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EXTENSION THEORY AND THE FIRST

UNCOUNTABLE ORDINAL SPACE

LEONARD R. RUBIN

Abstract. We shall examine the extension theory of prod-
ucts 𝑌 = 𝑍 × [0,Ω) where 𝑍 is a compact metrizable space
and Ω is the first uncountable ordinal. Our main result is
that if a CW-complex 𝐾 is an absolute extensor for 𝑍, then
𝐾 is an absolute extensor for 𝑌 . This implies, as a corollary,
the classical fact that 𝑌 is normal. We shall also examine
the extension theory of pseudo-compact spaces and will prove
that if 𝑋 is a normal, Hausdorff, pseudo-compact space, and
𝐾 is an absolute extensor for 𝑋, then it is also an absolute
extensor for the Stone-Čech compactification of 𝑋. From this
we will be able to deduce that for the preceding space 𝑌, 𝐾
is an absolute extensor for 𝛽(𝑌 ).

1. Introduction

Let 𝑋 and 𝐾 be spaces; suppose that for all closed subsets 𝐴 of
𝑋 and for every map 𝑓 : 𝐴 → 𝐾 there exists a map 𝐹 : 𝑋 → 𝐾
such that 𝐹 ∣𝐴 = 𝑓 . Then we write 𝑋𝜏𝐾 and say either that 𝑋
is an absolute co-extensor for 𝐾 or 𝐾 is an absolute extensor for
𝑋. This is the fundamental notion of extension theory (see [1] or
[4]) where usually 𝐾 is a CW-complex. It then follows that 𝑋 is a
normal space if and only if 𝑋𝜏 ℝ.

Let Ω designate the first uncountable ordinal. Then [0,Ω) will
denote the set of ordinals less than Ω with the order topology,
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28 L. R. RUBIN

often called the first uncountable ordinal space [6]. An important
tool in the study of [0,Ω) is its pseudo-compactness. We shall
examine this property in section 2. In Proposition 2.4 we exhibit
the extension-theoretic relation between a pseudo-compactum 𝑋
and its Stone-Čech compactification 𝛽(𝑋).

In section 3 we study the extension theory of products 𝑍× [0,Ω)
where 𝑍 is compact and metrizable. Our main theorem, Theorem
3.11, states that if 𝑍 is a compact metrizable space, 𝐾 is a CW-
complex, 𝑍𝜏𝐾, and 𝑌 = 𝑍 × [0,Ω), then both 𝑌 𝜏𝐾 and 𝛽(𝑌 )𝜏𝐾.

The author wishes to thank Professor Sibe Mardešić for several
important discussions about this subject and Professor Ivan Ivanšić
for his help in the preparation of this paper.

2. Extension theory and pseudo-compacta

A space 𝑋 is called pseudo-compact if for each map 𝑓 : 𝑋 → ℝ,
𝑓(𝑋) is contained in a compact subset of ℝ, or, equivalently, 𝑓(𝑋) is
a compact subset of ℝ. A good source of facts about such spaces can
be found in [3]. Here is some information about pseudo-compact
spaces.

Lemma 2.1. Let 𝑋 be a pseudo-compact space.

(1) If 𝑌 is a compact space, then 𝑋 × 𝑌 is pseudo-compact.
(2) If 𝑋 is normal and 𝐴 is closed in 𝑋, then 𝐴 is pseudo-

compact.

Lemma 2.2. Let 𝑋 be a space. The following are equivalent.

(1) 𝑋 is pseudo-compact.
(2) For each CW-complex 𝐾 and map 𝑓 : 𝑋 → 𝐾, 𝑓(𝑋) is

contained in a compact subset of 𝐾.
(3) For each CW-complex 𝐾 and map 𝑓 : 𝑋 → 𝐾, 𝑓(𝑋) is a

compact subset of 𝐾.

