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EXTENSION THEORY AND THE FIRST
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LEONARD R. RUBIN

ABSTRACT. We shall examine the extension theory of prod-
ucts Y = Z x [0,9Q) where Z is a compact metrizable space
and 2 is the first uncountable ordinal. Our main result is
that if a CW-complex K is an absolute extensor for Z, then
K is an absolute extensor for Y. This implies, as a corollary,
the classical fact that Y is normal. We shall also examine
the extension theory of pseudo-compact spaces and will prove
that if X is a normal, Hausdorff, pseudo-compact space, and
K is an absolute extensor for X, then it is also an absolute
extensor for the Stone-Cech compactification of X. From this
we will be able to deduce that for the preceding space Y, K
is an absolute extensor for 3(Y).

1. INTRODUCTION

Let X and K be spaces; suppose that for all closed subsets A of
X and for every map f : A — K there exists a map F': X — K
such that F|A = f. Then we write X7K and say either that X
is an absolute co-extensor for K or K is an absolute extensor for
X. This is the fundamental notion of extension theory (see [1] or
[4]) where usually K is a CW-complex. It then follows that X is a
normal space if and only if X7 R.

Let 2 designate the first uncountable ordinal. Then [0,) will
denote the set of ordinals less than  with the order topology,
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28 L. R. RUBIN

often called the first uncountable ordinal space [6]. An important
tool in the study of [0,€2) is its pseudo-compactness. We shall
examine this property in section 2. In Proposition 2.4 we exhibit
the extension-theoretic relation between a pseudo-compactum X
and its Stone-Cech compactification B(X).

In section 3 we study the extension theory of products Z x [0, )
where Z is compact and metrizable. Our main theorem, Theorem
3.11, states that if Z is a compact metrizable space, K is a CW-
complex, Z7K, and Y = Z x [0,Q), then both Y7K and (Y )7TK.

The author wishes to thank Professor Sibe Mardesi¢ for several
important discussions about this subject and Professor Ivan Ivansi¢
for his help in the preparation of this paper.

2. EXTENSION THEORY AND PSEUDO-COMPACTA

A space X is called pseudo-compact if for each map f: X — R,
f(X) is contained in a compact subset of R, or, equivalently, f(X) is
a compact subset of R. A good source of facts about such spaces can
be found in [3]. Here is some information about pseudo-compact
spaces.

Lemma 2.1. Let X be a pseudo-compact space.

(1) If Y is a compact space, then X XY is pseudo-compact.
(2) If X is normal and A is closed in X, then A is pseudo-
compact.

Lemma 2.2. Let X be a space. The following are equivalent.
(1) X is pseudo-compact.
(2) For each CW-complex K and map f : X — K, f(X) is
contained in a compact subset of K.
(3) For each CW-complex K and map f: X — K, f(X) is a
compact subset of K.

Proof: (1) = (2). Suppose that f(X) is not contained in a
compact subset of K. Then there exists a countably infinite closed
discrete subspace A of K such that A C f(X). Let g: A — R be
a function such that g(A) = N. Then ¢ is a map, and since K is
normal, there exists a map h : K — R such that h|A = g. Define
F=hof:X — R. Then F is amap of X to R. But N C F(X), so
F(X) is not contained in a compact subset of R, a contradiction.
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(2) = (3). Let L be the minimum subcomplex such that f(X) C
L. Then L is compact and metrizable. Suppose that f(X) is not
compact; then f(X) is not closed in L. Let p € L\ f(X). Since L is
minimal, p cannot be isolated. It then follows that there is a map
h: L\{p} — R such that for all n € N, there exists z € L\ {p} with
h(z) > n. Treating f : X — L\ {p}, put F =ho f: X — R. Then
F is a map of X to R. But F(X) is not contained in a compact
subset of R, a contradiction.

(3) = (1). This follows from the fact that R may be given the
structure of a CW-complex. O

Now we investigate the relation between pseudo-compact spaces
and extension theory.

