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𝐷-SPACES, TOPOLOGICAL GAMES, AND

SELECTION PRINCIPLES

LEANDRO F. AURICHI

Abstract. We present some connections between selection
principles and the 𝐷-space problem. Our main result is that
every Menger space is a 𝐷-space. We also present a study of
the Rothberger property restricted to compact spaces.

1. Introduction

The definition of a 𝐷-space appeared in [7]. There, it was also
asked if it is true that every Lindelöf space is a 𝐷-space. Many
classes of spaces were proven to be included in the class of 𝐷-spaces
(see, e.g., [1], [6], [5], [9]), but the question about Lindelöf spaces is
still open. In [8], it was said that one of the main problems about
this question is the lack of covering properties that imply being a
𝐷-space. In this work, we try to make a step in this direction,
proving that a selection principle for open covers implies the 𝐷
property. Such selection principles have been extensively studied,
see, e.g., [16], [4], thus these results can give some new light to this
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problem. Following this idea, we present some topological games
that are related to selection principles and give the relation between
them and 𝐷-spaces.

In [3], it was shown that, under MA, Lindelöf spaces that are a
union of fewer than continuum compact spaces are 𝐷-spaces. This
can be obtained by our main result simply by using the fact that
such spaces have the Menger property.

All the definitions about selection principles can be found in [16].

We finish this section defining 𝐷-space, fixing some notation,
and proving a simple result.

Definition 1.1. Let𝑋 be a topological space. We say that (𝑉𝑥)𝑥∈𝑋
is an open neighborhood assignment for 𝑋 if each 𝑉𝑥 is an open
neighborhood of 𝑥. If 𝑌 ⊂ 𝑋, we denote by 𝑉𝑌 the set

∪
𝑦∈𝑌 𝑉𝑦.

We say that 𝑌 is a kernel for (𝑉𝑥)𝑥∈𝑋 if 𝑉𝑌 = 𝑋. Finally, we say
that 𝑋 is a 𝐷-space if, for every open neighborhood assignment
(𝑉𝑥)𝑥∈𝑋 , there is a closed discrete kernel.

In [5], it was proven that every strong Σ-space is a 𝐷-space. In
particular, this result implies that every Moore space is a 𝐷-space.
A Moore space is a regular developable space. We will present here
a direct proof which also shows that the regularity in this case is
not needed. Before this, we give some definitions.

Definition 1.2. Let 𝑋 be a topological space, 𝒞 a family of open
sets, and 𝑥 ∈ 𝑋. We use 𝑠𝑡(𝑥, 𝒞) to denote the set

∪{𝐶 ∈ 𝒞 : 𝑥 ∈
𝐶}. We say that 𝑋 is a developable space if there is a sequence of
open covers (𝒞𝑛)𝑛∈𝜔 such that for each 𝑥 ∈ 𝑋, {𝑠𝑡(𝑥, 𝒞𝑛) : 𝑛 ∈ 𝜔}
is a local base for it.

Proposition 1.3. Every developable space is a 𝐷-space.

Proof: Let 𝑋 be a developable space and let (𝒞𝑛)𝑛∈𝜔 be a se-
quence of covers such that for each 𝑥 ∈ 𝑋, {𝑠𝑡(𝑥, 𝒞𝑛) : 𝑛 ∈ 𝜔} is a
local base for it. Let (𝑉𝑥)𝑥∈𝑋 be an open neighborhood assignment
for 𝑋. For each 𝑛 ∈ 𝜔, let 𝑋𝑛 = {𝑥 ∈ 𝑋 : 𝑠𝑡(𝑥, 𝒞𝑛) ⊂ 𝑉𝑥}. This
set can be empty, but note that 𝑋 =

∪
𝑛∈𝜔 𝑋𝑛. For each 𝑛 ∈ 𝜔, we

will define 𝐷𝑛 ⊂ 𝑋𝑛 satisfying the following:

(a) 𝐷𝑛 is closed discrete;
(b) 𝑉𝐷𝑛 ∪∪

𝑘<𝑛 𝑉𝐷𝑘
⊃ 𝑋𝑛.
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Well order 𝑋𝑛 ∖
∪

𝑘<𝑛 𝑉𝐷𝑘
and define 𝑑𝜉 as the least element of

(𝑋𝑛 ∖
∪

𝑘<𝑛 𝑉𝐷𝑘
) ∖ 𝑉𝐸𝜉

where 𝐸𝜉 = {𝑑𝜂 : 𝜂 < 𝜉}. Define 𝐷𝑛 as
the set of such 𝑑𝜉’s. We will prove that 𝐷𝑛 is closed discrete. Let
𝑦 ∈ 𝑋. Let 𝐶 ∈ 𝒞𝑛 such that 𝑦 ∈ 𝐶. Suppose there is a 𝑑𝜉 ∈ 𝐶.
Pick the least one. Note that 𝑦 ∈ 𝑠𝑡(𝑑𝜉, 𝐶𝑛). Thus, 𝑦 ∈ 𝑉𝑑𝜉 ∩ 𝐶
and 𝑉𝑑𝜉 ∩ 𝐶 ∩𝐷𝑛 = {𝑑𝜉}.

Therefore, 𝐷 =
∪

𝑛∈𝜔 𝐷𝑛 is such that 𝑉𝐷 = 𝑋 and it is closed
discrete. □

2. The partial open neighborhood assignment game

Through this work we will deal with some games that are played
by two players. In general, one of the players is looking for a cover
of a space and the other one is not. For mnemonic reasons, we will
name these players 𝐶 and 𝑁 , respectively.