Proof: (1) ⇒ (2). Suppose that 𝑓(𝑋) is not contained in a
compact subset of 𝐾. Then there exists a countably infinite closed
discrete subspace 𝐴 of 𝐾 such that 𝐴 ⊂ 𝑓(𝑋). Let 𝑔 : 𝐴 → ℝ be
a function such that 𝑔(𝐴) = ℕ. Then 𝑔 is a map, and since 𝐾 is
normal, there exists a map ℎ : 𝐾 → ℝ such that ℎ∣𝐴 = 𝑔. Define
𝐹 = ℎ∘𝑓 : 𝑋 → ℝ. Then 𝐹 is a map of 𝑋 to ℝ. But ℕ ⊂ 𝐹 (𝑋), so
𝐹 (𝑋) is not contained in a compact subset of ℝ, a contradiction.
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(2) ⇒ (3). Let 𝐿 be the minimum subcomplex such that 𝑓(𝑋) ⊂
𝐿. Then 𝐿 is compact and metrizable. Suppose that 𝑓(𝑋) is not
compact; then 𝑓(𝑋) is not closed in 𝐿. Let 𝑝 ∈ 𝐿∖𝑓(𝑋). Since 𝐿 is
minimal, 𝑝 cannot be isolated. It then follows that there is a map
ℎ : 𝐿∖{𝑝} → ℝ such that for all 𝑛 ∈ ℕ, there exists 𝑥 ∈ 𝐿∖{𝑝} with
ℎ(𝑥) > 𝑛. Treating 𝑓 : 𝑋 → 𝐿 ∖ {𝑝}, put 𝐹 = ℎ ∘ 𝑓 : 𝑋 → ℝ. Then
𝐹 is a map of 𝑋 to ℝ. But 𝐹 (𝑋) is not contained in a compact
subset of ℝ, a contradiction.

(3) ⇒ (1). This follows from the fact that ℝ may be given the
structure of a CW-complex. □

Now we investigate the relation between pseudo-compact spaces
and extension theory.

In the proof of Proposition 2.4 we shall use Lemma 2.11 of [7],
which we state here for the convenience of the reader.

Lemma 2.3. Let 𝑌 be a compact Hausdorff space and 𝑋 a dense
subset of 𝑌 . Then for each closed subset 𝐴 of 𝑌 and neighborhood
𝐺 of 𝐴, there exists a closed neighborhood 𝑁 of 𝐴 such that 𝑁 ⊂ 𝐺
and 𝑁 ∩𝑋 = 𝑁 . □

If 𝑋 is a Tychonoff space, then 𝛽(𝑋) will denote its Stone-
Čech compactification. Here is the principal extension-theoretic
fact about pseudo-compacta.

Proposition 2.4. Let 𝑋 be a normal, Hausdorff, pseudo-compact
space and 𝐾 a CW-complex. Suppose that 𝑋𝜏𝐾. Then 𝛽(𝑋)𝜏𝐾.

Proof: Of course 𝑋 is a Tychonoff space. Let 𝐴 be a closed
subset of 𝛽(𝑋) and 𝑓 : 𝐴 → 𝐾 a map. Using the fact that 𝐾 is an
absolute neighborhood extensor for 𝛽(𝑋) along with Lemma 2.3,
we may as well assume that 𝐴 ∩𝑋 = 𝐴. Since 𝑋𝜏𝐾, there is a
map 𝑓0 : 𝑋 → 𝐾 such that 𝑓0∣𝐴 ∩𝑋 = 𝑓 ∣𝐴 ∩𝑋. By Lemma 2.2,
the image of 𝑓0 lies in a compact subset of 𝐾. Hence, there is a
map 𝐹 : 𝛽(𝑋) → 𝐾 such that 𝐹 ∣𝑋 = 𝑓0∣𝑋. Since 𝐴 ∩𝑋 is dense
in 𝐴 and 𝐹 ∣𝐴 ∩𝑋 = 𝑓0∣𝐴 ∩𝑋 = 𝑓 ∣𝐴 ∩𝑋, then 𝐹 ∣𝐴 = 𝑓 , and our
proof is complete. □

3. Extension theory and [0,Ω)

It is well known that for each compact metrizable space 𝑍, 𝑍 ×
[0,Ω) is normal. We plan to present a proof of this fact that will
lend itself to a generalization into extension theory.
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We shall provide a proof of the following known fact.

Theorem 3.1. Let 𝐾 be a CW-complex, 𝑋 be a compact Hausdorff
space with 𝑋𝜏𝐾, and 𝑌 be a compact Hausdorff space with 𝑌 𝜏𝑆0.
Then,

(𝑌 ×𝑋)𝜏𝐾.

Note that for a compact Hausdorff space 𝑌, 𝑌 𝜏𝑆0 is equivalent
to dim𝑌 ≤ 0.

