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ON Σ-PONOMAREV-SYSTEMS

NGUYEN VAN DUNG

Abstract. In this paper, we introduce the Σ-Ponomarev-
system (f, M, X, {P∗n}) to investigate relations between the
mapping f from a metric space M onto a space X with the
σ-network

⋃{P∗n : n ∈ N}. By this system, we give necessary
and sufficient conditions for f to be an (a) s-(compact, msss-,
mssc-, cs-)mapping, and a sufficient condition for f to be a
π-mapping. Also, we give necessary and sufficient conditions
for f to be a mapping with covering-properties.

1. Introduction

Finding characterizations of nice images of metric spaces is one
of the most important problems in general topology. Related to
this problem, various kinds of characterizations of s-(resp., com-
pact, π-, msss-, mssc-, cs-)images of metric spaces have been
obtained by means of certain point-countable (resp., point-finite
σ-strong, σ-strong, σ-locally countable, σ-locally finite, compact-
countable) networks [14], [20]. The key to prove these results is to
construct s-(resp., compact, π-, msss-, mssc-, cs-)mappings with
covering-properties from metric spaces onto spaces with certain net-
works. In [16], S. Lin and P. Yan introduced Ponomarev-systems
(f,M, X,P) and (f, M, X, {Pn}) to give general conditions for f
to be a compact-covering mapping onto a space X from some met-
ric space M , where P is a strong network and

⋃{Pn : n ∈ N} is a
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σ-strong network for X. After that, Y. Ge and S. Lin have been ob-
tained necessary and sufficient conditions for f to be an s-mapping
with covering-properties in a Ponomarev-system (f, M, X,P) [6],
[8], [9]. Also, the authors have been obtained necessary and suf-
ficient conditions for f to be a compact mapping with covering-
properties in a Ponomarev-system (f, M, X, {Pn}) [7], [8]. Note
that, in a Ponomarev-system (f, M, X, {Pn}), the mapping f is a
π-mapping [16]. So far it seems not to be known whether a nec-
essary and sufficient condition for f to be a compact mapping can
be obtained in a Ponomarev-system (f, M, X,P). Also, we do not
know whether necessary and sufficient conditions for f to be an
(a) msss-(mssc-, cs-)mapping with covering-properties can be ob-
tained in Ponomarev-systems (f, M,X,P) and (f, M, X, {Pn}).

By the above, we are interested in finding a general system to
give necessary and sufficient conditions for the mapping f to be
an (a) s-(compact, π-, msss-, mssc-, cs-)mapping with covering-
properties from some metric space M onto a space X with certain
networks.

In this paper, we introduce the notion of a Σ-Ponomarev-system
(f,M, X, {P∗n}) to investigate relations between the mapping f
from a metric space M onto a space X with the σ-network⋃{P∗n : n ∈ N}. By this system, we give necessary and suffi-
cient conditions for f to be an (a) s-(compact, msss-, mssc-, cs-)
mapping, and a sufficient condition for f to be a π-mapping. Also,
we give necessary and sufficient conditions for f to be a mapping
with covering-properties.

Throughout this paper, all spaces are Hausdorff, all mappings
are continuous and onto, a convergent sequence includes its limit
point, N denotes the set of all natural numbers, ω = N ∪ {0},
and pk denotes the projection of

∏
n∈NXn onto Xk. Let X be

a space, x ∈ X, and P be a family of subsets of X, we denote
st(x,P) =

⋃{P ∈ P : x ∈ P}. We say that a convergent sequence
{xn : n ∈ N} ∪ {x} converging to x is eventually in A if {xn : n ≥
n0} ∪ {x} ⊂ A for some n0 ∈ N.

For terms are not defined here, please refer to [3] and [14].

2. Main results

Definition 2.1. Let f : X −→ Y be a mapping.
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(1) f is an msss-mapping [12], if X is a subspace of the product
space

∏
n∈NXn of a family {Xn : n ∈ N} of metric spaces, and

for each y ∈ Y , there exists a sequence {Vy,n : n ∈ N} of open
neighborhoods of y in Y such that each pn(f−1(Vy,n)) is a separable
subset of Xn.

(2) f is an mssc-mapping [12], if X is a subspace of the product
space

∏
n∈NXn of a family {Xn : n ∈ N} of metric spaces, and

for each y ∈ Y , there exists a sequence {Vy,n : n ∈ N} of open
neighborhoods of y in Y such that each pn(f−1(Vy,n)) is a compact
subset of Xn.

(3) f is an s-mapping (resp., compact mapping) [1], if for each
y ∈ Y , f−1(y) is a separable (resp., compact) subset of X.