The general idea for the first game is the following: player 𝑁
gives a partial open neighborhood assignment for the space that is
enough to cover it. Then player 𝐶 chooses a subset of the domain
of this partial open neighborhood assignment that will be a part
of the closed discrete kernel that 𝐶 is looking for. Then player 𝑁
chooses another partial open neighborhood assignment and player
𝐶 chooses another part for its closed discrete kernel.

Definition 2.1. Let 𝑋 be a topological space. We call the follow-
ing game between players 𝑁 and 𝐶 the partial open neighborhood
assignment game (PONAG). Player 𝑁 defines a partial open neigh-
borhood assignment (𝑉𝑥)𝑥∈𝑌0 for 𝑋 with 𝑌0 ⊂ 𝑋 and such that
𝑉𝑌0 = 𝑋. After this, player 𝐶 chooses 𝐷0 ⊂ 𝑌0, a closed discrete
subset of 𝑋. Then, at the 𝑛-th inning,

∙ 𝑁 chooses (𝑉𝑥)𝑥∈𝑌𝑛 , a partial open neighborhood assign-
ment compatible with every (𝑉𝑥)𝑥∈𝑌𝑘

for 𝑘 < 𝑛 such that
– it covers 𝑋 ∖

∪
𝑘<𝑛 𝑉𝐷𝑘

and
– 𝑌𝑛 ∩∪

𝑘<𝑛 𝑉𝐷𝑘
= ∅;

∙ 𝐶 chooses 𝐷𝑛 ⊂ 𝑌𝑛, a closed discrete subset of 𝑋.

We say that 𝐶 wins the game if
∪

𝑛∈𝜔 𝑉𝐷𝑛 = 𝑋.

One of the advantages of this game is that we do not have to
care about making the kernel closed discrete.

Proposition 2.2. Let (𝐷𝑛)𝑛∈𝜔 be as in a PONAG won by player
𝐶. Then

∪
𝑛∈𝜔 𝐷𝑛 is a closed discrete set.
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Proof: Let 𝑥 ∈ 𝑋, and let 𝑛 ∈ 𝜔 be the first such that 𝑥 ∈∪
𝑑∈𝐷𝑛

𝑉𝑑. Note that
∪

𝑑∈𝐷𝑛
𝑉𝑑 is an open set that separates 𝑥

from every point in
∪

𝑘>𝑛𝐷𝑘. Since
∪

𝑘≤𝑛𝐷𝑘 is closed discrete (it

is a finite union of closed discrete sets), 𝑥 is not an accumulation
point of

∪
𝑘∈𝜔 𝐷𝑘. □

It is easy to see that being a 𝐷-space is related to player 𝑁 not
having a winning strategy.

Proposition 2.3. Let 𝑋 be a topological space. If 𝑁 has no win-
ning strategy for the PONAG, then 𝑋 is a 𝐷-space.

Proof: Suppose 𝑋 is not a 𝐷-space. Let (𝑉𝑥)𝑥∈𝑋 be an open
neighborhood assignment for 𝑋 that witnesses it. Then, if 𝑁 plays
at every inning 𝑛, (𝑉𝑥)𝑥∈𝐴 where 𝐴 = 𝑋 ∖

∪
𝑘<𝑛 𝑉𝐷𝑘

, 𝐶 cannot
win this game. □

It is easy to prove that for a 𝜎-compact space, player 𝐶 has a
winning strategy for the PONAG. There is a generalization for 𝜎-
compactness that we can prove which implies that player 𝑁 has
no winning strategy for the PONAG. Before proving this, we give
some definitions.

Definition 2.4. We say that a space 𝑋 is a Menger space if for
every sequence (𝒰𝑛)𝑛∈𝜔 of open covers there is (𝑈𝑛)𝑛∈𝜔 such that
each 𝑈𝑛 is a finite subset of 𝒰𝑛 and

∪
𝑛∈𝜔

∪
𝑈𝑛 = 𝑋.

Note that the Menger property implies the Lindelöf property;
thus, we can assume that each cover in the definition of the Menger
property is countable. Also, it is easy to see that the previous
definition has an equivalent formulation if we also require each 𝒰𝑛

to be closed under finite unions and each 𝑈𝑛 to be a unitary subset
of 𝒰𝑛.

The property of being a Menger space has an equivalent formu-
lation using a game.

Definition 2.5. Let 𝑋 be a Lindelöf space. We call the Menger
game the following game played between players 𝑁 and 𝐶. At each
inning 𝑛 ∈ 𝜔, player 𝑁 chooses a countable open cover 𝒰𝑛 that is
closed under finite unions. Then player 𝐶 chooses 𝑈𝑛 ∈ 𝒰𝑛. We
say that player 𝐶 wins the game if

∪
𝑛∈𝜔 𝑈𝑛 = 𝑋.



𝐷-SPACES, TOPOLOGICAL GAMES, AND SELECTION PRINCIPLES 111

In [11], it was proven that a Lindelöf space is a Menger space if
and only if player 𝑁 has no winning strategy for the Menger game.
With this result, we can prove the following proposition.

Proposition 2.6. Let 𝑋 be a Menger space. Then 𝑁 has no win-
ning strategy for the PONAG.