Before presenting our proof of Theorem 3.1, let us introduce two
lemmas. The first is the “tube” lemma (see [2, XI.2.6, p. 228] or
[6, 3.26.8, p. 168]).

Lemma 3.2. Let 𝑋 and 𝑌 be spaces, 𝑌 be compact, 𝐴 be a subset
of 𝑋, and 𝑈 be a neighborhood of 𝐴 × 𝑌 in 𝑋 × 𝑌 . Then there
exists a neighborhood 𝑉 of 𝐴 in 𝑋 such that 𝑉 × 𝑌 ⊂ 𝑈 . □

Lemma 3.3. Let 𝑋 be a space such that 𝑋𝜏𝑆0, 𝐴 be a closed
subset of 𝑋, and 𝑈 be a neighborhood of 𝐴 in 𝑋. Then there exists
an open and closed neighborhood 𝑉 of 𝐴 in 𝑋 such that 𝑉 ⊂ 𝑈 .

Proof: Let 𝑓 : 𝐴∪(𝑋 ∖𝑈) → 𝑆0 be the map with 𝑓(𝐴) ⊂ {0} and
𝑓(𝑋 ∖ 𝑈) ⊂ {1}. Since 𝑋𝜏𝑆0, there exists a map 𝐹 : 𝑋 → 𝑆0 that
extends 𝑓 . Let 𝑉 = 𝐹−1({0}). It is easy to check that 𝐴 ⊂ 𝑉 ⊂ 𝑈
and that 𝑉 is open and closed. □

Now we give our proof of Theorem 3.1.

Proof: We may as well assume that 𝑌 ∕= ∅. Let 𝐴 be a closed
subset of 𝑌 × 𝑋 and 𝑓 : 𝐴 → 𝐾 a map. Fix 𝑦 ∈ 𝑌 and consider
the closed subspace 𝑃𝑦 = 𝐴 ∪ ({𝑦} × 𝑋) ⊂ 𝑌 × 𝑋. Since 𝑋𝜏𝐾,
there exists a map 𝑓𝑦 : 𝑃𝑦 → 𝐾 such that 𝑓𝑦∣𝐴 = 𝑓 .

Now 𝑌 ×𝑋 is compact and Hausdorff; hence, 𝐾 is an absolute
neighborhood extensor for 𝑌 ×𝑋. So there exists a neighborhood
𝑈𝑦 of 𝑃𝑦 in 𝑌 ×𝑋 and a map 𝐺𝑦 : 𝑈𝑦 → 𝐾 extending 𝑓𝑦. Using
Lemma 3.2 and Lemma 3.3, select an open and closed neighborhood
𝑉𝑦 of 𝑦 in 𝑌 such that 𝑉𝑦 ×𝑋 ⊂ 𝑈𝑦.

There exists a finite subset ℱ ⊂ 𝑌 such that {𝑉𝑦 ∣ 𝑦 ∈ ℱ} covers
the compact space 𝑌 . Write ℱ = {𝑦1, . . . , 𝑦𝑛} where 𝑛 = cardℱ .

Put 𝑊1 = 𝑉𝑦1 , and for 1 < 𝑘 ≤ 𝑛, 𝑊𝑘 = 𝑉𝑦𝑘 ∖
∪{𝑉𝑦𝑖 ∣ 1 ≤ 𝑖 < 𝑘}.

Then {𝑊𝑘 ∣ 1 ≤ 𝑘 ≤ 𝑛} is an open and closed cover of 𝑌 , for each
1 ≤ 𝑘 ≤ 𝑛, 𝑊𝑘 ⊂ 𝑉𝑦𝑘 , and if 1 ≤ 𝑗 < 𝑘 ≤ 𝑛, then 𝑊𝑗 ∩𝑊𝑘 = ∅.
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Define 𝐹𝑘 = 𝐺𝑦𝑘 ∣(𝑊𝑘 ×𝑋) : 𝑊𝑘 ×𝑋 → 𝐾. One may now check
that

𝐹 =
∪

{𝐹𝑘 ∣ 1 ≤ 𝑘 ≤ 𝑛} : 𝑌 ×𝑋 → 𝐾

is a map that extends 𝑓 . □
The next is a list of well-known facts about the first uncountable

ordinal space.

Lemma 3.4. Let 𝑋 = [0,Ω).