(4) f is a cs-mapping [18] if, for each compact subset K of Y ,
f−1(K) is a separable subset of X.

(5) f is a π-mapping [1], if for each y ∈ Y and each neighborhood
U of y in Y , d(f−1(y), X− f−1(U)) > 0, where X is a metric space
with a metric d.

(6) f is an 1-sequence-covering mapping [13] if, for each y ∈ Y ,
there exists xy ∈ f−1(y) such that whenever {yn : n ∈ N} is a
sequence converging to y in Y there exists a sequence {xn : n ∈ N}
converging to xy in X with each xn ∈ f−1(yn).

(7) f is a 2-sequence-covering mapping [13] if, for each y ∈ Y ,
xy ∈ f−1(y), and sequence {yn : n ∈ N} converging to y in Y , there
exists a sequence {xn : n ∈ N} converging to xy in X with each
xn ∈ f−1(yn).

(8) f is a sequence-covering mapping [19] if, for each convergent
sequence S in Y , there exists a convergent sequence L in X such
that f(L) = S. Note that a sequence-covering mapping is a strong
sequence-covering mapping in the sense of [11].

(9) f is a subsequence-covering mapping [15] if, for each conver-
gent sequence S in Y , there exists a compact subset K of X such
that f(K) is a subsequence of S.

(10) f is a sequentially-quotient mapping [2] if, for each conver-
gent sequence S in Y , there exists a convergent sequence L in X
such that f(L) is a subsequence of S.

Definition 2.2. Let P be a subset of a space X. P is a sequential
neighborhood of x [4], if for every convergent sequence S converging
to x in X, S is eventually in P .
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Definition 2.3. Let P be a family of subsets of a space X.
(1) P is a network at x in X [17], if x ∈ P for every P ∈ P, and

whenever x ∈ U with U open in X, then there exists P ∈ P such
that x ∈ P ⊂ U .

(2) P is a strong network for X if, for every x ∈ X, there exists
Px ⊂ P such that Px is a countable network at x in X.

Definition 2.4. Let P =
⋃{Pn : n ∈ N}, where each Pn is a

family of subsets a space X.
(1) Px = {Pαn : n ∈ N} ⊂ P is a σ-network at x in X, if Px is a

network at x in X, and Pαn ∈ Pn for every n ∈ N.
P is a σ-network for X, if for each x ∈ X, there exists Px ⊂ P

such that Px is a σ-network at x in X.
(2) P is a σ-strong network for X [10], if {st(x,Pn) : n ∈ N} is

a network at x in X for every x ∈ X.
(3) P is a σ-cs-network for X, if whenever S is a convergent

sequence converging to x in X there exists {Pαn : n ∈ N} ⊂ P such
that {Pαn : n ∈ N} is a σ-network at x in X, and S is eventually
in Pαn for every n ∈ N.

(4) P is a σ-cs∗-network for X, if whenever S is a convergent
sequence in X there exists a subsequence L of S and {Pαn : n ∈
N} ⊂ P such that {Pαn : n ∈ N} is a σ-network at x in X, and L
is eventually in Pαn for every n ∈ N.

(5) P is a σ-sn-network for X, if for each x ∈ X there exists
{Pαn : n ∈ N} ⊂ P such that {Pαn : n ∈ N} is a σ-network at x in
X, and Pαn is a sequential neighborhood of x for every n ∈ N.

(6) P is a σ-so-network for X, if for each x ∈ X there exists
{Pαn : n ∈ N} ⊂ P such that {Pαn : n ∈ N} is a σ-network at x
in X, and whenever {Pαn : n ∈ N} ⊂ P is a σ-network at x in X,
then Pαn is a sequential neighborhood of x for every n ∈ N.

(7) P is a σ-strong cs-(resp., σ-strong cs∗-, σ-strong sn-, σ-strong
so-)network for X, if P is a σ-strong network and a σ-cs-(resp., σ-
cs∗-, σ-sn-, σ-so-)network for X.

(8) P is a σ-(P) (resp., σ-(P) strong, σ-(P) (p)-, σ-(P) strong
(p)-)network for X, if P is a σ-(resp., σ-strong, σ-(p)-, σ-strong
(p)-)network and each Pn has property (P), where (P) is point-
countable (point-finite, locally countable, locally finite, compact-
countable), and (p) is cs- (cs∗-, sn-, so-).
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Definition 2.5. (1) Let P be a strong network for a space X. Put
P = {Pα : α ∈ A}. For every n ∈ N, put An = A and endow An

with a discrete topology. Put

M =
{
a = (αn) ∈

∏

n∈N
An : {Pαn : n ∈ N}

forms a network at some point xa in X
}
.