Proof: Suppose that 𝑁 has a winning strategy for the PONAG.
We will define a winning strategy for 𝑁 for the Menger game. Since
𝑋 is Menger, this will give us a contradiction. At the first inning,
𝑁 chooses 𝒰0 = {𝑉𝑥 : 𝑥 ∈ 𝑌0} where (𝑉𝑥)𝑥∈𝑌0 is the one chosen
by 𝑁 at the first play in the winning strategy for the PONAG. If
(𝑉𝑥)𝑥∈𝑈0 is the finite subset of (𝑉𝑥)𝑥∈𝑌0 played by 𝐶 in the Menger
game, then consider 𝐶 in PONAG as playing the finite set 𝑈0 ⊂ 𝑌0.
Then at the second inning, 𝑁 chooses 𝒰1 = {𝑉𝑈0 ∪ 𝑉𝑥 : 𝑥 ∈ 𝑌1}
where 𝑌1 is the one that 𝑁 chooses in the winning strategy for the
PONAG after 𝐶 chooses (𝑉𝑥)𝑥∈𝑈0 . Note that proceeding this way,
𝑁 wins the game. □

Corollary 2.7. Every Menger space is a 𝐷-space.

But the PONAG does not give us an equivalence for being a
𝐷-space. The space of the irrationals with the usual topology is a
𝐷-space (see, e.g., [1]), and we can prove the following proposition.

Proposition 2.8. In the PONAG for 𝜔𝜔, player 𝑁 has a winning
strategy.

Proof: For each 𝑛 ∈ 𝜔, let 𝐴𝑛 = {𝑦𝑛𝑗 ∈ 𝜔𝜔 : 𝑗 ∈ 𝜔} and (𝑉𝑦𝑛𝑗
)𝑗∈𝜔

be such that

∙ 𝑦𝑛𝑗 (𝑚) =

{
𝑛+ 1 if 𝑚 ≤ 𝑗
0 otherwise

∙ 𝑉𝑦𝑛𝑗
= {𝑥 ∈ 𝜔𝜔 : 𝑥(𝑛) ≤ 𝑛+ 1 + 𝑗}.

Note that 𝐴𝑛 ∩ 𝐴𝑘 = ∅ if 𝑛 ∕= 𝑘 and 𝑦𝑛𝑗 ∈ 𝑉𝑦𝑛𝑗
for any 𝑗, 𝑛 ∈ 𝜔.

Note also that (𝑦𝑛𝑗 )𝑗∈𝜔 is a converging sequence to the function
constantly equal to 𝑛+ 1.

At the first inning, 𝑁 chooses 𝑉𝑦∈𝑌0 where 𝑌0 = 𝐴0. Note that
player 𝐶 can choose only finitely many points of 𝑌0. Let 𝑈0 be the
𝑦0𝑗 ’s chosen. Let 𝑘 = max{𝑗 +1 : 𝑦0𝑗 ∈ 𝑈0}. Then player 𝑁 chooses

𝑌1 = 𝐴𝑘+1. Note that 𝑉𝑌1 = 𝜔𝜔 and 𝑌1 ∩ 𝑉𝑈0 = ∅. Again, player
𝐶 can choose only finitely many points in 𝑌1. Let 𝑈1 be the set
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of the 𝑦𝑘+1
𝑗 ’s chosen. Let 𝑘′ = max{𝑗 + 𝑘 + 1 : 𝑦𝑘+1

𝑗 ∈ 𝑈1}. Then
player 𝑁 chooses 𝑌2 = 𝐴𝑘′+1. Proceeding this way, player 𝑁 wins
the game. □

3. The star game

The next game is based on the proof in [1] that every space with
a point countable base is a 𝐷-space.

Definition 3.1. Let 𝑋 be a topological space. We call the star
game the following game played between 𝐶 and 𝑁 . At each inning
𝜉, player 𝐶 chooses 𝑥𝜉 different from every 𝑥𝛼 chosen before. Then
player 𝑁 chooses 𝑆𝜉 ⊂ 𝑋 such that 𝑥𝜉 ∈ 𝑆𝜉 and for every 𝑦 ∈ 𝑆𝜉,
𝑁 chooses an open set 𝑉𝑦 such that 𝑦, 𝑥𝜉 ∈ 𝑉𝑦. Also, if 𝑦 ∈ 𝑆𝜂 for
some 𝜂 < 𝜉, then 𝑉𝑦 has to be the same one previously chosen. At
the beginning of every inning, the following tests are made in this
order:

(a) If there is an 𝑥 ∈ 𝑋 such that 𝑥 is an accumulation point
for {𝑥𝜂 : 𝜂 < 𝜉} and 𝑥 is not an element of any 𝑆𝜂 with
𝜂 < 𝜉, then 𝑁 loses. We call this condition 𝑆.

(b) If {𝑥𝜂 : 𝜂 < 𝜉} is not a closed discrete set, then 𝐶 loses.
(c) If

∪
𝜂<𝜉 𝑉𝑥𝜂 = 𝑋, then 𝐶 wins. Otherwise, the game con-

tinues.

Proposition 3.2. Let 𝑋 be a topological space. If 𝑁 has no win-
ning strategy for the star game, then 𝑋 is a 𝐷-space.

Proof: Suppose that 𝑋 is not a 𝐷-space. Let (𝑉𝑥)𝑥∈𝑋 be an
open neighborhood assignment witnessing it. If 𝑁 plays at every
inning 𝜉, 𝑆𝜉 = {𝑦 : 𝑥𝜉 ∈ 𝑉𝑦}, then player 𝑁 wins. □

For 𝜎-compact spaces, the situation is similar to the PONAG.