(1) 𝑋 is a normal Hausdorff space.
(2) Let 0 ≤ 𝜆 < Ω; then [0, 𝜆] is a compact, 0-dimensional

metrizable subspace of 𝑋.
(3) Let 𝑃 be a closed nonempty subset of 𝑋 and 𝑓 : 𝑃 → ℝ be a

map. Then there exists 𝜎 ∈ 𝑃 such that whenever 𝜇,𝛽 ∈ 𝑃
and 𝜎 ≤ 𝜇 < 𝛽, then 𝑓(𝜇) = 𝑓(𝛽).

(4) 𝑋 is pseudo-compact. □
We now present our main lemma.

Lemma 3.5. Let 𝑍 be a nonempty compact metrizable space, 𝐴 be
a closed subset of 𝑌 = 𝑍 × [0,Ω) with 𝑍 × {0} ⊂ 𝐴, 𝑓 : 𝐴 → ℝ
be a map, and 𝜖 > 0. For each 𝑧 ∈ 𝑍, define 𝑆𝜖(𝑧) = {𝜎 ∈
[0,Ω) ∣ ∃𝜇, 𝛽 ∈ [0,Ω), 𝜎 ≤ 𝜇 < 𝛽, (𝑧, 𝜇), (𝑧, 𝛽) ∈ 𝐴, ∣𝑓(𝑧, 𝜇) −
𝑓(𝑧, 𝛽)∣ ≥ 𝜖}. Then

(∗) there exists 0 ≤ 𝜆 < Ω such that
∪{𝑆𝜖(𝑧) ∣ 𝑧 ∈ 𝑍} ⊂ [0, 𝜆].

Proof: Fix 𝑧 ∈ 𝑍 and define 𝐴𝑧 = 𝐴∩ ({𝑧}× [0,Ω)). Then 𝐴𝑧 is
a nonempty closed subspace of {𝑧}× [0,Ω), the latter being a copy
of [0,Ω). Consider 𝑓 ∣𝐴𝑧 : 𝐴𝑧 → ℝ, and apply Lemma 3.4(3) to this
map. Accordingly, there is a first element 𝑙(𝑧) ∈ [0,Ω) such that if
𝑙(𝑧) ≤ 𝜇 < 𝛽, and (𝑧, 𝜇) and (𝑧, 𝛽) ∈ 𝐴, then ∣𝑓(𝑧, 𝜇)−𝑓(𝑧, 𝛽)∣ < 𝜖.
It then follows that,

(F1) 𝑆𝜖(𝑧) ⊂ [0, 𝑙(𝑧)],

(F2) 𝑙(𝑧) /∈ 𝑆𝜖(𝑧), and

(F3) if 0 ≤ 𝜆 < 𝑙(𝑧), then 𝜆 ∈ 𝑆𝜖(𝑧).

Having defined 𝑙(𝑧) ∈ [0,Ω) for each 𝑧 ∈ 𝑍 satisfying (F1)–
(F3), let us put 𝑇 = {𝑙(𝑧) ∣ 𝑧 ∈ 𝑍, 𝑆𝜖(𝑧) ∕= ∅}. Suppose we can
find 𝛼 ∈ [0,Ω) so that 𝑇 ⊂ [0, 𝛼]. Let 𝑧 ∈ 𝑍. We claim that
𝑆𝜖(𝑧) ⊂ [0, 𝛼]. By (F1), 𝑆𝜖(𝑧) ⊂ [0, 𝑙(𝑧)]. Since 𝑙(𝑧) ∈ 𝑇 , then
𝑙(𝑧) ∈ [0, 𝛼], so 𝑆𝜖(𝑧) ⊂ [0, 𝑙(𝑧)] ⊂ [0, 𝛼]. Hence,
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(F4) (∗) is true if there exists 𝛼 ∈ [0,Ω) such that 𝑇 ⊂ [0, 𝛼].