Then M , which is a subspace of the product space
∏

n∈NAn, is
a metric space, xa is unique, and xa =

⋂
n∈N Pαn for every a ∈

M . Define f : M → X by f(a) = xa, then f is a mapping, and
(f,M, X,P) is a Ponomarev-system [16].

(2) Let
⋃{Pn : n ∈ N} be a σ-network for X. For every n ∈ N,

put Pn = {Pα : α ∈ An} and endow An with a discrete topology.
Put

M =
{
a = (αn) ∈

∏

n∈N
An : {Pαn : n ∈ N}

forms a network at some point xa in X
}
.

Then M , which is a subspace of the product space
∏

n∈NAn, is
a metric space, xa is unique, and xa =

⋂
n∈N Pαn for every a ∈

M . Define f : M → X by f(a) = xa, then f is a mapping, and
(f,M, X, {Pn}) is a Ponomarev-system [21]. Under

⋃{Pn : n ∈ N}
being a σ-strong network for X, (f, M, X, {Pn}) is a Ponomarev-
system in the sense of [16].

Definition 2.6. Let P =
⋃{Pn : n ∈ N} be a σ-network for X.

For every n ∈ N, put P∗n = Pn ∪ {
⋂n

i=1 Pi : Pi ∈ Pi, i ≤ n} =
{Pα : α ∈ An} and endow An with a discrete topology. Put

M =
{
a = (αn) ∈

∏

n∈N
An :

{Pαn : n ∈ N} forms a network at some point xa in X
}
.

Then, M is a metric space, xa is unique, and xa =
⋂

n∈N Pαn for
every a ∈ M . Define f : M −→ X by f(a) = xa, then f is
a mapping by the following Lemma 2.7, and (f,M,X, {P∗n}) is a
Σ-Ponomarev-system.

Lemma 2.7. Let (f, M, X, {P∗n}) be the system in Definition 2.6.
Then the following hold.
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(1) f is onto.
(2) f is continuous.

Proof. (1). For each x ∈ X, since P is a σ-network for X, there
exists Pαn ∈ Pn for every n ∈ N such that {Pαn : n ∈ N} forms a
network at x in X. Put a = (αn), then a ∈ M and f(a) = x. This
proves that f is onto.

(2). For each a = (αn) ∈ M and f(a) = xa, let V be an open
neighborhood of xa in X. Then there exists k ∈ N such that xa ∈
Pαk

⊂ V . Put U = {b = (βn) ∈ M : βk = αk}. Then U is an open
neighborhood of a in M and f(U) ⊂ Pαk

⊂ V . It implies that f is
continuous. ¤

Remark 2.8. (1) For each n ∈ N, Pn has property (P) if and only
if P∗n has property (P), where (P) is point-countable (point-finite,
locally countable, locally finite, compact-countable).

(2)
⋃{Pn : n ∈ N} is a σ-strong network for X if and only if⋃{P∗n : n ∈ N} is a σ-strong network for X.

(3) If
⋃{Pn : n ∈ N} is a σ-network (resp., σ-cs-network, σ-cs∗-

network, σ-sn-network, σ-so-network) for X, then
⋃{P∗n : n ∈ N}

is a σ-network (resp., σ-cs-network, σ-cs∗-network, σ-sn-network,
σ-so-network) for X.

(4) The Σ-Ponomarev-system (f,M, X, {P∗n}) where X is a
space with σ-network

⋃{Pn : n ∈ N} is the Ponomarev-system
(f,M, X, {P∗n}) where X is a space with σ-network

⋃{P∗n : n ∈ N}.
Lemma 2.9. Let (f, M, X, {P∗n}) be a Σ-Ponomarev-system, a =
(αn) ∈ M where {Pαn : n ∈ N} is a network at some point xa in
X, and

Un = {b = (βi) ∈ M : βi = αi if i ≤ n},
for every n ∈ N. Then the following hold.

(1) {Un : n ∈ N} is a base at a in M .
(2) f(Un) =

⋂n
i=1 Pαi for every n ∈ N.

Proof. (1). It is obvious.

(2). For each n ∈ N, let x ∈ f(Un). Then x = f(b) for some
b = (βi) ∈ Un. Therefore, x =

⋂
i∈N Pβi ⊂

⋂n
i=1 Pβi =

⋂n
i=1 Pαi .

