be a compact mapping. It suffices to prove
following claims (a) and (b).

(a) U{P; : n € N} is a o-strong network for X.

If U{P} : n € N} is not a o-strong network for X. Then there
exists € U with U open in X such that st(z,P;;) ¢ U for every
n € N. Therefore, there exists P,, € Py such that v € P,, ¢ U
for every n € N. It implies that {P,, : n € N} does not form a
network at x in X, hence a = (a,) € f~(z). Let z = f(b) for some
b= (Bn) € M. For each i € N, put a; = (), where P,, = P,,, if
n <iand Py, =(\j—, Ps; if n >i. Then {Py,, : n € N} forms a
network at x in X, so a; € f~!(x) for every i € N. It is easy to see
that the sequence {a; : i € N} converges to a in ], .y An. Since
f71(z) is a compact subset of M, f~(z) is closed in [],cy An.
Then a € f~1(x). It is a contradiction.

(b) Each P} is point-finite.

If there exists k& € N such that P; is not point-finite, then, for
some x € X, we have that A, , = {a € A : ¢ € P,} is infinite. For
eacha € Ay, put Uy = {b=(8,) € M : B, = a}, then U, is open.
If b= (8,) € f~1(z), then x = f(b) € Ps,. It implies that B = «
for some o € A, i, hence b € U,. Therefore, {U, : @ € A, 1} is an
infinite open cover for f~!(x), but it has not any proper subcover.
So f~!(z) is not compact, hence f is not a compact mapping. It is
a contradiction.

Sufficiency. Let (J{P} : n € N} be a o-point-finite strong net-
work for X. Then for each x € X, we have that A, , = {a € A, :
x € P,} is finite and {P,, : n € N} forms a network at = in X for
every (o) € [,en Az Therefore, f~1(z) = [],en Awm, and so f
is a compact mapping.

(3). Necessity. Let f be an msss-mapping. If there exists k € N
such that P} is not locally countable, then, for some x € X, we have
that Ay, = {a € Ay : P, N U, # (0} is uncountable for every open
neighborhood U, of x in X. For each a € A, s, pick y € P, N Uy,
and let y = f(a) for some a = (ay,) € M. Put by = (), where
Pg, = P,, and P, = ﬂ;-lzl Py, if n # k. Then 3, € A, for
every n € N and {Ps, : n € N} forms a network at y in X. So
bo € f7Hy) C fF71(U,). Tt implies that o = pr(ba) € pe(f~1(UL)).
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Then A, C pe(f~1(Uy)) C Ag. Since A, is uncountable and Ay
is discrete, pr(f~1(U,)) is not separable. It is a contradiction.

Sufficiency. Let | J{P} : n € N} be a o-locally countable network
for X. For each z € X and n € N, there exists an open neighbor-
hood Uy, of x in X such that A, ,, = {a € A, : P, N Uy, # 0}
is countable. It implies that f_l(ULn) C Il,enAzm, then
pu(f Y (Usn)) C Ay Since Ay, is countable, p,(f~1(Usn)) is
separable. Then f is an msss-mapping.

(4). Necessity. Let f be an mssc-mapping. If there exists k € N
such that P/ is not locally finite, then, by using notations and argu-
ments in the necessity of (3) again, we have that A, ; is infinite and
Ayx C pr(f~1(Uy)). This proves that pg(f~1(U,)) is not compact.
It is a contradiction.

Sufficiency. Let |J{P} : n € N} be a o-locally finite network
for X. By using notations and arguments in the sufficiency of (3)
again, we have that A, is finite and p,(f~*(Uzn)) C Ay, for
every n € N. Then p,(f~1(Uygy)) is compact. This proves that f
is an mssc-mapping.

(5). Necessity. Let f be a cs-mapping. If there exists k& € N such
that P} is not compact-countable, then, for some compact subset C
of X, we have that Acy = {a € Ay : CN P, # 0} is uncountable.
For each o € Acy, put Uy = {b = (Bn) € M : By = a}, then
Uy is open. If b = (B8,) € f71(C), then z = f(b) € Ps,. It
implies that 3; = o for some o € Acy, hence b € U,. Therefore,
{U, : a € Ac} is an uncountable open cover for f~1(C), but it
has not any proper subcover. So f~!(C) is not separable, hence f
is not a cs-mapping. It is a contradiction.