In case 𝑇 = ∅, then define 𝛼 = 0. If 𝑇 ∕= ∅ and 𝑇 is countable,
then put 𝛼 = sup(𝑇 ). In either case, 𝑇 ⊂ [0, 𝛼], so by (F4), (∗)
is true. Hence, we shall assume that 𝑇 is uncountable; we choose
an uncountable subset 𝑍0 ⊂ 𝑍 so that the function 𝑙∣𝑍0 : 𝑍0 → 𝑇
is a bijection. To reach a contradiction, suppose that there is no
𝛼 ∈ [0,Ω) with 𝑇 ⊂ [0, 𝛼]. This along with (F3) means that

(F5) for all 𝛼 ∈ [0,Ω), there exists 𝑧 ∈ 𝑍0 with 𝛼 < 𝑙(𝑧), and

(F6) for all 𝛼 ∈ [0,Ω) and 𝑧 ∈ 𝑍0 with 𝛼 < 𝑙(𝑧), there are
𝛼 ≤ 𝜇 < 𝛽 with (𝑧, 𝜇), (𝑧, 𝛽) ∈ 𝐴, and ∣𝑓(𝑧, 𝜇)− 𝑓(𝑧, 𝛽)∣ ≥ 𝜖.

Employing the well-ordering of 𝑇 ⊂ [0,Ω), we shall treat 𝑍0 as
a well-ordered set induced by the bijection 𝑙∣𝑍0 : 𝑍0 → 𝑇 . Let us
write <0 for the ordering in 𝑍0.

Let 𝑧0 be the first element of 𝑍0. Applying (F5) and (F6)
with 𝛼 = 𝑙(𝑧0), there exist a first element 𝑎(𝑧0) ∈ 𝑍0 such that
𝑙(𝑧0) < 𝑙(𝑎(𝑧0)), and 𝑙(𝑧0) ≤ ℎ(𝑧0) < 𝑔(𝑧0), such that 𝑞(𝑧0) =
(𝑎(𝑧0), ℎ(𝑧0)) ∈ 𝐴, 𝑟(𝑧0) = (𝑎(𝑧0), 𝑔(𝑧0)) ∈ 𝐴, and ∣𝑓(𝑞(𝑧0)) −
𝑓(𝑟(𝑧0))∣ ≥ 𝜖.

We proceed with a transfinite construction. Let 𝑧 ∈ 𝑍0∖{𝑧0} and
suppose that for all 𝑧 ∈ 𝑍0 with 𝑧 <0 𝑧, we have chosen 𝑎(𝑧) ∈ 𝑍0

as well as 𝑙(𝑧) ≤ ℎ(𝑧) < 𝑔(𝑧) such that if 𝑧 <0 𝑧∗ ≤0 𝑧′ <0 𝑧, then
the following inductive statements are true.

(I1) 𝑎(𝑧) <0 𝑎(𝑧
∗),

(I2) 𝑔(𝑧) < ℎ(𝑧∗) and ℎ(𝑧∗) < 𝑔(𝑧′) if 𝑧∗ <0 𝑧
′,

(I3) 𝑞(𝑧) = (𝑎(𝑧), ℎ(𝑧)) ∈ 𝐴, 𝑟(𝑧) = (𝑎(𝑧), 𝑔(𝑧)) ∈ 𝐴, and

(I4) ∣𝑓(𝑞(𝑧))− 𝑓(𝑟(𝑧))∣ ≥ 𝜖.

Let 𝐸 = {𝑧 ∈ 𝑍0 ∣ 𝑧 <0 𝑧}. Then 𝐸 is a countable subset of
𝑍0. Put 𝐵 = {𝑙(𝑎(𝑧)) ∣ 𝑧 ∈ 𝐸}, and 𝑀 = {𝑔(𝑧) ∣ 𝑧 ∈ 𝐸}. Each
of these sets is a nonempty and countable subset of [0,Ω). Hence,
𝛾 = sup(𝐵 ∪𝑀) exists in [0,Ω).

Note that 𝑎(𝐸) is a countable subset of 𝑍0. Let 𝐹 be the subset
of 𝑍0 consisting of those elements 𝑢 with 𝑎(𝑧) < 𝑢 for all 𝑧 ∈ 𝐸.
Then 𝐹 is an uncountable subset of 𝑍0. Using this and (F5), there
exists 𝑢 ∈ 𝐹 such that 𝛼 = max{𝑙(𝑧), 𝛾 + 1} < 𝑙(𝑢). Define 𝑎(𝑧) to
be the first element of 𝐹 such that 𝛼 < 𝑙(𝑎(𝑧)).
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Applying (F6) to 𝛼 and 𝑧 = 𝑎(𝑧), there are 𝛼 ≤ ℎ(𝑧) < 𝑔(𝑧)
such that 𝑞(𝑧) = (𝑎(𝑧), ℎ(𝑧)) ∈ 𝐴, 𝑟(𝑧) = (𝑎(𝑧), 𝑔(𝑧)) ∈ 𝐴, and
∣𝑓(𝑞(𝑧))− 𝑓(𝑟(𝑧))∣ ≥ 𝜖.