Proposition 3.3. If 𝑋 is a 𝜎-compact space, then player 𝐶 has a
winning strategy for the star game.

Proof: First, suppose 𝑋 is compact. Player 𝐶 plays as follows.
Define 𝑥0 as any point of𝑋. Next, define 𝑥𝑛+1 as any point (if there
is any) not in

∪
𝑚<𝑛 𝑉𝑆𝑚 . Note that if this procedure continues

until the 𝜔-th inning, then any accumulation point of {𝑥𝑛 : 𝑛 ∈ 𝜔}
must be outside

∪
𝑛∈𝜔 𝑆𝑛. Thus, unless player 𝑁 loses because of

condition 𝑆, there is an 𝑛 ∈ 𝜔 such that
∪

𝑚<𝑛 𝑉𝑆𝑚 covers 𝑋. Since
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𝑋 is compact, we can find a finite subset 𝐹 of
∪

𝑚<𝑛 𝑆𝑚 ∖ {𝑥𝑚 :
𝑚 < 𝑛} such that 𝑉𝐹 ∪ 𝑉{𝑥𝑚:𝑚<𝑛} covers 𝑋.

For proving the 𝜎-compact case, just write 𝑋 =
∪

𝑛∈𝜔 𝐾𝑛 with
each 𝐾𝑛 compact and repeat the strategy above countably many
times. □

It is not difficult to see that a stronger version of the Menger
property implies that player 𝑁 has no winning strategy for the star
game. Before proving this, let us give some definitions.

Definition 3.4. We say that a space 𝑋 is a Rothberger space if for
every sequence (𝒰𝑛)𝑛∈𝜔 of open covers of 𝑋 there is a cover (𝑈𝑛)𝑛∈𝜔
for 𝑋 such that each 𝑈𝑛 ∈ 𝒰𝑛.

Note that the Rothberger property implies Lindelöfness. Thus,
we can assume again that all the covers are countable. Note also
that the Rothberger property implies the Menger property. Sim-
ilar to the Menger property, the Rothberger property also has a
characterization using a game.

Definition 3.5. Let 𝑋 be a topological space. The point-open
game is the following game played between players 𝑁 and 𝐶. At
each inning 𝑛 ∈ 𝜔, player 𝐶 chooses 𝑥𝑛 ∈ 𝑋 and player 𝑁 chooses
an open neighborhood 𝑉𝑛 for 𝑥𝑛. Player 𝐶 wins if

∪
𝑛∈𝜔 𝑉𝑛 = 𝑋.

In [14], it was proven that being a Rothberger space is equiva-
lent to player 𝑁 not having a winning strategy for the point-open
game. Therefore, if 𝑋 is a Rothberger space, player 𝑁 cannot have
a winning strategy for the star game, because, until the 𝜔-th in-
ning, this game is played like the point-open game, just with more
restrictions for player 𝑁 .

Proposition 3.6. If 𝑋 is a Rothberger space, then player 𝑁 has
no winning strategy for the star game.

In [1], in the proof that every space with a point countable base
is a 𝐷-space, actually it was proven that a more general class of
spaces (a simple generalization of the concept of having an uniform
base) is 𝐷.

Definition 3.7. We say that a base ℬ for a topological space 𝑋 is
𝜔-uniform if for every 𝑥 ∈ 𝑋 and every 𝐵 ∈ ℬ such that 𝑥 ∈ 𝐵,
the set {𝐴 ∈ ℬ : 𝑥 ∈ 𝐴 and 𝐴 ∕⊂ 𝐵} is countable.
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Note that any point countable base is an 𝜔-uniform base. But
the converse is not true, even for Lindelöf spaces: let𝐷 be a discrete
space of cardinality 𝜔1 and add a point ∞ such that a local base
for it is made up of sets of the form 𝑉 ∪{∞} with 𝐷∖𝑉 countable.
The space 𝐷∪{∞} is a Lindelöf space with an 𝜔-uniform base but
without a point countable base.

We will prove that having an 𝜔-uniform base is enough for a
space to have a winning strategy for player 𝐶 for the star game.
Before this, we need some more definitions.

Definition 3.8. Let 𝑋 be a topological space. We say that an
inning 𝛼 for the star game is a closed inning if

∙ 𝐷𝛼 = {𝑥𝜉 : 𝜉 < 𝛼} is a closed discrete set in 𝑋;
∙ 𝑥𝜉 /∈ 𝑉𝑥𝜂 for any 𝜂 < 𝜉 < 𝛼;
∙ 𝑉𝐷𝛼 ⊃ ∪

𝜉<𝛼 𝑆𝜉 (𝑆𝜉 is the one in Definition 3.1).

We say that player 𝐶 has a partial strategy for the star game if,
for every closed inning 𝛼 and every 𝑥 /∈ ∪

𝜉<𝛼 𝑉𝑥𝜉
, there is a closed

inning 𝛽 such that {𝑥𝜉 : 𝛼 ≤ 𝜉 < 𝛽} ⊂ 𝑋 ∖
∪

𝜉<𝛼 𝑉𝑥𝜉
and 𝑥𝛼 = 𝑥.

The idea of the closed inning is to split a strategy into smaller
parts.

Proposition 3.9. Let 𝑋 be a topological space. If player 𝐶 has
a partial strategy for the star game, then player 𝐶 has a winning
strategy for the star game.