Sufficiency. Let |J{P); : n € N} be a o-compact-countable
network for X. For each compact subset C' of X, we have that
Acp = {a € A, : CN P, # 0} is countable for every n € N.
Then [],, e Ac,n is hereditarily separable. It follows from f~1(C) C
[T,en Acn that f71(C) is separable. Then f is a cs-mapping. [

For a Ponomarev-system (f, M, X, {P,}), the following result is
well-known.
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Lemma 2.11 ([21], Lemma 2.2). Let (f,M,X,{P,}) be a
Ponomarev-system. If |J{Pn : n € N} is a o-strong network for
X, then f is a w-mapping.

In the next, we give a sufficient condition for f to be a m-mapping
in a X-Ponomarev-system (f, M, X,{P’}).

Proposition 2.12. Let (f, M, X,{P;;}) be a ¥-Ponomarev-system.
If U{P} : n € N} is a o-strong network for X, then f is a m-
mapping.

Proof. Let x € U with U open in X. Since |J{P;; : n € N} is a o-
strong network for X, there exists n € N such that st(z,P}) C U.

1
If a = () € M such that d(f~(z),a) < o then there exists
1
b= (B,) € f~(z) such that d(a,b) < o It implies that oy = S
if & < n. Then f(a) € P, = Pg, C st(z,P;;) C U, hence a €

1
f~1(U). Therefore, d(f~(z), M — f~H(U)) > o> 0. This proves
that f is a m-mapping. O

The following example shows that the inverse implication of
Proposition 2.12 does not hold.

Ezample 2.13. There exists a ¥-Ponomarev-system (f, M, X, {P;})
such that the following holds.

(1) fis a m-mapping.

(2) U{P; : n € N} is not a o-strong network for X.

Proof. Let X = {x,y,z} be a discrete space. Put P; =
{{33‘}, {Z}v {:Ua y}}7 and Py, = {{l‘}, {y}7 {Z}7 {l‘, Z}} for every n > 2.
It is easy to see that P = |J{P, : n € N} is a o-network for X,
then the ¥-Ponomarev-system (f, M, X, {P;;}) exists. Note that
Py =P, for every n € N.

(1). f is a m-mapping.

For each t € X and each neighborhood U of ¢, since {t} is also
a neighborhood of ¢ and {t} C U, we have that d(f~'(¢t), M —
FTHU)) = d(f7H(E), M — f7H() = inf{d(a,b) : a € f7H(t),b €
M — f=Y(#)}. For each a = (ay,) € f71(t) and b = (8,) € M —
f71(t), we consider two following cases (a) and (b).
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1 1
(a) t=xzort=y. If B1 # a, then d(a,b) > §d(a1’ﬁl) =5 I

B1 = aq, then Py, = P, = {z,y}. Since b € M — f~1(t), we have
that Pg, = {y} if t = x, and P, = {«} if t = y. It implies that

1
B2 # . Then d(a,b) > 2—2d(a2,ﬁ2) =7

1
(b) t = z. We have that o # (31, then d(a,b) >

d(a, 1) = >

By the above, d(a,b) > ifor every a € f~l(t) and b € M —
f7H®). Then d(f~(t),M — f71(U)) = d(f~(t), M — f7'(t)) >

N |

1
1 > (0. This proves that f is a m-mapping.

(2). U{P; : n € N} is not a o-strong network for X.

Let U = {xz}, then U is a neighborhood of = in X. We have
that st(z, Pf) = {z,y}, and st(x,P}) = {x, z} for every n > 2. It
implies that st(xz,Py) ¢ U for every n € N. Then | J{P} : n € N}
is not a o-strong network for X. O

Remark 2.14. By Remark 2.8.(4), Example 2.13 also shows that
the inverse implication of Lemma 2.11 does not hold.

We do not know whether a necessary and sufficient condition for
f to be a m-mapping can be obtained in a Y-Ponomarev-system
(f,M,X,{P}}). To get a necessary and sufficient condition such
that (J{P} : n € N} is a o-strong network for X, we introduce the
following notion.

Definition 2.15. Let f: X — Y be a mapping. f is a complete
mapping if, for each y € Y, f~1(y) is a complete metric subset of
X.

Proposition 2.16. Let (f, M, X,{P}}) be a ¥-Ponomarev-system.
Then |J{P} : n € N} is a o-strong network for X if and only if f
18 a complete mapping.