Let 𝑧 ∈ 𝐸. Then 𝑎(𝑧) <0 𝑎(𝑧) since 𝑎(𝑧) ∈ 𝐹 . Surely 𝛾 < ℎ(𝑧).
Thus, ℎ(𝑧) < 𝑔(𝑧) < ℎ(𝑧). This ends our inductive construction.

We have defined functions 𝑎 : 𝑍0 → 𝑍0, ℎ : 𝑍0 → [0,Ω), 𝑔 :
𝑍0 → [0,Ω) such that whenever 𝑧, 𝑧∗, 𝑧′ ∈ 𝑍0 with 𝑧 <0 𝑧∗ ≤0 𝑧′,
statements (I1)–(I4) hold true.

It follows from (I1) that 𝑄 = {𝑎(𝑧) ∣ 𝑧 ∈ 𝑍0} is an uncountable
subset of the second countable space 𝑍0. Hence, there exists a point
𝑧0 ∈ 𝑍0 so that 𝑎(𝑧0) is a limit point of 𝑄. So there is a sequence
(𝑦𝑛) in 𝑄∖{𝑎(𝑧0)} that converges to 𝑎(𝑧0). Since 𝑍0 is well ordered,
so is 𝑄, and we may assume that (𝑦𝑛) is increasing. Let us write
𝑦𝑛 = 𝑎(𝑧𝑛) for each 𝑛 ∈ ℕ. Because of (I1), (𝑧𝑛) is increasing.

Applying (I2), one sees that both (ℎ(𝑧𝑛)) and (𝑔(𝑧𝑛)) are in-
creasing sequences in [0,Ω). So they both converge in [0,Ω). From
(I2) one may conclude that when 𝑚 < 𝑛 < 𝑣 in ℕ, then 𝑔(𝑧𝑚) <
ℎ(𝑧𝑛) < 𝑔(𝑧𝑣). Hence, the sequences (ℎ(𝑧𝑛)) and (𝑔(𝑧𝑛)) have the
same limit, say 𝜌 ∈ [0,Ω).

For each 𝑛 ∈ ℕ, let 𝑞𝑛 = (𝑎(𝑧𝑛), ℎ(𝑧𝑛)) and 𝑟𝑛 = (𝑎(𝑧𝑛), 𝑔(𝑧𝑛)).
By (I3), both (𝑞𝑛) and (𝑟𝑛) are sequences in 𝐴. They converge to
(𝑎(𝑧0), 𝜌) in 𝑌 . Since 𝐴 is closed in 𝑌 , then (𝑎(𝑧0), 𝜌) ∈ 𝐴. But
𝑓 : 𝐴 → ℝ is a map, so each of the sequences (𝑓(𝑞𝑛)) and (𝑓(𝑟𝑛))
converges to the same element 𝑓(𝑎(𝑧0), 𝜌) of ℝ. This leads to a
contradiction, because by (I4), ∣𝑓(𝑞𝑛) − 𝑓(𝑟𝑛)∣ ≥ 𝜖 for all 𝑛 ∈ ℕ.
Our proof is complete. □

Before we can successfully apply Lemma 3.5, we need some ad-
ditional facts.

Lemma 3.6. Let 𝑍 be a compact metrizable space. Then the coor-
dinate projection 𝜋𝑍 : 𝑍 × [0,Ω) → 𝑍 is a closed map.

Proof: Let 𝐴 ⊂ 𝑍×[0,Ω) be closed and suppose that 𝜋𝑍(𝐴) is not
closed in 𝑍. Then there is a sequence (𝑎𝑛) in 𝐴 and 𝑧 ∈ 𝑍 ∖ 𝜋𝑍(𝐴)
such that (𝜋𝑍(𝑎𝑛)) converges to 𝑧.