In the proof of Proposition 2.4 we shall use Lemma 2.11 of [7],
which we state here for the convenience of the reader.

Lemma 2.3. Let Y be a compact Hausdorff space and X a dense
subset of Y. Then for each closed subset A of Y and neighborhood
G of A, there exists a closed neighborhood N of A such that N C G
and NN X =N. ]

If X is a Tychonoff space, then 5(X) will denote its Stone-
Cech compactification. Here is the principal extension-theoretic
fact about pseudo-compacta.

Proposition 2.4. Let X be a normal, Hausdorff, pseudo-compact
space and K a CW-complex. Suppose that XTK. Then B(X)TK.

Proof: Of course X is a Tychonoff space. Let A be a closed
subset of B(X) and f: A — K a map. Using the fact that K is an
absolute neighborhood extensor for §(X) along with Lemma 2.3,
we may as well assume that AN X = A. Since X7K, there is a
map fp: X — K such that fy|/ANX = fJ[ANX. By Lemma 2.2,
the image of fy lies in a compact subset of K. Hence, there is a
map F : (X) — K such that F|X = fy|X. Since AN X is dense
in Aand FIANX = folANX = fJAN X, then F|A = f, and our
proof is complete. O

3. EXTENSION THEORY AND |0, 2)

It is well known that for each compact metrizable space Z, Z X
[0,€) is normal. We plan to present a proof of this fact that will
lend itself to a generalization into extension theory.
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We shall provide a proof of the following known fact.

Theorem 3.1. Let K be a CW-complex, X be a compact Hausdorff
space with XTK, and Y be a compact Hausdorff space with Y1.5°.
Then,

(Y x X)7K.

Note that for a compact Hausdorff space Y, Y750 is equivalent
to dimY <0.

Before presenting our proof of Theorem 3.1, let us introduce two
lemmas. The first is the “tube” lemma (see [2, XI1.2.6, p. 228] or
[6, 3.26.8, p. 168]).

Lemma 3.2. Let X and Y be spaces, Y be compact, A be a subset
of X, and U be a neighborhood of A XY in X x Y. Then there
exists a neighborhood V. of A in X such that V xY C U. O

Lemma 3.3. Let X be a space such that X7S°, A be a closed
subset of X, and U be a neighborhood of A in X. Then there exists
an open and closed neighborhood V' of A in X such that V C U.

Proof: Let f : AU(X\U) — S° be the map with f(A4) C {0} and
f(X\U) C {1}. Since X715, there exists a map F : X — S° that
extends f. Let V = F~1({0}). It is easy to check that ACV C U
and that V is open and closed. ]

Now we give our proof of Theorem 3.1.

Proof: We may as well assume that Y # (. Let A be a closed
subset of Y x X and f: A — K a map. Fix y € Y and consider
the closed subspace P, = AU ({y} x X) C Y x X. Since X7K,
there exists a map f, : P, — K such that fy|A = f.

Now Y x X is compact and Hausdorff; hence, K is an absolute
neighborhood extensor for Y x X. So there exists a neighborhood
Uy of P,in Y x X and a map G, : Uy — K extending f,. Using
Lemma 3.2 and Lemma 3.3, select an open and closed neighborhood
Vy of y in Y such that V, x X C U,,.

There exists a finite subset 7 C Y such that {V, |y € F} covers
the compact space Y. Write F = {y1,...,yn} where n = card F.

Put Wiy =V, and for 1 <k <n, W, =V, \U{V4, |1 <i < k}.
Then {Wj, |1 < k < n} is an open and closed cover of Y, for each
1<k <n, WkCVTyk,andif1§j<k§n,thenWjﬂWk:@.
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Define Fj, = Gy, |(Wg x X) : W, x X — K. One may now check
that

F=|J{Fl1<k<n}:YxX K
is a map that extends f. O

The next is a list of well-known facts about the first uncountable
ordinal space.