This proves that f(Un) ⊂ ⋂n
i=1 Pαi .
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Conversely, let x ∈ ⋂n
i=1 Pαi . Then x = f(b) for some b = (βi) ∈

M . Put c = (γi), where Pγi = Pαi if i ≤ n and Pγi =
⋂i

j=1 Pβj

if i > n. Then c ∈ Un and f(c) = x. It implies that
⋂n

i=1 Pαi ⊂
f(Un).

By the above, we get f(Un) =
⋂n

i=1 Pαi . ¤
In [6], [8], Y. Ge and S. Lin obtained necessary and sufficient

conditions such that f is an s-mapping for the Ponomarev-system
(f,M, X,P) and f is a compact mapping for the Ponomarev-system
(f,M, X, {Pn}). In the following, we give necessary and suffi-
cient conditions for f to be an (a) s-(compact, mssc-, msss-, cs-)
mapping in a Σ-Ponomarev-system (f,M,X, {P∗n}).
Theorem 2.10. Let (f,M,X, {P∗n}) be a Σ-Ponomarev-system.
Then the following hold.

(1) f is an s-mapping if and only if
⋃{P∗n : n ∈ N} is a σ-

point-countable network for X.
(2) f is a compact mapping if and only if

⋃{P∗n : n ∈ N} is a
σ-point-finite strong network for X.

(3) f is an msss-mapping if and only if
⋃{P∗n : n ∈ N} is a

σ-locally countable network for X.
(4) f is an mssc-mapping if and only if

⋃{P∗n : n ∈ N} is a
σ-locally finite network for X.

(5) f is a cs-mapping if and only if
⋃{P∗n : n ∈ N} is a σ-

compact-countable network for X.

Proof. (1). Necessity. Let f be an s-mapping. If there exists k ∈ N
such that P∗k is not point-countable, then, for some x ∈ X, we
have that Ax,k = {α ∈ Ak : x ∈ Pα} is uncountable. For each
α ∈ Ax,k, put Uα = {b = (βn) ∈ M : βk = α}, then Uα is open. If
b = (βn) ∈ f−1(x), then x = f(b) ∈ Pβk

. It implies that βk = α
for some α ∈ Ax,k, hence b ∈ Uα. Therefore, {Uα : α ∈ Ax,k} is
an uncountable open cover for f−1(x), but it has not any proper
subcover. So f−1(x) is not separable, hence f is not an s-mapping.
It is a contradiction.

Sufficiency. Let
⋃{P∗n : n ∈ N} be a σ-point-countable network

for X. Then for each x ∈ X, we have that Ax,n = {α ∈ An :
x ∈ Pα} is countable for every n ∈ N. Therefore,

∏
n∈NAx,n is

hereditarily separable. It follows from f−1(x) ⊂ ∏
n∈NAx,n that

f−1(x) is separable. Then f is an s-mapping.
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(2). Necessity. Let f be a compact mapping. It suffices to prove
following claims (a) and (b).

(a)
⋃{P∗n : n ∈ N} is a σ-strong network for X.

If
⋃{P∗n : n ∈ N} is not a σ-strong network for X. Then there

exists x ∈ U with U open in X such that st(x,P∗n) 6⊂ U for every
n ∈ N. Therefore, there exists Pαn ∈ P∗n such that x ∈ Pαn 6⊂ U
for every n ∈ N. It implies that {Pαn : n ∈ N} does not form a
network at x in X, hence a = (αn) 6∈ f−1(x). Let x = f(b) for some
b = (βn) ∈ M . For each i ∈ N, put ai = (αin), where Pαin = Pαn if
n ≤ i and Pαin =

⋂n
j=1 Pβj

if n > i. Then {Pαin : n ∈ N} forms a
network at x in X, so ai ∈ f−1(x) for every i ∈ N. It is easy to see
that the sequence {ai : i ∈ N} converges to a in

∏
n∈NAn. Since

f−1(x) is a compact subset of M , f−1(x) is closed in
∏

n∈NAn.
Then a ∈ f−1(x). It is a contradiction.

(b) Each P∗n is point-finite.
If there exists k ∈ N such that P∗k is not point-finite, then, for

some x ∈ X, we have that Ax,k = {α ∈ Ak : x ∈ Pα} is infinite. For
each α ∈ Ax,k, put Uα = {b = (βn) ∈ M : βk = α}, then Uα is open.
If b = (βn) ∈ f−1(x), then x = f(b) ∈ Pβk

. It implies that βk = α
for some α ∈ Ax,k, hence b ∈ Uα. Therefore, {Uα : α ∈ Ax,k} is an
infinite open cover for f−1(x), but it has not any proper subcover.
So f−1(x) is not compact, hence f is not a compact mapping. It is
a contradiction.