Proof: The strategy for player 𝐶 will simply be a sequence of
partial strategies concatenated. At each inning 𝛼, player 𝐶 does
the following:

∙ if 𝐶 is in the middle of a partial strategy, 𝐶 continues it;
∙ otherwise, we assume that 𝛼 is a closed inning. If

∪
𝜉<𝛼 𝑉𝑥𝜉

=
𝑋, the game is finished. Otherwise, player 𝐶 begins a new
partial strategy for an 𝑥 /∈ ∪

𝜉<𝛼 𝑉𝑥𝜉
.

Let us prove that this is a winning strategy. For this, it is enough to
show that a limit of closed innings is also a closed inning. Let 𝛼 be
a limit of closed innings and let 𝑥 ∈ {𝑥𝜉 : 𝜉 < 𝛼}. We can suppose
that 𝑥 ∈ 𝑆𝜉 for some 𝜉 < 𝛼 (otherwise, player 𝑁 loses). Thus, there
is a 𝛽 < 𝛼 such that 𝑥 ∈ 𝑉𝑥𝛽

(because of the partial strategies).
We may assume by induction that {𝑥𝜉 : 𝜉 < 𝛽} is closed discrete.
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Since 𝑥𝜂 /∈ 𝑉𝑥𝛽
for 𝜂 > 𝛽, 𝑥 cannot be an accumulation point of

{𝑥𝜉 : 𝜉 < 𝛼}. □
Now we just have to prove that having an 𝜔-uniform base is

enough to have a partial strategy.

Proposition 3.10. If 𝑋 has an 𝜔-uniform base, then player 𝐶 has
a partial strategy for the star game.

Proof: Let ℬ be an 𝜔-uniform base for 𝑋. Since having an 𝜔-
uniform base is hereditary, we just have to prove that for any 𝑥
there is a closed inning that covers 𝑥. We may suppose that all 𝑉𝑥

belong to ℬ. Let 𝑥 ∈ 𝑋. We will define a strategy for player 𝐶
such that 𝜔 will be a closed inning. For technical reasons, we will
enumerate the innings for this strategy using numbers of the form
𝑝𝑛 where 𝑝 is a prime number and 𝑛 > 0. Define 𝑥2 = 𝑥. After
player 𝑁 plays, enumerate the set {𝑈 ∈ ℬ : ∃𝑦 ∈ 𝑆2 𝑥2 ∈ 𝑉𝑦 and
𝑈∖𝑉𝑥2 ∕= ∅} as (𝑈𝑥2

𝑛 )𝑛∈𝜔. Assume that for each 𝑘 < 𝑛, with 𝑘 = 𝑝𝑚

for some prime 𝑝, player 𝐶 already chose 𝑥𝑘 and enumerated the
set {𝑈 ∈ ℬ : ∃𝑦 ∈ 𝑆0 𝑥𝑘 ∈ 𝑉𝑦 and 𝑈 ∖ 𝑉𝑥𝑘

∕= ∅} as (𝑈𝑥𝑘
𝑛 )𝑛∈𝜔. At

the 𝑛-th inning, with 𝑛 = 𝑝𝑚 for some prime 𝑝, player 𝐶 does the
following. Let 𝑞 be the 𝑚-th number of the form 𝑟𝑠 with 𝑟 being a
prime number. If there is an 𝑥 ∈ ∪

𝑘<𝑛 𝑆𝑘 such that

(3.1) 𝑉𝑥 ∈ {𝑈𝑥𝑞

𝑡 : 𝑡 ∈ 𝜔} and 𝑥 /∈
∪
𝑘<𝑛

𝑉𝑥𝑘
,

then player 𝐶 chooses 𝑥𝑛 as the 𝑥 such that 𝑉𝑥 = 𝑈
𝑥𝑞

𝑡 with 𝑡 being
the least one satisfying (3.1). Enumerate (𝑈𝑥𝑛

𝑡 )𝑡∈𝜔 as usual. If there
is no such 𝑥 satisfying (3.1), proceed to the next inning without
choosing an 𝑥 (actually, the definition of the game does not allow
this, but there is no problem if we just assume that player 𝑁 will
do nothing if player 𝐶 does nothing).

Let us prove that this is a partial strategy. We begin proving
that

∪
𝑛∈𝜔 𝑆𝑛 ⊂ ∪

𝑛<𝜔 𝑉𝑥𝑛 . Let 𝑥 ∈ 𝑆𝑛 for some 𝑛 ∈ 𝜔. Assume
that 𝑛 is the least one with this property. Then 𝑉𝑥 = 𝑈𝑥𝑛

𝑘 for
some 𝑘 ∈ 𝜔. Note that in our construction, at every inning of
the form 𝑝𝑡, where 𝑝 is a prime number and 𝑡 indicates how many
elements there are before 𝑛 in our indexes, we pick the first 𝑈𝑥𝑛

𝑠

that has some element not covered. Since there are only finitely
many elements before 𝑘, 𝑈𝑥𝑛

𝑘 will be covered in some inning and,
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therefore, 𝑥. Now we have to prove that {𝑥𝑛 : 𝑛 ∈ 𝜔} is closed
discrete in

∪
𝑛∈𝜔 𝑆𝑛. Let 𝑥 ∈ ∪

𝑛∈𝜔 𝑆𝑛. Let 𝑛 be the first one such
that 𝑥 ∈ 𝑉𝑥𝑛 . Since there are only finitely many 𝑥𝑘’s with 𝑘 < 𝑛
and no 𝑥𝑚 ∈ 𝑉𝑥𝑛 for 𝑚 > 𝑛, we are done. □
Corollary 3.11. If 𝑋 has an 𝜔-uniform base, then player 𝐶 has
a winning strategy for the star game. Therefore, 𝑋 is a 𝐷-space.