Lemma 3.4. Let X =[0,9Q).
(1) X is a normal Hausdorff space.
(2) Let 0 < XA < Q; then [0,\] is a compact, 0-dimensional
metrizable subspace of X.
(3) Let P be a closed nonempty subset of X and f : P — R be a
map. Then there exists o € P such that whenever u,8 € P

and o < p < B, then f(p) = f(B).
(4) X is pseudo-compact. O

We now present our main lemma.

Lemma 3.5. Let Z be a nonempty compact metrizable space, A be
a closed subset of Y = Z x [0,Q) with Z x {0} C A, f: A —> R
be a map, and € > 0. For each z € Z, define Sc(z) = {0 €
[O7Q)|E|:U” p e [O’Q)’ o< p < Bv (Z’M)7 (Zvﬁ) € Aa |f(z,,u) -
f(z,B)| = €}. Then

(%) there exists 0 < X\ < Q such that |J{S(z) |z € Z} C [0, \].

Proof: Fix z € Z and define A, = AN ({z} x[0,9)). Then A, is
a nonempty closed subspace of {z} x [0,), the latter being a copy
of [0,9). Consider f|A, : A, — R, and apply Lemma 3.4(3) to this
map. Accordingly, there is a first element I(z) € [0,€2) such that if
I(z) < p < B,and (z,p) and (z, 8) € A, then | f(z, ) — f(z, B) <e.
It then follows that,

(F1) Se(2) € [0,1(2)],

(F2) i(z) ¢ Se(2), and

(F3) if 0 < A < (2), then X € Sc(2).

Having defined I(z) € [0,Q) for each z € Z satisfying (F1)-
(F3), let us put T' = {i(2) |z € Z,S(2) # 0}. Suppose we can
find a € [0,Q) so that T C [0, a] Let z € Z. We claim that
Se(z) C [0,a]. By (F1), S(z) C [0,l(z)]. Since I(z) € T, then
I(z) € 10,a], so Se(z) C [0,1(2)] C [0,a]. Hence,
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(F4) (%) is true if there exists a € [0,Q) such that T' C [0, o]

In case T' = (), then define a = 0. If T # () and T is countable,
then put o = sup(T'). In either case, T' C [0, ], so by (F4), (x)
is true. Hence, we shall assume that 7' is uncountable; we choose
an uncountable subset Zy C Z so that the function I|Zy : Zyg — T
is a bijection. To reach a contradiction, suppose that there is no
a € [0,9Q) with T C [0, «]. This along with (F3) means that

(F5) for all « € ]0,2), there exists z € Zp with o < I(z), and

(F6) for all @ € [0,Q) and z € Zp with a < [(2), there are
a < p < fwith (z,u), (2,8) € A, and [f(z, 1) — f(z,8)] Z €.

Employing the well-ordering of T' C [0,€2), we shall treat Z as
a well-ordered set induced by the bijection I|Zy : Zyg — T. Let us
write <g for the ordering in Zj.

Let zp be the first element of Zy. Applying (F5) and (F6)
with o = [(29), there exist a first element a(zg) € Zp such that
I(z0) < l(a(20)), and I(z0) < h(z0) < g(20), such that g(zp) =
(a(z0), h(z0)) € A, r(z0) = (a(20),9(x0)) € A, and |f(q(x0)) —
0 (z0)| > e

We proceed with a transfinite construction. Let Z € Zy\{z} and
suppose that for all z € Zy with z <y Z, we have chosen a(z) € Z
as well as [(z) < h(z) < g(z) such that if z <¢ 2* <¢ 2’ <¢ Z, then
the following inductive statements are true.

(I1) a(z) <o a(z*),

(12) g(z) < h(z*) and h(z*) < g(2') if 2* <o 2/,

(13) q(2) = (a(2), h(2)) € A, (2) = (a(2),9(2)) € A, and

(14) |£(q(2)) = f(r(2))] = €.

Let E = {z € Zy|z <o Z}. Then E is a countable subset of
Zy. Put B = {l(a(2))|z € E}, and M = {g(z)|z € E}. Each
of these sets is a nonempty and countable subset of [0, ). Hence,
v =sup(B U M) exists in [0, §2).