For some 0 ≤ 𝜆 < Ω, 𝑎𝑛 ∈ 𝑍× [0, 𝜆] for all 𝑛 ∈ ℕ. Hence, (𝑎𝑛) is
a sequence in the compact metrizable space 𝐴∩(𝑍×[0, 𝜆]). Passing
to a subsequence if necessary, we may assume that (𝑎𝑛) converges
to 𝑎 ∈ 𝐴. Therefore, 𝜋𝑍(𝑎) = 𝑧 ∈ 𝜋𝑍(𝐴), a contradiction. □
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Lemma 3.7. Let 𝑍 be a compact metrizable space and 𝐾 be a
CW-complex such that 𝑍𝜏𝐾. Suppose that 𝐴 is a closed subset of
𝑌 = 𝑍 × [0,Ω) and 𝑓 : 𝐴 → 𝐾 is a map. Suppose further that

(∗) there exists 0 ≤ 𝜆 < Ω such that if 𝜆 ≤ 𝜇 < 𝛽 < Ω and (𝑎, 𝜇),
(𝑎, 𝛽) ∈ 𝐴, then 𝑓(𝑎, 𝜇) = 𝑓(𝑎, 𝛽).

Then 𝑓 extends to a map of 𝑌 to 𝐾.

Proof: Since (𝑍×{0})𝜏𝐾 and 𝑍×{0} is closed in 𝑌 , we may as
well assume that 𝑍×{0} ⊂ 𝐴. Let 𝜋𝜆 : 𝑍× [𝜆,Ω) → 𝑍×{𝜆} be the
map given by 𝜋𝜆(𝑧, 𝛼) = (𝑧, 𝜆). Noting that [𝜆,Ω) is homeomorphic
to [0,Ω), one may apply Lemma 3.6 to see that 𝜋𝜆 is a closed map.
Let 𝐴# = 𝐴 ∩ (𝑍 × [𝜆,Ω)), 𝜋# = 𝜋𝜆∣𝐴# : 𝐴# → 𝑍 × {𝜆}, and
𝐴𝜆 = 𝜋#(𝐴#). Then, of course, 𝐴𝜆 is a closed subset of both
𝑍 × {𝜆} and 𝑍 × [0, 𝜆].

Now 𝜋# : 𝐴# → 𝐴𝜆 is a closed map and hence is a quotient
map. As a result of this and (∗), there is a map 𝑓𝜆 : 𝐴𝜆 → 𝐾 such
that if (𝑧, 𝜆) ∈ 𝐴𝜆 and (𝑧, 𝜆) = 𝜋#(𝑧, 𝛼) with (𝑧, 𝛼) ∈ 𝐴#, then
𝑓𝜆(𝑧, 𝜆) = 𝑓(𝑧, 𝛼).

Put ℎ0 = 𝑓 ∣(𝐴 ∩ (𝑍 × [0, 𝜆])). Then ℎ0∣(𝐴 ∩𝐴𝜆) = 𝑓𝜆∣(𝐴 ∩𝐴𝜆).
This shows that there is a map ℎ1 : (𝐴 ∩ (𝑍 × [0, 𝜆])) ∪ 𝐴𝜆 → 𝐾
such that ℎ1∣(𝐴∩(𝑍× [0, 𝜆])) = 𝑓 ∣(𝐴∩(𝑍× [0, 𝜆])) and ℎ1∣𝐴𝜆 = 𝑓𝜆.

Applying Lemma 3.4(2) and Theorem 3.1, one sees that (𝑍 ×
[0, 𝜆])𝜏𝐾. Since (𝐴 ∩ (𝑍 × [0, 𝜆])) ∪ 𝐴𝜆 is closed in 𝑍 × [0, 𝜆],
then there is a map 𝐹 : 𝑍 × [0, 𝜆] → 𝐾 having the property that
𝐹 (𝑡) = ℎ1(𝑡) for all 𝑡 ∈ (𝐴 ∩ (𝑍 × [0, 𝜆])) ∪ 𝐴𝜆. Let 𝑞 : [0,Ω) →
[0, 𝜆] be the unique retraction sending 𝜇 to 𝜆 for all 𝜇 > 𝜆 and
𝑟 = id𝑍 ×𝑞 : 𝑌 → 𝑍 × [0, 𝜆]. Then for each 𝑧 ∈ 𝑍 and 𝜆 ≤ 𝜇 < Ω,
𝑟(𝑧, 𝜇) = (𝑧, 𝜆). Thus, 𝐹 ∘𝑟 : 𝑌 → 𝐾 is a map, and in consideration
of the preceding construction, one can check that (𝐹 ∘𝑟)∣𝐴 = 𝑓 . □
Lemma 3.8. Let 𝑍 be a compact metrizable space. Then 𝑌 =
𝑍 × [0,Ω) is normal.