The relation between the star game and the 𝐷 property is not
clear. We do not have any example of a 𝐷-space such that player
𝑁 has a winning strategy for the star game. Since it is not known
if a hereditarily Lindelöf space must be a 𝐷-space, the following
question is particularly interesting.

Question 3.12. If 𝑋 is a hereditarily Lindelöf space, can player
𝑁 have a winning strategy for the star game?

4. Some applications

It is easy to see that if 𝑋 is a Menger space and ℙ is a countably
closed forcing, then if ℙ preserves the Lindelöfness of 𝑋, it has
also to preserve its property of being Menger. We can prove an
analogous result for 𝐷-spaces such that 𝑁 has no winning strategy
for the PONAG. Before proving this, we prove a lemma.

Lemma 4.1. Let 𝑋 be a topological space and ℙ be a countably
closed forcing. Let 𝑝 ∈ ℙ and (�̇�𝑥)𝑥∈𝑋 be such that 𝑝 ⊩“(𝑉𝑥)𝑥∈𝑋
is an open neighborhood assignment for �̌�” and 𝑝 ⊩ �̌� is Lindelöf.
Let 𝑈 ⊂ 𝑋 be an open set. Then there are 𝑞 ≤ 𝑝, a countable
𝐴 ⊂ 𝑋 ∖ 𝑈 , and (𝑉𝑥)𝑥∈𝐴 such that 𝑞 ⊩“�̇�𝐴 ∪ �̌� = �̌� and 𝑉𝑥 = �̇�𝑥

for every 𝑥 ∈ 𝐴.”

Proof: Note that 𝑝 ⊩ �̌� ∖ 𝑈 is Lindelöf. Thus, 𝑝 ⊩ “there is a
countable �̇� such that 𝑉𝐴 ⊃ �̌� ∖ �̌� and �̇� ∩ �̌� = ∅.” Let 𝑞′ ≤ 𝑝
be such that 𝑞′ decides �̇� and let 𝑞 ≤ 𝑞′ be such that 𝑞 decides
(�̇�𝑥)𝑥∈𝐴. □
Proposition 4.2. Let 𝑋 be a topological space such that 𝑁 has
no winning strategy for the PONAG. Let ℙ be a countably closed
forcing such that ℙ ⊩ �̌� is Lindelöf. Then ℙ ⊩ �̌� is a 𝐷-space.

Proof: We will define a strategy for 𝑁 and, for each possible
move of 𝑁 , we will associate a 𝑝 ∈ ℙ in the following way:
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∙ In the first inning, 𝑁 chooses (𝑉𝑥)𝑥∈𝐴, where 𝐴 is the one
given by the lemma applied to 1 and the empty set. The
𝑞 given by the lemma is the element associated with this
play.

∙ Let (𝑉𝑥)𝑥∈𝑌 be the move of 𝑁 at the 𝑛-th inning. Let 𝑝
be the element associated with this play and 𝐷 ⊂ 𝑌 be the
closed discrete set chosen by player 𝐶. At the (𝑛 + 1)-th
inning, player 𝑁 chooses (𝑉𝑥)𝑥∈𝐴 where 𝐴 is the one given
by the lemma applied to 𝑝 and 𝑈 , where 𝑈 is the union of
every 𝑉𝐷 already played by player 𝐶. The forcing condition
associated with this move is the 𝑞 ≤ 𝑝 given by the lemma.

Since 𝑁 has no winning strategy, there is (𝐷𝑛)𝑛∈𝜔 where 𝐷𝑛 is the
one chosen by 𝐶 at the 𝑛-th inning such that

∪
𝑛∈𝜔 𝑉𝐷𝑛 = 𝑋. Note

that 𝐷 =
∪

𝑛∈𝜔 𝐷𝑛 is closed discrete. Let (𝑝𝑛)𝑛∈𝜔 be the forcing
conditions associated with every move of 𝑁 in this game. Note that
𝑝𝑛+1 ≤ 𝑝𝑛. Let 𝑝 ≤ 𝑝𝑛 for every 𝑛. Note that 𝑝 ⊩ 𝑉𝐷 = 𝑋 and
𝑉𝑥 = �̇�𝑥 for every 𝑥 ∈ �̌�. So 𝑝 forces that 𝑋 is a 𝐷-space. □

One of the difficulties in proving that a space 𝑋 is a 𝐷-space
is determining where to look for the closed discrete kernel. For
a fixed open neighborhood assignment (𝑉𝑥)𝑥∈𝑋 , one can easily fix
a countable set to look at if 𝑋 is Lindelöf. Namely, pick 𝑀 a
countable elementary submodel such that (𝑉𝑥)𝑥∈𝑋 ∈ 𝑀 . It is easy
to see that if (𝑉𝑥)𝑥∈𝑋 has a closed discrete kernel, then it has one
as a subset of 𝑀 ∩𝑋. But if we assume that 𝑋 is a Menger space,
we can do a little better.