Note that a(FE) is a countable subset of Zj. Let F' be the subset
of Zy consisting of those elements v with a(z) < u for all z € E.
Then F' is an uncountable subset of Zy. Using this and (F5), there

exists u € I such that « = max{l(Z),y + 1} < l(u). Define a(Z) to
be the first element of F' such that a < I(a(Z)).
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Applying (F6) to a and z = a(Z), there are a < h(Z) < ¢(z)
such that ¢(z) = (a(2),h(z)) € A, r(z) = (a(z),9(z)) € A, and
(@) - frE)] > e

Let z € E. Then a(z) <o a(Z) since a(z) € F. Surely v < h(Z).
Thus, h(z) < g(2) < h(2Z). This ends our inductive construction.

We have defined functions a : Zy — Zy, h : Zyg — [0,9), g :
Zy — [0,9) such that whenever z, z*, 2/ € Zy with z <o z* <o 2/,
statements (11)—(I4) hold true.

It follows from (I1) that @ = {a(z)|z € Zy} is an uncountable
subset of the second countable space Z;. Hence, there exists a point
20 € Zp so that a(zp) is a limit point of Q. So there is a sequence
(yn) in Q\{a(zo)} that converges to a(zg). Since Zj is well ordered,
so is @, and we may assume that (y,) is increasing. Let us write
Yn = a(zy) for each n € N. Because of (I1), (z,) is increasing.

Applying (I2), one sees that both (h(z,)) and (g(zn)) are in-
creasing sequences in [0,2). So they both converge in [0,2). From
(I2) one may conclude that when m < n < v in N, then g(z,) <
h(zn) < g(zy). Hence, the sequences (h(z,)) and (g(z,)) have the
same limit, say p € [0, 2).

For each n € N, let ¢, = (a(zy),h(zn)) and r, = (a(zn), 9(2zn)).
By (I3), both (g,) and (r,) are sequences in A. They converge to
(a(20),p) in Y. Since A is closed in Y, then (a(z),p) € A. But
f:A— Ris amap, so each of the sequences (f(g,)) and (f(r))
converges to the same element f(a(zp),p) of R. This leads to a
contradiction, because by (I4), |f(gn) — f(rn)| > € for all n € N.
Our proof is complete. O

Before we can successfully apply Lemma 3.5, we need some ad-
ditional facts.

Lemma 3.6. Let Z be a compact metrizable space. Then the coor-
dinate projection yz : Z x [0,Q) — Z is a closed map.

Proof: Let A C Zx|0, ) be closed and suppose that mz(A) is not
closed in Z. Then there is a sequence (a,) in A and z € Z \ 7z (A4)
such that (7z(ay,)) converges to z.

For some 0 < A <, a,, € Z x [0, A] for all n € N. Hence, (a,) is
a sequence in the compact metrizable space AN(Z x [0, \]). Passing
to a subsequence if necessary, we may assume that (a,) converges
to a € A. Therefore, 7z(a) = z € mz(A), a contradiction. O
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Lemma 3.7. Let Z be a compact metrizable space and K be a
CW-complex such that ZTK . Suppose that A is a closed subset of
Y =72x][0,92) and f: A — K is a map. Suppose further that

(%) there exists 0 < X\ < Q such that if A < p < f < Q and (a, p),
(G’?/B) € A, then f(anu’) = f(aa ﬁ)

Then f extends to a map of Y to K.

Proof: Since (Z x {0})7K and Z x {0} is closed in Y, we may as
well assume that Z x {0} C A. Let my : Zx [\, Q) — Z x{A} be the
map given by my(z,a) = (2, A). Noting that [\, 2) is homeomorphic
to [0,€2), one may apply Lemma 3.6 to see that ) is a closed map.
Let A% = AN (Z x [\,Q)), 7% = my\|A* : A* — Z x {\}, and
Ay = 77 (A#). Then, of course, Ay is a closed subset of both
Z x {\} and Z x [0, A].