Sufficiency. Let
⋃{P∗n : n ∈ N} be a σ-point-finite strong net-

work for X. Then for each x ∈ X, we have that Ax,n = {α ∈ An :
x ∈ Pα} is finite and {Pαn : n ∈ N} forms a network at x in X for
every (αn) ∈ ∏

n∈NAx,n. Therefore, f−1(x) =
∏

n∈NAx,n, and so f
is a compact mapping.

(3). Necessity. Let f be an msss-mapping. If there exists k ∈ N
such that P∗k is not locally countable, then, for some x ∈ X, we have
that Ax,k = {α ∈ Ak : Pα ∩ Ux 6= ∅} is uncountable for every open
neighborhood Ux of x in X. For each α ∈ Ax,k, pick y ∈ Pα ∩ Ux,
and let y = f(a) for some a = (αn) ∈ M . Put bα = (βn), where
Pβk

= Pα, and Pβn =
⋂n

j=1 Pαj if n 6= k. Then βn ∈ An for
every n ∈ N and {Pβn : n ∈ N} forms a network at y in X. So
bα ∈ f−1(y) ⊂ f−1(Ux). It implies that α = pk(bα) ∈ pk(f−1(Ux)).
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Then Ax,k ⊂ pk(f−1(Ux)) ⊂ Ak. Since Ax,k is uncountable and Ak

is discrete, pk(f−1(Ux)) is not separable. It is a contradiction.

Sufficiency. Let
⋃{P∗n : n ∈ N} be a σ-locally countable network

for X. For each x ∈ X and n ∈ N, there exists an open neighbor-
hood Ux,n of x in X such that Ax,n = {α ∈ An : Pα ∩ Ux,n 6= ∅}
is countable. It implies that f−1(Ux,n) ⊂ ∏

n∈NAx,n, then
pn(f−1(Ux,n)) ⊂ Ax,n. Since Ax,n is countable, pn(f−1(Ux,n)) is
separable. Then f is an msss-mapping.

(4). Necessity. Let f be an mssc-mapping. If there exists k ∈ N
such that P∗k is not locally finite, then, by using notations and argu-
ments in the necessity of (3) again, we have that Ax,k is infinite and
Ax,k ⊂ pk(f−1(Ux)). This proves that pk(f−1(Ux)) is not compact.
It is a contradiction.

Sufficiency. Let
⋃{P∗n : n ∈ N} be a σ-locally finite network

for X. By using notations and arguments in the sufficiency of (3)
again, we have that Ax,n is finite and pn(f−1(Ux,n)) ⊂ Ax,n for
every n ∈ N. Then pn(f−1(Ux,n)) is compact. This proves that f
is an mssc-mapping.

(5). Necessity. Let f be a cs-mapping. If there exists k ∈ N such
that P∗k is not compact-countable, then, for some compact subset C
of X, we have that AC,k = {α ∈ Ak : C ∩ Pα 6= ∅} is uncountable.
For each α ∈ AC,k, put Uα = {b = (βn) ∈ M : βk = α}, then
Uα is open. If b = (βn) ∈ f−1(C), then x = f(b) ∈ Pβk

. It
implies that βk = α for some α ∈ AC,k, hence b ∈ Uα. Therefore,
{Uα : α ∈ AC,k} is an uncountable open cover for f−1(C), but it
has not any proper subcover. So f−1(C) is not separable, hence f
is not a cs-mapping. It is a contradiction.

Sufficiency. Let
⋃{P∗n : n ∈ N} be a σ-compact-countable

network for X. For each compact subset C of X, we have that
AC,n = {α ∈ An : C ∩ Pα 6= ∅} is countable for every n ∈ N.
Then

∏
n∈NAC,n is hereditarily separable. It follows from f−1(C) ⊂∏

n∈NAC,n that f−1(C) is separable. Then f is a cs-mapping. ¤

For a Ponomarev-system (f,M,X, {Pn}), the following result is
well-known.
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Lemma 2.11 ([21], Lemma 2.2). Let (f, M, X, {Pn}) be a
Ponomarev-system. If

⋃{Pn : n ∈ N} is a σ-strong network for
X, then f is a π-mapping.

In the next, we give a sufficient condition for f to be a π-mapping
in a Σ-Ponomarev-system (f, M, X, {P∗n}).
Proposition 2.12. Let (f, M, X, {P∗n}) be a Σ-Ponomarev-system.
If

⋃{P∗n : n ∈ N} is a σ-strong network for X, then f is a π-
mapping.

Proof. Let x ∈ U with U open in X. Since
⋃{P∗n : n ∈ N} is a σ-

strong network for X, there exists n ∈ N such that st(x,P∗n) ⊂ U .