Proof. Necessity. Let |J{P; : n € N} be a o-strong network for
X. For each z € X, put A, ,, = {a € A, : ¢ € P,}. Then {P,, :
n € N} forms a network at x in X for every (an) € [],cny Azn-
Therefore, f~!(x) = [],,cy Az,n- It follows from [3, Theorem 4.3.12)]
that f~1(z) is a complete metric subset of M. Then f is a complete
mapping.
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Sufficiency. Let f be a complete mapping. If [ J{P} : n € N} is
not a o-strong network for X. By using notations and arguments
in proof (a) of the necessity of Theorem 2.10.(2) again, we have
that a ¢ f~'(x), and the sequence {a; : i € N} converges to a in
[T,en An. Clearly, {a; : i € N} is a Cauchy sequence in f~!(z).
Since f~!(z) is a complete metric subset of M, a € f~(z). It is a
contradiction. O

In [6], [7], [8], [9], necessary and sufficient conditions such that f
is a covering-mapping have been obtained for Ponomarev-systems
(f,M,X,P)and (f, M, X,{P,}). Next, we give necessary and suf-
ficient conditions for f to be a covering-mapping in a X-Ponomarev-
system (f, M, X, {P}}).

Theorem 2.17. Let (f,M,X,{P}}) be a ¥-Ponomarev-system.
Then the following hold.
(1) f is sequence-covering if and only if | J{P} : n € N} is a
o-cs-network for X.
(2) f is sequentially-quotient (subsequence-covering) if and only
if U{P} : n € N} is a o-cs*-network for X.
(3) f is 1-sequence-covering if and only if | J{P} :n € N} is a
o-sn-network for X.
(4) f is 2-sequence-covering if and only if | J{P} :n € N} is a
o-so-network for X.
Proof. (1). Necessity. Let f be a sequence-covering mapping. Then
for each convergent sequence S = {z, : n € w} converging to
xo in X, there exists a convergent sequence C = {a, : n € w}
converging to ag in M such that f(a,) = z, for every n € w. Let
ap = (agn) € M. Then {P,,, : n € N} is a network at zp in X.
For each k € N, we have that Uy, = {b=(0,) € M : B, = apr} is a
neighborhood of ag in M. Then C is eventually in Ug. It implies
that S is eventually in Pg, = P,,,. Then [J{P; : n € N} is a
o-cs-network for X.

Sufficiency. Let |J{P; : n € N} be a o-cs-network for X. For
each sequence S = {z,, : m € w} converging to xo in X, there
exists { Py, : n € N} C P such that {P,,, : n € N} is a o-network
at g in X and S is eventually in F,,, for every n € N. For each
m € N, let x,, = f(by,) where by, = (Bmn) € M. For each m € N
and n € N, put apm, = aop if 2, € Py, and P, = ﬂ?zl P, if
T & Pay,. We have that a,, = () € f~H(2m) for every m € w.
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Since S is eventually in P,,, for every n € N, there exists m(n)
such that o, = ag, for every m > m(n). Then {a,, : m € w}
converges to ag in M. This prove that f is a sequence-covering
mapping.

(2). Necessity. Let f be a sequentially-quotient mapping. For
each convergent sequence S = {z,, : m € w} converging to x¢ in
X, there exists a convergent sequence C' in M such that f(C) is
a subsequence of S. By using arguments as in the necessity of (1)
again, there exists {P,,, : n € N} C P such that {P,,, : n € N}
is a o-network at zp in X and f(C) is eventually in P, for every
n € N. Then |J{P;; : n € N} is a 0-cs*-network for X.

The parenthetic part is obvious by [5, Proposition 2.1].

Sufficiency. Let |J{P} : n € N} be a o-cs*-network for X. For
each sequence S = {z,, : m € w} converging to xp in X there
exists a subsequence L of S and {P,,, : n € N} C P such that
{Pa,, : n € N} is a o-network at = in X and L is eventually in
P,,, for every n € N. By using arguments as in the sufficiency
of (1) again, there exists a convergent sequence C' in M such that
f(C) = L. Tt implies that f is a sequentially-quotient mapping.

The parenthetic part is obvious by the fact that every sequential-
ly-quotient mapping is a subsequence-covering mapping.