Proposition 4.3. Let 𝑋 be a Menger space and (𝑉𝑥)𝑥∈𝑋 be an open
neighborhood assignment for it. If 𝑌 ⊂ 𝑋 is such that for every
finite 𝐹 ⊂ 𝑌 , 𝑉𝐹 ∪ 𝑉𝑌 ∖𝑉𝐹

= 𝑋, then there is a closed discrete (in
𝑋) 𝐷 ⊂ 𝑌 such that 𝑉𝐷 = 𝑋.

Proof: Suppose not. Consider the following strategy for player
𝑁 for the Menger game. At each inning, player 𝑁 defines 𝒰𝑛 =
{∪𝑚<𝑛 𝑈𝑚 ∪ 𝑉𝐹 : 𝐹 ⊂ 𝑌 ∖

∪
𝑚<𝑛 𝑈𝑚 is finite} where the 𝑈𝑚’s are

the plays of player 𝐶. Since each 𝑈𝑚 is a finite union of 𝑉𝑥’s with
𝑥 ∈ 𝑌 and by our hypothesis over 𝑌 , 𝒰𝑛 is a cover for 𝑋. As in
the case of the PONAG, note that if

∪
𝑛∈𝜔 𝑈𝑛 = 𝑋, then

∪
𝑛∈𝜔 𝐹𝑛,

where each 𝑈𝑛 = 𝑉𝐹𝑛 , is a closed discrete set. Since there is no
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closed discrete set inside 𝑌 that covers 𝑋, then player 𝑁 wins the
game, contradicting the fact that 𝑋 is a Menger space. □

Showing that a given space is a Menger space is often easier
than proving it is a 𝐷-space directly. One example is a Souslin
tree with the fine wedge topology or the coarse wedge topology [2].
Such spaces are easily shown to be Rothberger by a combinatorial
argument. Therefore, they are Menger spaces and𝐷-spaces. This is
an easier proof than the one presented in [15], where the𝐷 property
is shown directly.

Also, proving that a space is a 𝐷-space by proving it is a Menger
space is a technique that applies to a wider class of spaces than the
class of metrizable spaces or 𝜎-compact spaces, as we can see in the
next example.

Example 4.4. Let 𝑋 be a Menger space and 𝜅 be any uncountable
cardinal. Define 𝑌 ′ as the disjoint union of 𝜅 many copies of 𝑋 and
let 𝑌 be a one-point Lindelöfication of 𝑌 ′. Note that 𝑌 is a Menger
space and it is neither metrizable nor 𝜎-compact.

5. Compact Rothberger spaces

The Rothberger property restricted to compact spaces has sev-
eral characterizations. Some of them are well known and others
were presented somewhere else. For the convenience of the reader,
we will present here a list of some of them, putting together new
and old ones. Before this, we need the following definitions.

Definition 5.1. Let 𝑋 be a Lindelöf space. We call the open-open
game the following game played between players 𝑁 and 𝐶. At each
inning 𝑛 ∈ 𝜔, player 𝑁 chooses 𝒰𝑛, a countable open cover for 𝑋.
Then player 𝐶 chooses 𝑈𝑛 ∈ 𝒰𝑛. We say that player 𝐶 wins the
game if

∪
𝑛∈𝜔 𝑈𝑛 = 𝑋.

In [14], it was proven that 𝑋 is Rothberger if and only if player
𝑁 has no winning strategy for the open-open game.

In [17], a characterization for preservation of the Lindelöfness of
a space under countably closed forcing was proven. This character-
ization uses the concept of a covering tree and, using the characteri-
zation of being a Rothberger space by topological games, it is simple
to see that Rothberger spaces have the preservation property. It



𝐷-SPACES, TOPOLOGICAL GAMES, AND SELECTION PRINCIPLES 119

turns out that the same technique gives us a characterization in the
class of compact spaces and preservation under any forcing. This
result also can be proven using a combination of older results, but
this proof seems to have its own interest. The next definitions are
versions of concepts presented in [17].

Definition 5.2. Let 𝑋 be a compact space. We call a covering
𝜔-tree a family (𝑉𝑠)𝑠∈𝜔<𝜔 where each 𝑉𝑠 is an open set of 𝑋 and
for every 𝑠 ∈ 𝜔<𝜔, {𝑉𝑠⌢𝑛 : 𝑛 ∈ 𝜔} is a cover for 𝑋. The order on
{𝑉𝑠 : 𝑠 ∈ 𝜔<𝜔} is the one induced by the usual one on 𝜔<𝜔.

Definition 5.3. Let 𝑋 be a compact space and (𝑉𝑠)𝑠∈𝜔<𝜔 be a
covering 𝜔-tree for 𝑋. We say that 𝑉𝑡 with 𝑡 ∈ 𝜔<𝜔 is a covering
element for (𝑉𝑠)𝑠∈𝜔<𝜔 if

∪
𝑎≤𝑡 𝑉𝑎 ⊃ 𝑋.

There is a characterization using elementary submodels and a
special space defined using them [13].

Definition 5.4. Let (𝑋, 𝜏) be a topological space and 𝑀 be an
elementary submodel such that (𝑋, 𝜏) ∈ 𝑀 . We call 𝑋𝑀 the space
𝑋 ∩𝑀 with the topology generated by {𝑈 ∩𝑀 : 𝑈 ∈ 𝜏 ∩𝑀}.
Proposition 5.5. Let 𝑋 be a compact Hausdorff space. The fol-
lowing are equivalent.