If a = (αn) ∈ M such that d(f−1(x), a) <
1
2n

, then there exists

b = (βn) ∈ f−1(x) such that d(a, b) <
1
2n

. It implies that αk = βk

if k ≤ n. Then f(a) ∈ Pαn = Pβn ⊂ st(x,P∗n) ⊂ U , hence a ∈
f−1(U). Therefore, d(f−1(x),M − f−1(U)) ≥ 1

2n
> 0. This proves

that f is a π-mapping. ¤

The following example shows that the inverse implication of
Proposition 2.12 does not hold.

Example 2.13. There exists a Σ-Ponomarev-system (f, M, X, {P∗n})
such that the following holds.

(1) f is a π-mapping.
(2)

⋃{P∗n : n ∈ N} is not a σ-strong network for X.

Proof. Let X = {x, y, z} be a discrete space. Put P1 =
{{x}, {z}, {x, y}}, and Pn = {{x}, {y}, {z}, {x, z}} for every n ≥ 2.
It is easy to see that P =

⋃{Pn : n ∈ N} is a σ-network for X,
then the Σ-Ponomarev-system (f, M, X, {P∗n}) exists. Note that
P∗n = Pn for every n ∈ N.

(1). f is a π-mapping.
For each t ∈ X and each neighborhood U of t, since {t} is also

a neighborhood of t and {t} ⊂ U , we have that d(f−1(t),M −
f−1(U)) ≥ d(f−1(t),M − f−1(t)) = inf{d(a, b) : a ∈ f−1(t), b ∈
M − f−1(t)}. For each a = (αn) ∈ f−1(t) and b = (βn) ∈ M −
f−1(t), we consider two following cases (a) and (b).
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(a) t = x or t = y. If β1 6= α1, then d(a, b) ≥ 1
2
d(α1, β1) =

1
2
. If

β1 = α1, then Pα1 = Pβ1 = {x, y}. Since b ∈ M − f−1(t), we have
that Pβ2 = {y} if t = x, and Pβ2 = {x} if t = y. It implies that

β2 6= α2. Then d(a, b) ≥ 1
22

d(α2, β2) =
1
4
.

(b) t = z. We have that α1 6= β1, then d(a, b) ≥ 1
2
d(α1, β1) =

1
2
.

By the above, d(a, b) ≥ 1
4

for every a ∈ f−1(t) and b ∈ M −
f−1(t). Then d(f−1(t),M − f−1(U)) ≥ d(f−1(t),M − f−1(t)) ≥
1
4

> 0. This proves that f is a π-mapping.

(2).
⋃{P∗n : n ∈ N} is not a σ-strong network for X.

Let U = {x}, then U is a neighborhood of x in X. We have
that st(x,P∗1 ) = {x, y}, and st(x,P∗n) = {x, z} for every n ≥ 2. It
implies that st(x,P∗n) 6⊂ U for every n ∈ N. Then

⋃{P∗n : n ∈ N}
is not a σ-strong network for X. ¤
Remark 2.14. By Remark 2.8.(4), Example 2.13 also shows that
the inverse implication of Lemma 2.11 does not hold.

We do not know whether a necessary and sufficient condition for
f to be a π-mapping can be obtained in a Σ-Ponomarev-system
(f,M, X, {P∗n}). To get a necessary and sufficient condition such
that

⋃{P∗n : n ∈ N} is a σ-strong network for X, we introduce the
following notion.

Definition 2.15. Let f : X −→ Y be a mapping. f is a complete
mapping if, for each y ∈ Y , f−1(y) is a complete metric subset of
X.

Proposition 2.16. Let (f, M, X, {P∗n}) be a Σ-Ponomarev-system.
Then

⋃{P∗n : n ∈ N} is a σ-strong network for X if and only if f
is a complete mapping.

Proof. Necessity. Let
⋃{P∗n : n ∈ N} be a σ-strong network for

X. For each x ∈ X, put Ax,n = {α ∈ An : x ∈ Pα}. Then {Pαn :
n ∈ N} forms a network at x in X for every (αn) ∈ ∏

n∈NAx,n.
Therefore, f−1(x) =

∏
n∈NAx,n. It follows from [3, Theorem 4.3.12]

that f−1(x) is a complete metric subset of M . Then f is a complete
mapping.
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Sufficiency. Let f be a complete mapping. If
⋃{P∗n : n ∈ N} is

not a σ-strong network for X. By using notations and arguments
in proof (a) of the necessity of Theorem 2.10.(2) again, we have
that a 6∈ f−1(x), and the sequence {ai : i ∈ N} converges to a in∏

n∈NAn. Clearly, {ai : i ∈ N} is a Cauchy sequence in f−1(x).
Since f−1(x) is a complete metric subset of M , a ∈ f−1(x). It is a
contradiction. ¤