(3). Necessity. Let f be an 1-sequence-covering mapping. For
each z € X, there exists a; € M such that whenever {z,, : n € N} is
a sequence converging to z in X there exists a sequence {a, : n € N}
converging to a, in M with each a, € f~'(z,). Put az = (o),
then {P,, : n € N} is a o-network at z in X.

If {y, : n € N} is a sequence converging to z, there exists a
sequence {b, : n € N} converging to a, in M with each b, €
fYyn). Foreach k € N, put U, = {b = (8,) € M : B = ay}.
Then Uy, is a neighborhood of a, in M, hence {b, : n € N}U{a,} is
eventually in Ug. By Lemma 2.9, {y, : n € N} U{z} is eventually
in f(Ug) = ﬂfszl P,, C P,,. This proves that P,, is a sequential
neighborhood of  in X.

By the above, | J{P;: : n € N} is a o-sn-network for X.

Sufficiency. Let |J{P;; : n € N} be a o-sn-network for X. For
each © € X there exists {P,, : n € N} C P such that {P,, :
n € N} is a o-network at z in X and each P,, is a sequential
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neighborhood of  in X. Put a, = (ay), then a, € f~!(z). For
each n € N, if {z,, : m € N} is a sequence converging to z in X,
then {z,, : m € N} U {z} is eventually in P,,. For each m € N,
let x,, = f(by) where by, = (Bmn) € M. For each m € N and
n € N, put Py,,, = Pu, if 2m € Po,, and Py,,, = (i, Pg,,; if
Tm & Pa,. Then a,, = (amn) € f~1(2y,) for every m € N. Since
S is eventually in P, for every n € N, there exists m(n) such that
Qmn = ay, for every m > m(n). Then {a,, : m € N} converges to
ay in M. This prove that f is an 1-sequence-covering mapping.

(4). Necessity. Let f be a 2-sequence-covering mapping. For
each z € X, there exists a, = (an) € M such that f(ay) = =.
Then {P,, : n € N} C P is a o-network at  in X.

If {P,, :n €N} CPisao-network at z in X. Put a; = (ay),
then a, € f~!(z). If {x, : n € N} is a sequence converging to z,
there exists a sequence {a, : n € N} converging to a, in M with
each a, € f~1(z,). As in the necessity of (3), P,, is a sequential
neighborhood of z in X for every k € N.

By the above, | J{P;; : n € N} is a o-so-network for X.

Sufficiency. Let P be a o-so-network for X. For each x € X
and a; = (ap) € f~Hx), {Pa, : n € N} is a o-network at x in X
and each P,, is a sequential neighborhood of z in X. As in the
sufficiency of (3), there exists a sequence {a,, : m € N} converging
to a; in M with each a,, € f~!(z,). This proves that f is a
2-sequence-covering mapping. O

By Theorem 2.10, Proposition 2.16, and Theorem 2.17, we get
following corollaries.

Corollary 2.18. Let (f,M,X,{P}}) be a ¥-Ponomarev-system.
Then the following are equivalent, where “sequence-covering”
and “cs-” can be replaced by “1-sequence-covering” and “sn-" (“2-
sequence-covering” and “so-", “sequentially-quotient” and “cs*-”)
respectively; and “s-mapping” and “point-countable” can be replaced
by “msss-mapping” and “locally countable” (“mssc-mapping” and

“locally finite”, “cs-mapping” and “compact-countable” ) respectively.

(1) f is a sequence-covering s-mapping.
(2) U{P; : n € N} is a o-point-countable cs-network for X.
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Corollary 2.19. Let (f,M,X,{P}}) be a X-Ponomarev-system.
Then the following are equivalent, where “sequence-covering” and
“cs-7 can be replaced by “I1-sequence-covering” and “sn-" (“2-se-
quence-covering” and “so-", “sequentially-quotient” and “cs*-") re-
spectively.

(1) f is a sequence-covering compact mapping.

(2) U{P;; : n € N} is a o-point-finite strong cs-network for X.

Corollary 2.20. Let (f,M,X,{P}}) be a ¥-Ponomarev-system.
Then the following are equivalent, where “sequence-covering” and
“cs-" can be replaced by “I1-sequence-covering” and “sn-" (“2-se-
quence-covering” and “so-", “sequentially-quotient” and “cs*-") re-
spectively.

(1) f is a sequence-covering complete mapping.

(2) U{P} : n € N} is a o-strong cs-network for X .
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