Proof: Let 𝐴 ⊂ 𝑌 be a closed subset and 𝑓 : 𝐴 → ℝ a map. For
each 𝑛 ∈ ℕ, apply Lemma 3.5 to find 𝜆𝑛 ∈ [0,Ω) so that

(∗)𝑛 if 𝜆𝑛 ≤ 𝜇 < 𝛽 < Ω and (𝑧, 𝜇), (𝑧, 𝛽) ∈ 𝐴, then ∣𝑓(𝑧, 𝜇) −
𝑓(𝑧, 𝛽)∣ < 1

𝑛 .

Put 𝜆 = sup{𝜆𝑛 ∣𝑛 ∈ ℕ}. Then 𝜆 ∈ [0,Ω), and

(∗) if 𝜆 ≤ 𝜇 < 𝛽 < Ω and (𝑧, 𝜇), (𝑧, 𝛽) ∈ 𝐴, then ∣𝑓(𝑧, 𝜇) −
𝑓(𝑧, 𝛽)∣ = 0.
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By Lemma 3.7 the map 𝑓 extends to a map of 𝑌 to ℝ. □
Corollary 3.9. For every compact metrizable space 𝑍, 𝑍 × [0,Ω)
is binormal. □

In [5, Proposition 4.4], the authors prove that if 𝑋 is a binormal
pseudo-compact space, then 𝑋 has the homotopy extension prop-
erty with respect to CW-complexes. Applying Lemma 2.1(1) and
Corollary 3.9, we see the following corollary.

Corollary 3.10. Let 𝑍 be a compact metrizable space. Then 𝑍 ×
[0,Ω) has the homotopy extension property with respect to CW-
complexes. □

Now we have our main theorem.

Theorem 3.11. Let 𝑍 be a compact metrizable space and 𝑌 =
𝑍 × [0,Ω).

(1) Then 𝑌 is pseudo-compact, Hausdorff, and binormal, and
(2) if 𝐾 a CW-complex and 𝑍𝜏𝐾, then both 𝑌 𝜏𝐾 and 𝛽(𝑌 )𝜏𝐾.

Proof: (1) Certainly 𝑌 is Hausdorff. Its pseudo-compactness
follows from Lemma 3.4(4) and Lemma 2.1(1), while Corollary 3.9
yields its binormality.

(2) Let 𝐴 be closed in 𝑌 and 𝑓 : 𝐴 → 𝐾 be a map. Since 𝑌
is normal and 𝐴 is closed, Lemma 2.1(2) yields that 𝐴 is pseudo-
compact. Applying Lemma 2.2, we find a finite subcomplex 𝐿 of
𝐾 such that 𝑓(𝐴) ⊂ 𝐿. Since 𝐿 is a finite dimensional metrizable
compactum, we may assume that 𝐿 ⊂ ℝ𝑛 for some 𝑛 ∈ ℕ. Let
1 ≤ 𝑘 ≤ 𝑛 and 𝜋𝑘 : ℝ𝑛 → ℝ be the 𝑘-coordinate projection.
Applying Lemma 3.5, we find 𝜆𝑘 ∈ [0,Ω) such that if 𝜆𝑘 ≤ 𝜇 <
𝛽 < Ω, and (𝑎, 𝜇), (𝑎, 𝛽) ∈ 𝐴, then 𝜋𝑘 ∘ 𝑓(𝑎, 𝜇) = 𝜋𝑘 ∘ 𝑓(𝑎, 𝛽).
Let 𝜆 = max{𝜆𝑘 ∣ 1 ≤ 𝑘 ≤ 𝑛}. Then 𝜆 ∈ [0,Ω). We deduce from
the preceding that (∗) of Lemma 3.7 is in effect for this choice of
𝜆. Therefore, 𝑓 extends to a map of 𝑌 to 𝐾. The final statement
follows from this and Proposition 2.4. □

It is well known that 𝛽([0,Ω)) ∼= [0,Ω]. Here is our final result.

Corollary 3.12. Let 𝐾 be a nonempty CW-complex. Then both
[0,Ω)𝜏𝐾 and [0,Ω]𝜏𝐾.

Proof: Let 𝑍 = {0}, and apply Theorem 3.11(2). □
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