In [6], [7], [8], [9], necessary and sufficient conditions such that f
is a covering-mapping have been obtained for Ponomarev-systems
(f,M, X,P) and (f, M, X, {Pn}). Next, we give necessary and suf-
ficient conditions for f to be a covering-mapping in a Σ-Ponomarev-
system (f, M, X, {P∗n}).
Theorem 2.17. Let (f,M,X, {P∗n}) be a Σ-Ponomarev-system.
Then the following hold.

(1) f is sequence-covering if and only if
⋃{P∗n : n ∈ N} is a

σ-cs-network for X.
(2) f is sequentially-quotient (subsequence-covering) if and only

if
⋃{P∗n : n ∈ N} is a σ-cs∗-network for X.

(3) f is 1-sequence-covering if and only if
⋃{P∗n : n ∈ N} is a

σ-sn-network for X.
(4) f is 2-sequence-covering if and only if

⋃{P∗n : n ∈ N} is a
σ-so-network for X.

Proof. (1). Necessity. Let f be a sequence-covering mapping. Then
for each convergent sequence S = {xn : n ∈ ω} converging to
x0 in X, there exists a convergent sequence C = {an : n ∈ ω}
converging to a0 in M such that f(an) = xn for every n ∈ ω. Let
a0 = (α0n) ∈ M . Then {Pα0n : n ∈ N} is a network at x0 in X.
For each k ∈ N, we have that Uk = {b = (βn) ∈ M : βk = α0k} is a
neighborhood of a0 in M . Then C is eventually in Uk. It implies
that S is eventually in Pβk

= Pα0k
. Then

⋃{P∗n : n ∈ N} is a
σ-cs-network for X.

Sufficiency. Let
⋃{P∗n : n ∈ N} be a σ-cs-network for X. For

each sequence S = {xm : m ∈ ω} converging to x0 in X, there
exists {Pα0n : n ∈ N} ⊂ P such that {Pα0n : n ∈ N} is a σ-network
at x0 in X and S is eventually in Pα0n for every n ∈ N. For each
m ∈ N, let xm = f(bm) where bm = (βmn) ∈ M . For each m ∈ N
and n ∈ N, put αmn = α0n if xm ∈ Pα0n , and Pαmn =

⋂n
j=1 Pβmj

if
xm 6∈ Pα0n . We have that am = (αmn) ∈ f−1(xm) for every m ∈ ω.
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Since S is eventually in Pα0n for every n ∈ N, there exists m(n)
such that αmn = α0n for every m ≥ m(n). Then {am : m ∈ ω}
converges to a0 in M . This prove that f is a sequence-covering
mapping.

(2). Necessity. Let f be a sequentially-quotient mapping. For
each convergent sequence S = {xm : m ∈ ω} converging to x0 in
X, there exists a convergent sequence C in M such that f(C) is
a subsequence of S. By using arguments as in the necessity of (1)
again, there exists {Pα0n : n ∈ N} ⊂ P such that {Pα0n : n ∈ N}
is a σ-network at x0 in X and f(C) is eventually in Pα0n for every
n ∈ N. Then

⋃{P∗n : n ∈ N} is a σ-cs∗-network for X.
The parenthetic part is obvious by [5, Proposition 2.1].

Sufficiency. Let
⋃{P∗n : n ∈ N} be a σ-cs∗-network for X. For

each sequence S = {xm : m ∈ ω} converging to x0 in X there
exists a subsequence L of S and {Pα0n : n ∈ N} ⊂ P such that
{Pα0n : n ∈ N} is a σ-network at x in X and L is eventually in
Pα0n for every n ∈ N. By using arguments as in the sufficiency
of (1) again, there exists a convergent sequence C in M such that
f(C) = L. It implies that f is a sequentially-quotient mapping.

The parenthetic part is obvious by the fact that every sequential-
ly-quotient mapping is a subsequence-covering mapping.

(3). Necessity. Let f be an 1-sequence-covering mapping. For
each x ∈ X, there exists ax ∈ M such that whenever {xn : n ∈ N} is
a sequence converging to x in X there exists a sequence {an : n ∈ N}
converging to ax in M with each an ∈ f−1(xn). Put ax = (αn),
then {Pαn : n ∈ N} is a σ-network at x in X.