(a) 𝑋 is scattered;
(b) 𝑋 is Rothberger;
(c) the compactness of 𝑋 is preserved by any forcing;
(d) the compactness of 𝑋 is preserved by adjoining a Cohen

real;
(e) for every covering 𝜔-tree for 𝑋, the set of the covering ele-

ments is dense;
(f) for every covering 𝜔-tree for 𝑋, there is a covering element;
(g) there is a countable elementary submodel 𝑀 such that 𝑋𝑀

is compact Hausdorff;
(h) 𝑋𝑀 is compact Hausdorff for any elementary submodel 𝑀

such that 𝑋 ∈ 𝑀 .

Proof: (𝑐) ⇒ (𝑑) is trivial.

For (𝑑) ⇒ (𝑐), let ℙ be a forcing and let �̇� be a name for an

open cover for 𝑋 such that ℙ ⊩“�̇� has no finite subcover.” We
may assume as well that ℙ forces that every element of �̇� is an
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open set of the ground model. We construct a tree ((𝑝𝑠, 𝑉𝑠))𝑠∈𝜔<𝜔

such that, for every 𝑠, 𝑡 ∈ 𝜔<𝜔,

(i) 𝑝𝑠 ∈ ℙ and 𝑝𝑠 ≤ 𝑝𝑡 if 𝑠 ⊃ 𝑡;

(ii) 𝑝𝑠 ⊩ 𝑉𝑠 ∈ �̇�;
(iii) {𝑉𝑠⌢𝑛 : 𝑛 ∈ 𝜔} is a cover for 𝑋.

Note that ((𝑝𝑠, 𝑉𝑠))𝑠∈𝜔<𝜔 is isomorphic to Cohen forcing. Let 𝑔 be
a Cohen real in the extension after we force with such order. Note
that by genericity

∪
𝑠⊂𝑔 𝑉𝑠 is an open cover for 𝑋. Since we have

(𝑑), there is a finite subcover for it, although ℙ forces that there is
not.

For (𝑑) ⇒ (𝑒), let (𝑉𝑠)𝑠∈𝜔<𝜔 be a covering 𝜔-tree for 𝑋. Suppose
that there is an 𝑠 ∈ 𝜔<𝜔 such that there is no 𝑡 ⊃ 𝑠 such that 𝑉𝑡

is a covering element. Let 𝑔 be a Cohen real extending 𝑠. By (𝑑)
there is a 𝑠 ⊂ 𝑡 ⊂ 𝑔 such that 𝑉𝑠 is a covering element.

For (𝑒) ⇒ (𝑑), suppose that Cohen forcing destroys 𝑋. Proceed
as we did in the proof of (𝑑) ⇒ (𝑐) and construct a covering 𝜔-tree.
Since we have (𝑒), any generic cover has a finite subcover.

(𝑒) ⇒ (𝑓) is immediate.

For (𝑓) ⇒ (𝑒), let (𝑉𝑠)𝑠∈𝜔<𝜔 be a covering 𝜔-tree and let 𝑡 ∈ 𝜔<𝜔.
Note that {𝑉𝑠 : 𝑠 ∈ 𝜔<𝜔, 𝑠 ⊋ 𝑡} is isomorphic to a covering 𝜔-tree
for𝑋 and, by (𝑓), it has a covering element. Note that this covering
element is an extension of 𝑉𝑡.

Note that a strategy for player 𝑁 on the open-open game is
a covering 𝜔-tree and the converse is also true: any covering 𝜔-
tree is a strategy for the game. Also, note that such tree has a
covering element if and only if the strategy associated is not a
winning strategy. Thus, we have (𝑏) ⇔ (𝑓).

The equivalence among (𝑎), (𝑔), and (ℎ) is done in [13].

It is well known that in the class of compact spaces the notions
of being Rothberger and being scattered are equivalent. For the
convenience of the reader, we present one proof of this result here.

(𝑎) ⇒ (𝑏): Suppose 𝑋 is scattered. Let 𝛼 be the height of 𝑋
(see [10, p. 350] for the definitions of height and 𝑋𝛼). We will
prove this by induction over 𝛼. Note that, since 𝑋 is compact,
𝛼 = 𝛽 + 1 with 𝑋𝛽 finite. Let (𝒰𝑛)𝑛∈𝜔 be open covers for 𝑋.
Let {𝑥0, ..., 𝑥𝑛} = 𝑋𝛽 . Choose 𝑈𝑘 ∈ 𝒰𝑘 for 𝑘 = 0, ..., 𝑛 such that
𝑥𝑘 ∈ 𝑈𝑘. Note that 𝑋∖

∪
𝑘≤𝑛 𝑈𝑘 is a compact scattered space with
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height less than 𝛽. Thus, by the induction hypothesis, there are
𝑈𝑘 ∈ 𝒰𝑘 with 𝑘 > 𝑛 such that

∪
𝑘>𝑛 𝑈𝑘 ⊃ 𝑋 ∖

∪
𝑘≤𝑛 𝑈𝑘. Thus, 𝑋

is Rothberger.

(𝑏) ⇒ (𝑎): We only have to prove that any closed subspace of
𝑋 has an isolated point. Suppose not. Since any compact space
without isolated points has 2𝜔 as a closed subspace, and 2𝜔 is easily
seen not to be Rothberger, we have a contradiction. □

There is a direct proof of (𝑎) ⇔ (𝑐) in [12].
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Topology Appl. 63 (1995), no. 1, 21–38.
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