Now 7# : A# — A, is a closed map and hence is a quotient
map. As a result of this and (x), there is a map f) : Ay — K such
that if (2,A\) € Ay and (2,\) = 77 (z,a) with (z,a) € A%, then
f)\(zv)‘) = f(zva)'

Put hg = fI(AN(Z x [0,\])). Then ho|(AN Ay) = fou](AN Ay).
This shows that there is a map hy : (AN (Z x [0,\])) U Ay — K
such that h1|(AN(Z x[0,A])) = fI(AN(Z x[0,A])) and hi|Ax = f.

Applying Lemma 3.4(2) and Theorem 3.1, one sees that (Z x
[0, \])TK. Since (AN (Z x [0,A])) U Ay is closed in Z x [0, )],
then there is a map F' : Z x [0, \] — K having the property that
F(t) = hi(t) for all t € (AN (Z x [0,\])) U Ayx. Let ¢ : [0,Q) —
[0, A] be the unique retraction sending p to A for all > A and
r=1idz xq:Y — Z x [0,\]. Then for each z € Z and A < p < Q,
r(z,pu) = (2,A). Thus, For:Y — K is a map, and in consideration
of the preceding construction, one can check that (For)|A = f. O

Lemma 3.8. Let Z be a compact metrizable space. Then Y =
Z % [0,9) is normal.

Proof: Let A CY be a closed subset and f: A — R a map. For
each n € N, apply Lemma 3.5 to find A, € [0,2) so that

($)p if Ay < < B < Qand (z,p), (2,8) € A, then |f(z,u) —
fz8) < 5

Put A = sup{\,|n € N}. Then X € [0,), and

(#)if A< p<f<Qand (z,u), (2,8) € A, then |f(z,u) —
f(z,B)]=0.
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By Lemma 3.7 the map f extends to a map of Y to R. O

Corollary 3.9. For every compact metrizable space Z, Z x [0,Q)
s binormal. ]

In [5, Proposition 4.4], the authors prove that if X is a binormal
pseudo-compact space, then X has the homotopy extension prop-
erty with respect to CW-complexes. Applying Lemma 2.1(1) and
Corollary 3.9, we see the following corollary.

Corollary 3.10. Let Z be a compact metrizable space. Then Z X
[0,9) has the homotopy extension property with respect to CW-
complexes. ]

Now we have our main theorem.

Theorem 3.11. Let Z be a compact metrizable space and Y =
Z % [0,9).
(1) Then'Y is pseudo-compact, Hausdorff, and binormal, and
(2) if K a CW-complex and ZTK , then both Y TK and f(Y)TK.

Proof: (1) Certainly Y is Hausdorff. Its pseudo-compactness
follows from Lemma 3.4(4) and Lemma 2.1(1), while Corollary 3.9
yields its binormality.

(2) Let A be closed in Y and f : A — K be a map. Since Y
is normal and A is closed, Lemma 2.1(2) yields that A is pseudo-
compact. Applying Lemma 2.2, we find a finite subcomplex L of
K such that f(A) C L. Since L is a finite dimensional metrizable
compactum, we may assume that L. C R™ for some n € N. Let
1 <k <nandmn,: R" - R be the k-coordinate projection.
Applying Lemma 3.5, we find A\, € [0,9Q) such that if \y < p <
B < Q, and (a,p), (a,8) € A, then 7, o f(a,u) = 7, o f(a,f).
Let A = max{\;|1 < k < n}. Then X € [0,Q). We deduce from
the preceding that (%) of Lemma 3.7 is in effect for this choice of
A. Therefore, f extends to a map of Y to K. The final statement
follows from this and Proposition 2.4. O

It is well known that 5(]0,2)) = [0, ©2]. Here is our final result.

Corollary 3.12. Let K be a nonempty CW-complex. Then both
[0,)7K and [0,Q]TK.

Proof: Let Z = {0}, and apply Theorem 3.11(2). O
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