If {yn : n ∈ N} is a sequence converging to x, there exists a
sequence {bn : n ∈ N} converging to ax in M with each bn ∈
f−1(yn). For each k ∈ N, put Uk = {b = (βn) ∈ M : βk = αk}.
Then Uk is a neighborhood of ax in M , hence {bn : n ∈ N}∪{ax} is
eventually in Uk. By Lemma 2.9, {yn : n ∈ N} ∪ {x} is eventually
in f(Uk) =

⋂k
n=1 Pαn ⊂ Pαk

. This proves that Pαk
is a sequential

neighborhood of x in X.
By the above,

⋃{P∗n : n ∈ N} is a σ-sn-network for X.

Sufficiency. Let
⋃{P∗n : n ∈ N} be a σ-sn-network for X. For

each x ∈ X there exists {Pαn : n ∈ N} ⊂ P such that {Pαn :
n ∈ N} is a σ-network at x in X and each Pαn is a sequential
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neighborhood of x in X. Put ax = (αn), then ax ∈ f−1(x). For
each n ∈ N, if {xm : m ∈ N} is a sequence converging to x in X,
then {xm : m ∈ N} ∪ {x} is eventually in Pαn . For each m ∈ N,
let xm = f(bm) where bm = (βmn) ∈ M . For each m ∈ N and
n ∈ N, put Pαmn = Pαn if xm ∈ Pαn , and Pαmn =

⋂n
j=1 Pβmj if

xm 6∈ Pαn . Then am = (αmn) ∈ f−1(xm) for every m ∈ N. Since
S is eventually in Pαn for every n ∈ N, there exists m(n) such that
αmn = αn for every m ≥ m(n). Then {am : m ∈ N} converges to
ax in M . This prove that f is an 1-sequence-covering mapping.

(4). Necessity. Let f be a 2-sequence-covering mapping. For
each x ∈ X, there exists ax = (αn) ∈ M such that f(ax) = x.
Then {Pαn : n ∈ N} ⊂ P is a σ-network at x in X.

If {Pαn : n ∈ N} ⊂ P is a σ-network at x in X. Put ax = (αn),
then ax ∈ f−1(x). If {xn : n ∈ N} is a sequence converging to x,
there exists a sequence {an : n ∈ N} converging to ax in M with
each an ∈ f−1(xn). As in the necessity of (3), Pαk

is a sequential
neighborhood of x in X for every k ∈ N.

By the above,
⋃{P∗n : n ∈ N} is a σ-so-network for X.

Sufficiency. Let P be a σ-so-network for X. For each x ∈ X
and ax = (αn) ∈ f−1(x), {Pαn : n ∈ N} is a σ-network at x in X
and each Pαn is a sequential neighborhood of x in X. As in the
sufficiency of (3), there exists a sequence {am : m ∈ N} converging
to ax in M with each am ∈ f−1(xm). This proves that f is a
2-sequence-covering mapping. ¤

By Theorem 2.10, Proposition 2.16, and Theorem 2.17, we get
following corollaries.

Corollary 2.18. Let (f,M,X, {P∗n}) be a Σ-Ponomarev-system.
Then the following are equivalent, where “sequence-covering”
and “cs-” can be replaced by “1-sequence-covering” and “sn-” (“2-
sequence-covering” and “so-”, “sequentially-quotient” and “cs∗-”)
respectively; and “s-mapping” and “point-countable” can be replaced
by “msss-mapping” and “locally countable” (“mssc-mapping” and
“locally finite”, “cs-mapping” and “compact-countable”) respectively.

(1) f is a sequence-covering s-mapping.
(2)

⋃{P∗n : n ∈ N} is a σ-point-countable cs-network for X.
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Corollary 2.19. Let (f,M,X, {P∗n}) be a Σ-Ponomarev-system.
Then the following are equivalent, where “sequence-covering” and
“cs-” can be replaced by “1-sequence-covering” and “sn-” (“2-se-
quence-covering” and “so-”, “sequentially-quotient” and “cs∗-”) re-
spectively.

(1) f is a sequence-covering compact mapping.
(2)

⋃{P∗n : n ∈ N} is a σ-point-finite strong cs-network for X.

Corollary 2.20. Let (f,M,X, {P∗n}) be a Σ-Ponomarev-system.
Then the following are equivalent, where “sequence-covering” and
“cs-” can be replaced by “1-sequence-covering” and “sn-” (“2-se-
quence-covering” and “so-”, “sequentially-quotient” and “cs∗-”) re-
spectively.

(1) f is a sequence-covering complete mapping.
(2)

⋃{P∗n : n ∈ N} is a σ-strong cs-network for X.
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